Georgia Southern University Digital Commons@Georgia Southern

Mathematical Sciences Faculty Presentations

Mathematical Sciences, Department of

11-8-2014

Quantum States Localized on Lagrangian Submanifolds

François Ziegler Georgia Southern University, fziegler@georgiasouthern.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/math-sci-facpres

Recommended Citation

Ziegler, François. 2014. "Quantum States Localized on Lagrangian Submanifolds." *Mathematical Sciences Faculty Presentations*. Presentation 6. source: https://math.berkeley.edu/~libland/gone-fishing-2014/ziegler.pdf https://digitalcommons.georgiasouthern.edu/math-sci-facpres/6

This presentation is brought to you for free and open access by the Mathematical Sciences, Department of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Mathematical Sciences Faculty Presentations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

Localized
Quantum
States

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compact groups

5. Euclid's group

Quantum States Localized on Lagrangian Submanifolds*

François Ziegler (Georgia Southern)

November 8, 2014

*http://arxiv.org/abs/1310.7882

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compact groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A quantum state is a state m of Aut(L)

State of a group G: function $m : G \to C$ such that (1) m(e) = 1, (2) the sesquilinear form

$$(c,d)_m := \sum_{g,h\in \mathsf{G}} \overline{c}_g d_h m(g^{-1}h)$$

on $C[G] = \{$ functions $G \rightarrow C$ with finite support $\}$, is positive.

Quantum states

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compact groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A *quantum state* is a state *m* of Aut(L)

State of a group G: function $m : G \to C$ such that (1) m(e) = 1, (2) the sesquilinear form

$$(c,d)_m \mathrel{\mathop:}= \sum_{g,h\in \mathsf{G}} \overline{c}_g d_h m(g^{-1}h) \gg 0.$$

Gives rise to unitary G-module $GNS_m \ni \varphi$ such that $m(g) = (\varphi, g\varphi)$. (Put $(\cdot, \cdot)_m$ on **C**[G], divide out null vectors and complete; $\varphi = [\delta^e]$.)

Quantum states

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compact groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A quantum state (of Aut(L), for X) is a state m of Aut(L) such that

$$\left|\sum_{j=1}^n c_j m(\exp(\operatorname{Z}_j))\right| \leqslant \sup_{x\in\operatorname{X}} \left|\sum_{j=1}^n c_j \mathrm{e}^{\mathrm{i}\mathrm{H}_j(x)}\right|$$

for all choices of $n \in \mathbb{N}$, $c_j \in \mathbb{C}$ and complete, commuting $Z_j \in \text{aut}(L)$ with hamiltonians H_j : $H_j(x) = \varpi(Z_j(\xi))$.

- A *quantum representation* (of Aut(L), for X) is a unitary Aut(L)-module \mathcal{H} s.t. $m(g) = (\varphi, g\varphi)$ is quantum \forall unit $\varphi \in \mathcal{H}$.
- **Theorem** (Souriau). m quantum \Rightarrow GNS_m quantum.

Quantum states

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compact groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A quantum state (of Aut(L), for X) is a state m of Aut(L) such that

$$\sum_{j=1}^n c_j m(\exp(\mathbf{Z}_j)) \Big| \leqslant \sup_{x \in \mathbf{X}} \Big| \sum_{j=1}^n c_j \mathrm{e}^{\mathrm{i}\mathrm{H}_j(x)} \Big|$$

for all choices of $n \in \mathbb{N}$, $c_j \in \mathbb{C}$ and complete, commuting $Z_j \in \text{aut}(L)$ with hamiltonians H_j : $H_j(x) = \varpi(Z_j(\xi))$.

Examples

None. (Unless X is zero-dimensional.)

Remark. X is a coadjoint orbit of Aut(L). We might more modestly ask for states and representations of smaller groups (of which X is a coadjoint orbit).

Juantum states

Quantum states

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compact groups

5. Euclid's group

X: coadjoint orbit of a connected Lie group G.

