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Localized
Quantum
States

1. Quantum
states

Quantum states

(L, @): Kostant-Souriau line bundle over symplectic manifold (X, w).

Definition (Souriau 1990)

A quantum state is a state m of Aut(L)

State of a group G: function m : G — C such that @ m(e) =1,
® the sesquilinear form

(¢, @m = Y  Todpm(g~'h)
g,heG

on C[G] = {functions G — C with finite support}, is positive.
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Quantum states

(L, @): Kostant-Souriau line bundle over symplectic manifold (X, w).

Definition (Souriau 1990)

A quantum state is a state m of Aut(L)

State of a group G: function m : G — C such that @ m(e) =1,
® the sesquilinear form

(¢, @m = Y  Todpm(g~"h) > 0.
g,heG

Gives rise to unitary G-module GNS,, > ¢ such that m(g) = (o, go).
(Put (-, -),, on C[G], divide out null vectors and complete; ¢ = [6°].)
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1. Quantum
states

Quantum states

(L, @): Kostant-Souriau line bundle over symplectic manifold (X, w).

Definition (Souriau 1990)
A quantum state (of Aut(L), for X) is a state m of Aut(L) such that

n
E Cj elHj (33)
7=1

for all choices of n € N, ¢; € C and complete, commuting Z; € aut(L)
with hamiltonians H;: H;(z) = @ (Z;(&)).

‘Z ij(eXp(Zj))| < sup
j=1 zeX

* A quantum representation (of Aut(L), for X) is a unitary
Aut(L)-module 5 s.t. m(g) = (o, go) is quantum V unit ¢ € #.

* Theorem (Souriau). m quantum = GNS,, quantum.
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1. Quantum
states

2. Localized
states

3. Nilpotent
groups

4. Compact
groups

5. Euclid’s
group

Quantum states

(L, @): Kostant-Souriau line bundle over symplectic manifold (X, w).

Definition (Souriau 1990)
A quantum state (of Aut(L), for X) is a state m of Aut(L) such that

n
E Cj elHj (:IJ)
=L

for all choices of n € N, ¢; € C and complete, commuting Z; € aut(L)
with hamiltonians H;: H,(z) = ©(Z;(&)).

‘Z cjm(exp(Zj))| < sup
=1 zeX

None. (Unless X is zero-dimensional.)

Remark. X is a coadjoint orbit of Aut(L). We might more modestly
ask for states and representations of smaller groups (of which X is a
coadjoint orbit).
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Localized

Quantum Quantum states

States

X: coadjoint orbit of a connected Lie group G.

Definition (Souriau 1990)

A quantum state (of G, for X) is a state m of G such that

1. Quantum
states

2. Localized
states

3. Nilpotent
groups
n n
4. Compact . . Ai{z,Z;)
groups ‘Z Cy m(eXp(Z]))‘ < Sug Z C;€ J
. TE .
5. Euclid’s 7=1 7=1

group

for all choices of n € N, ¢; € C and commuting Z; € g.

Too many. (Unless X is zero-dimensional.)

* If X = {z} is an integral point-orbit, then the unique quantum

state for X is the character m(exp(Z)) = e'®%.
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Quantum
States

1. Quantum
states

The statistical interpretation

Let § := (compact) character group of the discrete additive group g.
We have a dense inclusion g* < §, z — €%, and projections

<
—

Theorem

A state m of G is quantum for X < for each abelian a C g,
the state m o exp,, of a has its spectral measure concentrated on bXq,

the projection (in a) of the closure bX of X (in g).

This spectral measure is the probability measure y on a such that
(moexp,)(Z) = fa ¥ (Z) du(y). (Bochner.)



Localized

G - Why “too many” quantum representations?

States

Because this (‘Bohr’) closure operation b is drastic:

1. Quantum
states

Theorem (Howe-Z., dx.doi.org/10.1017/etds.2013.73)

(a) If G is noncompact simple, every nonzgero coadjoint orbit is Bohr
dense in g, i.e. bX = g.

(b) If G is connected nilpotent, every coadjoint orbit is Bohr dense in its
affine hull.

Corollary

(a) If G is noncompact simple, every unitary representation of G is
quantum for every nongero coadjoint orbit (!)

(b) If G is connected nilpotent and X spans g* (reduce to this case by

dividing out ann(X)), a unitary representation of G is quantum for
X < the center acts in it by the character exp(Z) — %2,
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2. Localized
states

L.ocalized states

So Souriau’s definition is not restrictive enough. 3 ways to proceed:

@ Hope that the much-needed selection will arise by restricting
attention to states that extend to the whole Aut(L).

® Suppress the Bohr closure implicit in the definition. For results
along this line see arxiv.org/abs/1011.5056.

© Take this closure seriously, because it allows interesting states:

Definition
Let H C G be a closed subgroup and Y C X, a coadjoint orbit of H.

A quantum state m for X is localized at Y C b* if the restriction myy is
a quantum state for Y.

We also say that the state is localized on == !(Y), where = is the
projection X — h*. One knows this set is generically a coisotropic
submanifold — hence at least half-dimensional, and suitable for
localizing a system on. We’ll mostly consider Y = {pt}.
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2. Localized
states

L.ocalized states

So Souriau’s definition is not restrictive enough. 3 ways to proceed:

@ Hope that the much-needed selection will arise by restricting
attention to states that extend to the whole Aut(L).

® Suppress the Bohr closure implicit in the definition. For results
along this line see arxiv.org/abs/1011.5056.

© Take this closure seriously, because it allows interesting states:

Definition
Let H C G be a closed subgroup and Y C X, a coadjoint orbit of H.

