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\JTlLIZATION OF COLD WORK 
IN LIGIIl' GAGE Sl'El!L 

By 
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Prof•••or of Civil Enaineerlna, 
University of Waterloo, ~nd 

D. K. Schroff, 
Associate Prograt~~~~.er, 

1BM Canada L:United, 
36 King Street East, 
Toronto 111, Canada 

Waterloo, 
Ontario~ Canada 

INTRODUCTION 

Cold forming of light sage steel structural sections can 

modtfy the mechanical propertiea of the material sianificantly, 

sener•lly increasing the yield atrenath and the ultimate strength 

ant! reduc:Ln& the ductility. The modification in the cold formed 

r•gLona. the "corner•"· is beneficial for the load carrying capacity 

and B1Rnlf1cant for the aection at a whole, as Karren (1] has demonat .. 

ratrd. H• has also developed an analysh to predict the increase in 

load carryina capacity that, with minor modifications, has been 

incorporated in the AISI (1968) Specification [2], in the Canadian 

Standard S•lJh (1970) and possibly others. This analysis is workable; 

but it is complicated, impoaaible to understand without recourse to 

ref. [1), and very difficult to execute manually without referring to 

the apec;:Lfication or standard for details and numerical constants. 

The theory also aasume1 von Hhes yield condition, and isotropic strain 

hardeninM following a power law. This complicates and specializes the 

analyais and ia not in good agreement with material behaviour; the 

tt·st results Ill show on the average a 5% difference between the yield 

strenf!;th in t('ns ion and compress Lon. 

lt is the purpose of this paper to present a similar theory 

bas«>d on fewer assumptions; this analysis is considerably simplified 

.,nd intuitively obvious. Specialized for a simple strain hardening law 

(linear) it leads to a design rule of extreme simplicity without the 

dr.twbacks mentioned above. In this rule, all aspects of material 

bf'haviour are represented through the hardening margin, fu ... fy' between 

Hltimatt> und vlt>ld strength, specific for the material, and a hardening 

constant determined empirically and taken to be the same for all 

moHt"r 1.1ls, Bec<'luse this conatant is determined directly from the corner 

tl!'sts. r.lther than from stress-strain curves, it is not surprising that 

th(' results a~~:ree much better with the test data than Karren's original 

thE-ory. Af; proposed in a draft of the CSA-Sl36 Standard, the rule for 

calculating the .strength of a beam or a fully effective (Q = 1) column 

is simply to replace the yield strength by the ultimate strength over 

St 2 in each 90° corner, For other corner angles the area is 

increased proportionally. 

The theory presented by Karren had auch of a semi·empirical 

appearance, and it was thought wise not to transgress the bounds of 

experimental evidence in the application, leading to the restriction in 

the range of corner angles (up to 120°) and the &ap between yield and 

ultimate strengths (no less than 207~ of yield), The present theory shows 

clearly that these restrictions can be dispensed with. 

MATERIAL BEHAVIOR 

The analysis requires few restrictive assumptions about the 

hehavior of the material. For example, it is not neceasary to asaUIII• 

that the material is isotropic or that it has equal properties in 
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tension and compression, It is assumed that the material is elastic· 

plastic; elastic strains are assumed negligible in comparison with 

plastic strains. 

Referring to Figure 1, consider a flat element of virgin 

material of length h, width L and thickness t, bent by a pure 

uniformly distributed moment into a cylindrical shape of mean radius R 

(inside radius a). Because of symmetry, the coordinate axes indicate 

the principal directions of deformation. The element is assumed to be a 

contiguous part of a larger sheet that remains elastic such that its 

length h is unchanged in the defonnation. A layer of thickness de: 

is therefore strained uniaxially in the process in tension or in com· 

pression depending on its position relative to the neutral surface. 

The stress O'zz normal to the layer is small and is neglected 

in the analysis. Assuming orthotroptc material behavior, the principal 

stress directions will also coincide with the co-ordinate axes shown, 

such that oyz' axz and ~ vanish. 
xy The yield condition can therefore, 

be described by its intersection with the two-dimensional subspace (crx' ~y) 

of stress space (see Figure 2). In the usual fashion, strain vectors are 

associated with points of the yield surface; during the forming of 

the corner a layer of thickness dz follows the stress paths OA 

or 08 in Fig. 2, characterized as the locus of stress points with 

vanishing strain in the y-direction, The engineering strain and 

engineering stress in this plastic deformation in the layer are denoted 

by e and cr respectively, related by the strain hardening law 

a = cr(e) (1) 

For a corner in service, on the other hand, the stresses in 

the plane of the cross·section are small and are neglected. The con

dition is one of uniaxial stress in the y-direction, represented by 

COO in Fig. 2. The effect of the plastic deformation is to raise the 

yield stress in tension and compression in the y·direction. For example, 

a layer compressed to point A in Fig. 2 will have yield stresses indicated 

by points E and C in tension and compression, respectively. 