Definition (Souriau 1990)

A quantum state (of G, for X) is a state m of G such that

$$\left|\sum_{j=1}^n c_j m(\exp(\operatorname{Z}_j))
ight|\leqslant \sup_{x\in\operatorname{X}} \left|\sum_{j=1}^n c_j \mathrm{e}^{\mathrm{i}\langle x,\operatorname{Z}_j
angle}
ight|$$

for all choices of $n \in \mathbf{N}$, $c_j \in \mathbf{C}$ and commuting $Z_j \in \mathfrak{g}$.

Examples

Too many. (Unless X is zero-dimensional.)

If X = {x} is an integral point-orbit, then the unique quantum state for X is the character m(exp(Z)) = e^{i⟨x,Z⟩}.

The statistical interpretation

1. Quantum states

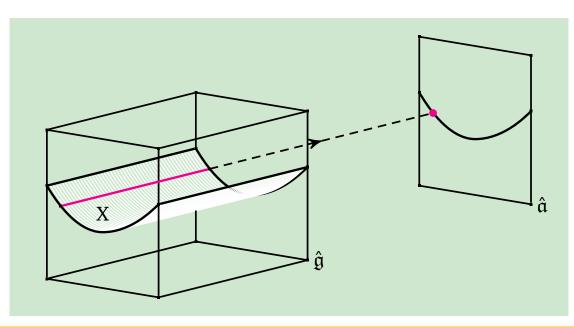
2. Localized states

3. Nilpotent groups

4. Compact groups

5. Euclid's group

Let $\hat{\mathfrak{g}} :=$ (compact) character group of the *discrete* additive group \mathfrak{g} . We have a dense inclusion $\mathfrak{g}^* \hookrightarrow \hat{\mathfrak{g}}, x \mapsto e^{i\langle x, \cdot \rangle}$, and projections



Theorem

A state *m* of G is quantum for $X \Leftrightarrow$ for each abelian $\mathfrak{a} \subset \mathfrak{g}$, the state $m \circ \exp_{|\mathfrak{a}|}$ of \mathfrak{a} has its spectral measure concentrated on $bX_{|\mathfrak{a}|}$, the projection (in $\hat{\mathfrak{a}}$) of the closure bX of X (in $\hat{\mathfrak{g}}$).

This *spectral measure* is the probability measure μ on \hat{a} such that $(m \circ \exp_{|a|})(Z) = \int_{\hat{a}} \chi(Z) d\mu(\chi)$. (Bochner.)

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compact groups

5. Euclid's group

Why "too many" quantum representations?

Because this ('Bohr') closure operation b is *drastic*:

Theorem (Howe-Z., dx.doi.org/10.1017/etds.2013.73)

- (a) If G is noncompact simple, every nonzero coadjoint orbit is Bohr dense in \hat{g} , i.e. $bX = \hat{g}$.
- (b) If G is connected nilpotent, every coadjoint orbit is Bohr dense in its affine hull.

Corollary

- (a) If G is noncompact simple, **every** unitary representation of G is quantum for **every** nonzero coadjoint orbit (!)
- (b) If G is connected nilpotent and X spans \mathfrak{g}^* (reduce to this case by dividing out ann(X)), a unitary representation of G is quantum for X \Leftrightarrow the center acts in it by the character $\exp(Z) \mapsto e^{i\langle X, Z \rangle}$.

Localized states

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compact groups

5. Euclid's group

So Souriau's definition is not restrictive enough. 3 ways to proceed:

- 1 Hope that the much-needed selection will arise by restricting attention to states that *extend* to the whole Aut(L).
- 2 Suppress the Bohr closure implicit in the definition. For results along this line see arxiv.org/abs/1011.5056.
- **3** Take this closure seriously, because it allows *interesting states*:

Definition

Let $H \subset G$ be a closed subgroup and $Y \subset X_{|\mathfrak{h}}$ a coadjoint orbit of H. A quantum state *m* for X is *localized at* $Y \subset \mathfrak{h}^*$ if the restriction $m_{|H}$ is a quantum state for Y.

We also say that the state is *localized on* $\pi^{-1}(Y)$, where π is the projection $X \to \mathfrak{h}^*$. One knows this set is generically a *coisotropic submanifold* — hence at least half-dimensional, and suitable for localizing a system on. We'll mostly consider $Y = \{pt\}$.

