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UTILIZATION OF COLD WORK
IN LIGHT GAGE STEEL

N.C. Lind,
Professor of Civil Engineering,
University of Waterloo,
Waterloo,

Ontario, Canada

INTRODUCTION

Cold forming of light gage steel structural sections can
modify the mechanical properties of the material significantly,
generally increasing the yield strength and the ultimate strength
anc¢ reducing the ductility. The modification in the cold formed
regions, the '"corners", is beneficial for the load carrying capacity
and significant for the section as a whole, as Karren [1] has demonst-
rated. He has also developed an analysis to predict the increase in
load carrying capacity that, with minor modifications, has been
incorporated in the AISI (1968) Specification {2], in the Canadian
Standard S-136 (1970) and possibly others. This analysis is workable;
but it {s complicated, impossible to understand without recourse to
ref. [1}, and very difficult to execute manually without referring to
the specification or standard for details and numerical constants.

The theory also assumes von Mises yield condition, and isotropic strain
hardening following a power law. This complicates and specializes the
analysis and is not in good agreement with material behaviour; the
test results (1] show on the average a 57 difference between the yield
strength in tension and compression.

It is the purpose of this paper to present a similar theory
based on fewer assumptions; this analysis is considerably simplified
and {ntuitively obvious. Specialized for a simple strain hardening law
(linear) it leads to a design rule of extreme simplicity without the
drawbacks mentioned above. In this rule, all aspects of material
behaviour are represented through the hardening margin, fu - fy' between
ultimate and vield strength, specific for the material, and a hardening
constant determined empirically and taken to be the same for all
materials. Because this constant is determined directly from the corner
tests, rather than from stress-strain curves, it is not surprising that
the results agree much better with the test data than Karren's original
theory. As proposed in a draft of the CSA-S136 Standard, the rule for
calculating the strength of a beam or a fully effective (Q = 1) column
is simply to replace the yield strength by the ultimate strength over

2 o
an area 5t° in each 90 corner.

For other corner angles the area is
increased proportionally.

The theory presented by Karren had much of a semi-empirical
appearance, and it was thought wise not to transgress the bounds of

experimental evidence in the application, leading to the restriction in

the range of corner angles (up to 1200) and the gap between yield and
ultimate strengths (no less than 20% of yield). The present theory shows

clearly that these restrictions can be dispensed with.

MATERTAL BEHAVIOR

The analysis requires few restrictive assumpt ions about the
behavior of the material., For example, it is not necessary to assume

that the material is isotropic or that it has equal properties in
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tension and compression, It is assumed that the material is elastic-

plastic; elastic strains are assumed negligible in comparisom with

plastic strains,
Referring to Figure 1, consider a flat element of virgin

material of length h, width L and thickness t, bent by a pure

uniformly distributed moment into a cylindrical shape of mean radius R

(inside radius a). Because of symmetry, the coordinate axes indicate

the principal directions of deformation. The element is assumed to be a

contiguous part of a larger sheet that remains elastic such that its

length h is unchanged in the deformation. A layer of thickness dg

is therefore strained uniaxially in the process in tension or in com-
pression depending on its position relative to the neutral surface.

The stress L normal to the layer is small and is neglected

in the analysis. Assuming orthotropic material behavior, the principal

stress directions will also coincide with the co-ordinate axes shown,

such that ayz, g

and qu vanish. The yield condition can therefore,

Xz

be described by its intersection with the two-dimensional subspace (cx, gy)

of stress space (see Figure 2). In the usual fashion, strain vectors are

associated with points of the yield surface; during the forming of

the corner a layer of thickness dz follows the stress paths O0A

or OB 1in Fig. 2, characterized as the locus of stress points with

vanishing strain in the y-direction. The engineering strain and

engineering stress in this plastic deformation in the layer are denoted

by e and ¢ respectively, related by the strain hardening law

o = g(e) (¢5]

For a corner in service, on the other hand, the stresses in

the plane of the cross-section are small and are neglected. The con-

dition is one of uniaxial stress in the y-direction, represented by

COD in Fig. 2. The effect of the plastic deformation is to raise the

yleld stress in tension and compression in the y-direction. For example,

a layer compressed to point A in Fig. 2 will have yield stresses indicated

by points E and C in tension and compression, respectively,

When the moments that produce the plastic deformation are

released, elastic unloading takes place under plane strain conditions.