A quantum state m for X is localized at Y C b* if the restriction myy is
a quantum state for Y.

One should expect uniqueness of such a state when n=1(Y) is
lagrangian (half-dimensional): Weinstein (1982) called attaching
state vectors to lagrangian submanifolds the FUNDAMENTAL
QUANTIZATION PROBLEM.



Localized NilpOte nt gro up S

Quantum
States

G : connected, simply connected nilpotent Lie group,
X : coadjoint orbit of G,
z : chosen point in X.

A connected subgroup H C G is subordinate to z if, equivalently,

3. Nilpotent . . . .
groups * {z,} is a point-orbit of H in h*

* (z,[h,h]) =0

* el?°log i a character of H.

Theorem

Let H C G be maximal subordinate to x € X. Then there is a unique
quantum state for X localized at {z),} C b*, namely

eimolog(g) lfg € H,
0 otherwise.

m(g) = {

T e . . .
Moreover GNS,, = indy e*° 1°g|H (discrete induction).

aCh = x, certain; athbh = =z, equidistributed in a.
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3. Nilpotent
groups

Nilpotent groups

Remark

Kirillov (1962) used I(z,H) := IndI(_}I eiz olog u (usual induction).
This is
(a) irreducible < H is a polarization at = (: subordinate subgroup
such that the bound dim(G/H) > % dim(X) is attained);

(b) equivalent to I(z,H’) if H # H’ are two polarizations at z.

In contrast:

Theorem
Let H C G be subordinate to . Then i(z,H) := indfI eiz olog H LS

(a) irreducible & H is maximal subordinate to z;

(b) inequivalent to i(z,H’) if H £ H' are two polarizations at z.
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1. Quantum
states

2. Localized
states

3. Nilpotent
groups

4. Compact
groups

5. Euclid’s
group

B and C are maximal subordinate but only C is a polarization.
So i(z,C), I(z, C), i(z, B) are irreducible but I(z, B) is not.

All act by (gq))('rt") — e—iae—i{b(r—c)—%bz(t—e)}q)( r—c;_bgt—e) ), but
@ 1(z,B) in L? functions of (})
® 1(z, C) in L? solutions of Schridinger’s equation id:) = 192¢
® i(z, C) in almost periodic solutions, norm? [}Lngo o E‘R |2 dr

@ i(z,B) in ¢? functions — no Schrodinger equation needed!
8/12



Localized
Quantum
States

4. Compact
groups

Compact groups

Theorem

Every quantum representation of a compact Lie group G is continuous.
The irreducible with highest weight X\ is quantum for the coadjoint orbit
with dominant element y < A < .

So even for compact G, Souriau’s definition does not recover the usual
‘orbit method’ (which posits A = p). In contrast we have, with T C G a
maximal torus:

Theorem

* If uis dominant integral, then there is a unique quantum state m
for X = G(u) localized at {ue C t5 GNS,, is the irreducible
representation with highest weight p.

* If uis dominant and not integral, then there is no such state.
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2. Localized
states

3. Nilpotent
groups

4. Compact
groups

5. Euclid’s
group

Euclid’s group G = { g =

G acts naturally and symplectically on
the manifold X ~ TS? of oriented lines
(a.k.a. light rays) in R3. 2-formy ,:

w =k d{u, dr) + s Areag:.
The moment map

(u, ) — (r X k]:;Jr su)

makes X into a coadjoint orbit of G.

Ac
01

) :

AeS0O(3)

ccR?3
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Localized
Quantum
states We have localized states on 3 types of lagrangians:
Q Q
(a): the tangent space (b): the zero (c): the equator’s
at the north pole section normal bundle
5. Euclid’s ( ) A c ei(k€3,0> if A€3 — e3,
group d) m = .
0 1 0 otherwise.
A c sin ||kc]|
b) m =
® m (o 1)~ e
A c J()(Hk:CJ_H) ifAeg = :|:63,
() m = .
0 1 0 otherwise

The resulting GNS modules can be realized as various spaces of
solutions of Helmholtz’s equation A + k*) = 0, with G-action

(g () = A~ (r — o).

11/12



Localized
Quantum
states We have localized states on 3 types of lagrangians:
Q Q
(a): the tangent space (b): the zero (c): the equator’s
at the north pole section normal bundle
. cyclic vector:
5. Euclid’s A c el(keB’C:) if A€3 — €3 -
rou d) m m— ’ T) — e_lkz
o & (0 1) { 0 otherwise. e
A c sin || kc]| sin || k||
(b) m ( ) = b(r) =
0 1 kc|] [&r|
A c JQ(HICCJ_H) ifAeg = :|:63,
c) m = r) = Jo(||kT
(©) (0 1) { 0 otherwise () = Jo([lfer L)

The resulting GNS modules can be realized as various spaces of
solutions of Helmholtz’s equation A + k*) = 0, with G-action

(g () = A~ (r — o).
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Localized
Quantum

States
The unique quantum state localized on the tangent space (a) becomes

A c elellkes.c) if A = el®3)  (j(a) = o X +)
m —
0 1 0 otherwise.

GNS,, = {¢? sections b of the tangent bundle TS? — S2}, with
G-action (gb) (u) = e/** <Y Ab(A~1u) where Jdu = j(u)du. Putting

5. Buclids F(r) = B +iE)(r) := ) e "™ (b—iJb)(w)
SToP u€ES?

one obtains a Hilbert space of almost-periodic solutions of the
reduced Maxwell equations

divB = 0O, curl B = kB,
divE = 0, curlE = kE,

with G-action (gF)(r) = AF(A~'(r — ¢)). The cyclic vector is
F(r) = e % (e; —iey).
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