When the moments that produce the plastic defonnation are 

released, elastic unloading takes place under plane strain conditions. 

If point A (Fig. 2) represents the inside corner surface (.z :c t/2 in Fig. 1), 

it will unload to a point such as F. The slope of AF is equal to Poisson's 

ratio; the precise location of F can be determined -by elastic curved 

beam theory modified for plane strain. Curve FG indicates the locus of 

residual stress points for the section as a whole. 

When, as in service, the corner is subsequently loaded in the 

axial direction, it will undergo strains of only elastic magnitude until 

the average stress 11 ao high that the yield stress 1s developed over the 

entire eroas section. 
We aim to calcula~e the average axial stress, which 

will be called the yield strength of the corner. 
For e)J:aaple, if the 

corn•r 11 in tenaton. the layer ortsinally repreaented by B and G will 

enter a •tate of restrained plastic flow when point 1 is reached i 



yielding of the ~onar ao a whole will not o~cur until the utarial 

at point F rea~hos poiDt H. Evidently, the pattorn of yieldilll caD 

be quite complicated, dependins OD detailo of the reoidual otreu field 

and the location of intermediate yield ourfaceo. !loot of the ~omplexitioo 

of the analyaia arile becauae the atreaa-atrain f'elatlonahip in Bq. 

is not ayaaetrical with reapect to the origin, as evidenced by Fig. 2 and 

illustrated in Fla. 3. For a aiven magnitude of strain, the atress 

value in com.preaaion 11 usually higher than the atreaa value in teuion. 

The difference tends to increa1e with the strain. A oonaequence of this 

lack of symmetry is the gradual ohift of the neutral axio toward• the 

compression side; the material in the middle of the plate that ia swept 

by the neutral axis auffers a strela reversal. The probleQt is also coml'li· 

cated by deformation of the crosa•aect:l.on; the distance • of a particle 

from the mid-surface is not conserved, as a rule. Radial expansion ancl 

contraction cause the particles of the aid-surface to move outw._,rds 

relative to the surfaces of the sheet which remain approxlmately a 

distance t apart. As a consequence, the linear variation of engineerill& 

strain e = e(z) with radial distance in the corner reflects a nonlinear 

var.iation of e with distance from the mid-surface. This effect could be 

significant when the strains are high but it is, of necessity, left out 

of consideration. 

INFWENCE OF STRESS-STRAIN ASYMMETRY 

It will firot be shown that the difference between the teno ion 

and compression aegments of the stress-atrain curve, Eq. 1, can normally 

be neglected in practice. For this purpose, let a • f(e) and a • g(e) 

denote the even and odd components, respectively, of the stresa-atrain 

curve as shown in Fig. 3. Let the magnitude of compressive atrain on the 

inside surface of the corner be denoted by c•h and let F denote the 

area under the compression stress block OC in Fig. 3. Let c denote the 

strain for which the area under the mean curve (Ctt) equals F. By a 

series expansion of the integral of function f + g representing the 

compression curve: 

c-h J (f+g)de = F • F - h(f + g) + ! h2 (f • + g •) + ••• 
0 

(2) 

similarly. let c + h + d denote the strain for which the area under the 

tension curve f - 1 equals F; then 

c+h+d 

J (f·g)de • F • F - G + h(f - g) + t h2 (f' - g') + • , • 
0 

in which F and G are &Teas as shown in Fig. 3: 

c 
F • J f(e) de, 

0 

c 
G • J g(e) de. 

0 

(3) 

(4) 

Assume that G is amall in compariaon with F; the areas in Fig. 3 then 

show that h and d are both small in comparilon with c. Moreover. the 

quadratic terms in Eqs. 2 and 3 are aeen to represent areaa negli&ible in 

comparison with G, when the alopea f' and 1' both are 1111811 (in 

comparleon with f/c). Then, nealectina appropriate tarma, theae equations 

can be aolved for the strain differences h aU d to yield 

h :. --lL. 
f +I 

d ~o-jLz 
f -I 

'(S) 

llov, tho true curvature k caD be calculated frca the otreiD differential 

over the thiakDaoe t: 

k •· (c + h +d) - !-(c - h)) 2c + d 
t • --r- (6) 

Thil ia the curvature correapondiag to a true otreu block of orea r. 