If point A (Fig. 2) represents the inside corner surface (z = t/2 in Fig. 1),

it will unload to a point such as F. The slope of AF is equal to Poisson's

ratio; the precise location of F can be determined by elastic curved

beam theory modified for plane strain. Curve Fg indicates the locus of

residual stress points for the section as a whole.

When, as in service, the corner is subsequently loaded in the

axial direction, it will undergo strains of only elastic magnitude until

the average stress is so high that the yield stress is developed over the

entire cross section, We aim to calculate the average axial stress, which

will be called the yield strength of the corner, For example, if the

corner is in tension, the layer originally represented by B and G will

enter a state of restrained plastic flow when point I 1s reached:



yielding of the corner as a whole will not occur until the material
at point F reaches point H. Evidently, the pattern of yielding can

be quite complicated, depending on details of the residual stress field
and the location of intermediate yield surfaces. Most of the complexities
of the analysis arise because the stress-strain relationship in Eq. 1

is not symmetrical with respect to the origin, as evidenced by Fig. 2 and
illustrated in Fig. 3. For a given magnitude of strain, the stress
value in compression is usually higher than the stress value in tension.
The difference tends to increase with the strain. A consequence of this
lack of symmetry is the gradual shift of the neutral axis towards the
compression side; the material in the middle of the plate that is swept
by the neutral axis suffers a stress reversal. The problem is also compli-
cated by deformation of the cross-section; the distance z of a particle
from the mid-surface is not conserved, as a rule. Radial expansion and
contraction cause the particles of the mid-surface to move outwards
relative to the surfaces of the sheet which remain approximately a
distance t apart. As a consequence, the linear variation of engineering
strain e = e(z) with radial distance in the corner reflects a nonlinear
variation of e with distance from the mid-surface. This effect could be
significant when the strains are high but it is, of neceasity, left out

of consideration.

INFLUENCE OF STRESS-STRAIN ASYMMETRY

It will first be shown that the difference between the tension
and compression segments of the stress-strain curve, Eq. 1, can normally
be neglected in practice. For this purpose, let 4 = f(e) and g = g(e)
denote the even and odd components, respectively, of the stress-strain
curve as shown in Fig., 3. Let the magnitude of compressive strain on the
inside surface of the corner be denoted by c-h and let F denote the
area under the compression stress block OC in Fig. 3. Let c¢ denote the
strain for which the area under the mean curve (OM) equals F. By a
series expansion of the integral of function f + g representing the

compression curve:

c-h 1.2
I (f+g)de = F = F - h(f +8) + 3 h'(E' +8') + ... )
0

Similarly, let ¢ + h + d denote the strain for which the area under the
tension curve f - g equals F; then

c+h+d
J (-pde=FeF-Ctnc-g +30 (£ =g +... (3
0

in which F and G are areas as shown in Fig. 3:

c

C
F = Io f(e) de, G = Io g(e) de. (%)

Assume that G 1is small in comparison with F; the areas in Fig. 3 then

show that h and d are both small in comparison with c. Moreover, the
quadratic terms in Eqs. 2 and 3 are seen to represent areas negligible in
comparison with G, when the slopes f'

and g' both are small (in

comparison with £/c). Then, neglecting appropriate terms, these equations

can be solved for the strain differences h and d to yield

PR 2
R T v ®
Now, the true curvature k can be calculated from the strain differential

over the thickness t:

2c +d
T (6)

- feth+d) - [-(c -h] _
t

This {s the curvature corresponding to a true stress block of area F.
Now, if the mean curve is used instead of the true stress-strain curves,

*
a stress block of area F would be associated with the curvature value k

given by
* 2c
k= = (¢))
Hence, with some rewriting
2
- Ka+dy - G,
ko= K@+ = K (14 ('c>;5571 ®

The last term in the bracket in this equation shows the relative error

in substituting k* for k. The error depends on the shape of the stress-
strain curve and the value of the strain. Normally, G does not exceed
twenty percent of gc and g does not exceed twenty percer;t of £, so
that the error in k* for a value of F 1is less than one percent.
Inversely, the error in F for an assumed curvature will also be less

than one percent, approximately, so that asymmetry in the plane strain

vs. stress characteristic, c:x = i(ex). can be neglected in practice:
fle) = - f(-e) 9

Moreover, it is assumed that there exists an effective stress
function and an effective strain function having the property that the
plane yield stress vs. prestrain relations, f; - f;(ex) and f; - f;(ex)
in the y-direction in tension and compression respectively, are affine
to the stress vs. plane strain relation, o = f(cx). in the x-direction.
Thus,

t
fy = Ai(ex) (10)

f; = BE(e,) ‘ (11)

where A and B are constants.
Finally, it is assumed that the slope of the yield loci near the
intersection with the qy-axis in Fig. 2 can be taken as constant over

These

the range of residual stress a: of interest.

and of stress gy
assumptions are satisfied by von Mises yield condition and isotropic

work hardening, as an example.

ANALYSIS

In Fig. &4, let o = qx(z) - f(ex(z)). indicated by Curve 1-1,
be the variation of stress in the x-direction (referred to original area
of elements) through the thickness of the corner just when the last incre=-
ment of plastic work in forming is performed. This stress is symmetrical
with respect to the mid-surface, by Eq. 9. The corresponding yield strength
variations through the thickness are indicated by the curves f;(z)
and f;(:).

The presence of residual stresses after unloading should not
be neglected. Curve 2-2 indicates the elastic stresses a:: induced
by unloading the moments in Fig. 1, plotted such that the distance q:
from 1-1 to 2-2 is the residual stress field in the x-direction. The
stresses a: are distributed according to plane strain curved beam theory,
modified to refer to original areas of elements. Finally, curve 3-3
indicates the residual stress in the y-direction.composed of a plastic
part (see path AB in Fig. 2), and an elastic part associated with the
unloading and related to a:

by the Poisson effect. Evidently,

j‘a; () dz = © (12)



I": () ds = 0 (13)

where the integration extends from surface to surface.
1f there were no residual stress in the x-direction, the axial
force per unit arc length of corner to produce yielding in tension would
be equal to the area between 3-3 and 4-4. Fig. 2 shows how the yield
stress is influenced by transverse residual stress (compare KE and FH).
The deviation of the yield loci from their tangents at the

points of intersection with the a‘-uu (such as E, D, and C) for

abscissas in the range of residual stress q: is,by assumption, negligible.

Also,"triangle’' 0550 in Fig. 4 is neglected. Then, the corner yield

strength in tension, by Eqs. 10, 12 and 13 can be calculated as:

2 t/2
t 1t o, .1 t t, o _ 0
" +J (o, = o,)dz tJ [fy(o‘(:)) + ()" oy dyld’
-t/2 -t/2
t/2 t/2R
A 2AR - 2R
=5 e @dr = X Io £(e)de = T AF(E/2R) ... (14)
-t/2

in which (!;)' denotes the slope of the yield loci at the points on

the oy-uu in Fig. 2, d to be a Similarly, the corner

yield strength in tension is found as:

f;c = BF(t/2R)/(t/2R) (15)

Thus, the corner yield strength is easily determined, to within a constant

factor,from bend radius R - t/2, material thickness t, and area function
F(e) under the stress-strain curve (average of tension and compression).
In application, the distinction between tension and compression would
normally be ignored, and only tension data used. The compression yield
strength would then be taken equal to the tension value.

Eq. 14 confirms intuition that the corner yield strength should

be independent of the corner angle.