Now, if the •an curve ll uaad inataad of the true atr•••·•train cunrea. 

* a otreu block of area F would be uoociated with the curva~ure value k 

11 

given by 

(7) 

Hence, with aome rewritina 

* d * " 2 k • k (1 + z;;-> • k ! 1 + ("-l:f--rl 
IC f - I 

(8) 

The laat term in th• bracket in this equation ahova the relative error 

* in aubatitutina k for k. The error depends on the ahape of the stress .. 

st~ain curve and the value of the strain. Normally, G does not •xceed 

tw•nty percent of ac and 1 doea not exceed twenty percent of f. so 

* that the error in k for a value of F ia leas than one percent. 

Inveraely, the error in F for an aaau.ed curvature will also be leas 

than one percent, approxiiDately, 10 that aayaDetry in the plane strain 

va. stress characteriatic, ax • f(ex), can be neglected in practice: 

(9) 

Moreover, it ia aaaumed that there exiata an effective streaa 

function and an effective strain function having the property that the 

plane yield atresa va. pre1train relations, f~ • f;(ex) and f; • f;(ex) 

in the y .. direction in tension and compression respectively, are affine 

to the stress vs. plane strain relation, crx • f(ex), in the x·direction. 

Thuo, 

(10) 

(11) 

where A and B are constants. 

Fin.ally, it is assumed that the slope of the yield loci near the 

interaection with the ay •axis in Fla. 2 can be taken as constant over 

the range of residual stress a: and of stress "y of interest. These 

assumptions are satiafied by von Mises yield condition and isotropic 

work hardenina. •• an example. 

In Fig. 4, let a • "x(z) • f(ex(z)), in4icated by Curve 1-1, 

be the variation of stress in the x·direction (referred to original area 

of elementa) through the thickness of the corner just when the last incre~ 

ment of plastic work in foraains la parfot11ed. This stress is syametrical 

with reapect to the mid-ourface, by Eq, 9. The corresponding yield atrength 

variation~ through the thickness are indicated by the curves f;(E) 

and f;(a). 

The presence of residual atresaea after unloading should not 

be nealected.. Curve 2·2 incllcatea the elaattc atreaaes a~. induced 

by unloadina the -entl in Fig. 1, plotted ouch that the cliatance o-: 
fr- 1-1 to 2-2 ia the reoidual otraoo fiald in the x•direction. The 

atreaaea CJ: are diatributed accord in& t• plane 1train curved be• theory, 

..odifiad to refer to original arua of el-nta. Finally. curve 3 .. 3 

indicatao the reatdual atreaa in the y•diractton.c-oed of a plastic 

part (oea path AI ill ria. 2), and an elutic part ouociated with the 

unl.oadina and related to ": by tho Poiaaon affect. Eviclantly, 

J .,; (a) do • 0 (12) 



r cr: (a) •• • 0 
(13) 

where the tntearation extend• fr011 aurface to aurfaca. 

If there vel'e no raaidual etr••• in the x-dtrection, the oial 

forco por unit ore lonath of comer to produce yioldinl in tonoion would 

bo oqual to tho oroo botvoon 3•3 ond 4·4. Fia. 2 ahCNo how tho ylold 

atr111 11 influenced by tran•v•r•• reatdual atraea (c.,ara D aDd FB). 

Tho dovioUon of tho yiold loci fi'OOI thoir tonaonto ot tho 

pointe of tntareection vith the ax ·u.il (euch u I, D. and C) for 

ablchaaa tn the rana• of reatdual ttr••• a: il,by aaaumption, nesttatbla. 

Abo, totrlanal•" 0550 1n Fla. 4 11 naalectad. Then, 'the corner yield 

atrenath in tenalon, by Eqa. 10, 12 .nd ll can be calculatect 11: 

1 t/2 t t 0 0 - J If (e (z)) + (fy)' <1 • <1yldz t y X X 

•t/2 

t/2 2 t/2R 2R 
• ! J f(o (z))dz • _A! J f(o )do • -, AF(t/2R) (14) 

t X t Q X X 

•t /2 

in which (f~)' denotea ·the 1lope of the yield loci at the points on 

the ay ·uh in Fla. 2, aaa\DM:d to be a constant. 

yield atrenath in teneion il found u: 

Slmllorly, tho eornor 

f 0 • BF(t/2R)/(t/2R) (15) 
yc 

Thua. the corner yield atrensth ia eatily determined, to within a constant 

factor,from bend radiua R • t/2, material thickneas t, and area function 

F(e) under the etreea•atrain curve (averaae of tension and compreaaion). 

ln application, the dhtinction between tension and compression would 

nonully be tanored, and only tension data uaed. The compreaaion yield 

strength would then be taken equal to the tension value. 