LINEAR HARDENING MODEL

The nine materials studied by Karren [1] showed considerable
variation in general in mechanical properties, but the ultimate strain
e wvas essentially constant, equal to 1/3 (variation between 0.31 and

0.40 for a 2 inch gage length). This suggests that the materials can be

modelled by an ideal material hardening in tension from ft to fz
over a strain that {s the same fraction, here denoted by 3A/4a, of
e, = 1/3 for all the materials examined. Choosing the rigid-plastic
linearly hardening material
t t
e(f - f)

R VSTV ) (16)

gives the area function

- 2 et | oty 2
F(e) tfy + 55 fy)e

an
go that, by Eqs. 14 and 15
t t t .t t
fyc A‘y *oa R(fu - ty) (18)
€ = et 4+ o DL (et . gt
ye AR Y (19)

When no cold work is done, that is for 1/R = 0, the yield strength

Af; and Bf; are, respectively, equal to the virgin material yield

12

£ ¢ ly. Eqs. 18
strength in temsion, £ and compression !y respectively q!

y
t .
and 19 give B/A = f;/fy and become:

t
£
t oottt oty mff Ltal == D]
£ " %y g, - ) 7y R f;
fc gft
c . ¢ t Yt .S me [ltags(—= - DI
fyc f.y\"q(ft f“ fy) y Rf;

Here, ¢ is the only unknown quantity. Solving these equations

and inserting the experimental values by Karren [1] shows that o

(20)

(21)

for o

ranges from 2.10 to 5.03 in tension and from 2.02 to 7.51 in compression

for all the tests by Karren (totalling about 200 corners), averag

3.3 in tension and 4.29 in compression.

ing

This linear model permits a very simple representation for

design purposes. In tension, the increment in yield force for a corner

is, by Eq. 20, using the average value for a,

~ BENE)E, - £)(6°/90")

where, in the last reduction the superscript has been suppressed.

define a fictitious compressive ultimate strength as
4 C et t
£, (fy/fy) t‘u
Then, Eq. (22) also will apply to the increment in yield force in

compression, by Eq. 21; with o equal to 4.29, and 7t instead

in the last equality.

o
t oty 2.t oty IO 2.t ct
AP = (eRt)(fyc fy) oat” (£ fy) G 90‘,)(3-%): £, fy)

(22)
We

(23)
of 5t

In practice, compression data is rarely available, and it is

reasonable to neglect the apparently higher hardening rate in compression.

Using the value 5t together with tension data also in compression,

Eq. (22) may be interpreted into the following simple design rule

Cold work of a 90° corner may be taken into account by

replacing the yield strength by the ultimate strength over

an arc lengths,s, of the corner of five times the thickness.

For other corner angles this arc length shall be changed

in proportion to the angle.

Evidently, a difference in the value of g may be interpreted

directly in terms of arc lengths. For example, if the ultimate strength

is 407% higher than the yield strength, a 507 error in g 1is equivalent

to an error of t x t in effective area of flange or cross-section. The

scatter in o 1is therefore not so significant as it might appear

at
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first sight.

overestimating the strength of sharp corners.

eliminated by using a parabolic strain hardening (for example) and letting

There is some systematic variation, with a tendency to

s depend on material properties, etc.

Oy
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CONCLUSIONS

On the basis of a simple material model and experimental data
by Karren (1], it is concluded that
(1) The raise in the yield strength of a corner depends mainly on
the corner curvature ratio a/t and the area function F(e) of the mean
of the tension and compression stress-strain curves for the material;
it is independent of the corner angle.
(2) A linear strain-hardening model, postulating that the
material is rigid-plastic and hardening from yield strength to ultimate
strength over a strain of 33 1/3%, accounts for all test results avail-
able with good accuracy. By this model, the raise in yield strength
depends only on a/t and the difference, fu - fy. of the ultimate
strength and the yield strength. .
(3) The linear strain hardening model is convenient for design
purposes. To take the cold work strengthening into account it is merely
necessary to replace the yield strength by the ultimate strength at each
90° corner over an arc length of five times the material thickness.
For other corner angles the arc length should be modified in proportion

ta the angle of bending.
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