Eq. 14 confiru intuition that the corner yield atrensth should 

be independent of the corner angle. 

LINEAII IIARD!NING MODEL 

The nine uterhh atudied by Karren { 11 ahowed considerable 

variation in aeneral in mechanical propertiea, but the ultimate atratn 

•u wa• eaeenttally conetant, equal to 1/3 (variation between 0.31 and 

0.40 for a 2 inch 1111 lenath). Thia auaeete that the aateriala can be 

modelled by an ideal uterial hardenina in teneion fr011 f~ to f~ 

over a strain that b the lame fraction, here denoted by 3A/4a, of 

e '"' 1/3 for all the •teriala exuined. Chooein.s the rigid•plaatie 
u 

linearly hardening material 

e(ft • ft) 

" • fy + (1/~)(3A/4;) 

aivel the area function 

eo that, by Eqo. 14 ond 15 

t" 
ye 

(16) 

(17) 

(18) 

(19) 

l{hen no cold work 11 done, that ia for 1/R • 0, the yield etreqth 

Al and Bft are, relpectively, equal to the virgin material yield 
y y 

etrenath in tMdion, 

and 19 sivo ll/A • 

ft and ccapreseion 
y 

t 0 It' and beco•: 
y y 

t 0 reapoetively. 
y 

Eqa. 18 

(20) 

(21) 

Here, a il the only unknown quantity. Solving theee equation• for cr 

and iuerting the experimental values by Karren [ 1] shows that a 

rana•• from 2.10 to 5.03 in tension and from 2.02 to 7.51 in compression 

for all the tests by Karren (totalling about 200 cot"ners), averaging 

3.34 in tension and 4.29 in compression. 

This linear model permits a very simple representation for 

deaigtl purpoeee. In tenaion, the increment in yield force for a corner 

1a, by Eq. 20, ueing the average value for a, 

~P • (9Rt) (f;0 

(22) 

where, in the last reduction the superscript has been suppreased. We 

define a fictitious compressive ultimate strength as 

(23) 

Then, Eq. (22) also will apply to the increment in yield force in 

compression, by Eq. 21; with a equal to 4.29, and 7t instead of 5t 

in the last equality. 

In .Practice, compression data is rarely available, and it is 

reasonable to neglect the apparently higher hardening rate in compress ion. 

Using the value St together with tension data also in compression, 

Eq. (2n may be interpreted into the following simple design rule: 

Cold work of a 90° corner may be taken into account by 

replacing the yield strength by the ultimate strength over 

an arc lengtha,s, of the corner of five times the thickness. 

Por other corner angle• this arc length ahall be changed 

in proportion to the angle. 

Evidently, a difference in the value of a may be interpreted 

directly in tel'IDI of arc lenatha. Por example, if the ultimate strenath 

ia 402. higher than the yield atrensth, a SO'l error in a is equivalent 

to an error of t x t in affective area of flan1e or crosa-aection. The 

acatter in a 11 therefore not 10 significant as it might appear at 

12 

I 
I 
I 
I 
I 
I 

I 
I 

y 

)-x 
z 

I : 
. }----------
JL-·-·-·-· 

L 

h 

t 

Fig, 1 



first sight. There is some systematic variation, with a tend•ncy to 

overestimating the strength of sharp cornera. The variation could be 

t::llminated by using a parabolic strain hardening (for example) and lettina 

depend on material properties, etc. 

Fig. 2 
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COIICWSIONS 

On the baala of a aimple ID&terial .odel and experilllental data 

by Karren [ 11. it 11 concluded that 

(1) The raiae in the yield atrensth of a corn1r dependa aaainly on 

the corner curvature ratio a/t and the area function F(e) of the mean 

of the tension and com.preaaion atreaa•atrain curvea for the 1q.t;erial; 

it is independent of the corner angle. 

(2) A llnoar otrain-hardenll\11 1110del, pootulatlng that the 

material is rigid-plastic and hardening from yield strensth to ultimate 

strength over a strain of 33 l/3X, aceou.nts for all teat results avail-

able with good accuracy. By this model, the raise in yield strength 

depends only on a/t and the difference, fu ... fy' of the ultimate 

strength and the yield strength. 

(3) The linear strain hardening model is convenient for design 

purposes. To take the cold work strengthening into account tt is merely 

necessary to replace the yield strength by the ultimate strength at each 

90° corner over an arc length of five times the material thickness. 

For other corner angles the arc length should be modified in proportion 

to the angle of bending. 
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