Localized states

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compact groups

5. Euclid's group

So Souriau's definition is not restrictive enough. 3 ways to proceed:

- 1 Hope that the much-needed selection will arise by restricting attention to states that *extend* to the whole Aut(L).
- 2 Suppress the Bohr closure implicit in the definition. For results along this line see arxiv.org/abs/1011.5056.
- **3** Take this closure seriously, because it allows *interesting states*:

Definition

Let $H \subset G$ be a closed subgroup and $Y \subset X_{|\mathfrak{h}}$ a coadjoint orbit of H. A quantum state *m* for X is *localized at* $Y \subset \mathfrak{h}^*$ if the restriction $m_{|H}$ is a quantum state for Y.

One should expect uniqueness of such a state when $\pi^{-1}(Y)$ is *lagrangian* (half-dimensional): Weinstein (1982) called attaching state vectors to lagrangian submanifolds the FUNDAMENTAL QUANTIZATION PROBLEM.

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compact groups

5. Euclid's group

G : connected, simply connected nilpotent Lie group,

- X : coadjoint orbit of G,
- x : chosen point in X.

A connected subgroup $H \subset G$ is *subordinate to* x if, equivalently,

- $\{x_{|\mathfrak{h}}\}$ is a point-orbit of H in \mathfrak{h}^*
- $\langle x, [\mathfrak{h}, \mathfrak{h}] \rangle = 0$
- $e^{ix \circ \log}|_{H}$ is a character of H.

Theorem

Let $H \subset G$ be maximal subordinate to $x \in X$. Then there is a unique quantum state for X localized at $\{x_{|\mathfrak{h}}\} \subset \mathfrak{h}^*$, namely

$$m(g) = \left\{egin{array}{cc} {
m e}^{{
m i}x\,\circ\,\log}(g) & {
m i}f\,g\in{
m H},\ 0 & {
m otherwise}. \end{array}
ight.$$

Moreover $GNS_m = ind_H^G e^{ix \circ \log}|_H$ (discrete induction).

 $\mathfrak{a} \subset \mathfrak{h} \Rightarrow x_{|\mathfrak{a}}$ certain; $\mathfrak{a} \pitchfork \mathfrak{h} \Rightarrow x_{|\mathfrak{a}}$ equidistributed in $\hat{\mathfrak{a}}$.

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compact groups

5. Euclid's group

Kirillov (1962) used I(x, H) := Ind_H^G e^{i $x \circ \log$}_{|H} (usual induction). This is

(a) irreducible \Leftrightarrow H is a *polarization at* x (: subordinate subgroup such that the bound dim(G/H) $\ge \frac{1}{2}$ dim(X) is attained);

(b) *equivalent* to I(x, H') if $H \neq H'$ are two polarizations at x.

In contrast:

Remark

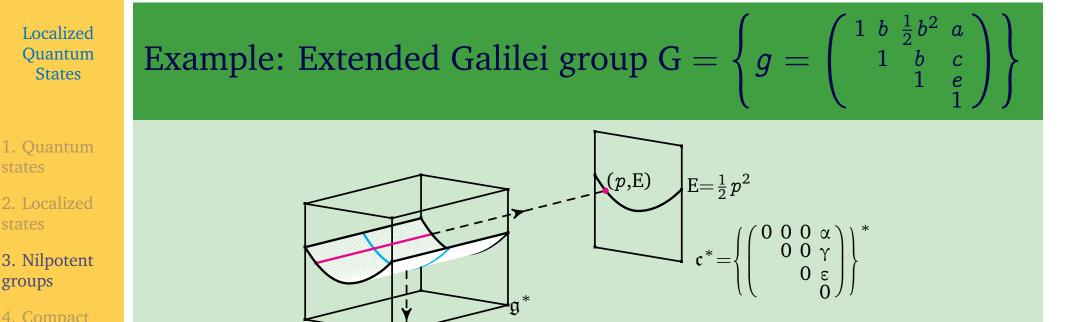
Theorem

Let $H \subset G$ be subordinate to x. Then $i(x, H) := ind_{H}^{G} e^{ix \circ \log}_{|H}$ is

(a) *irreducible* \Leftrightarrow H *is* **maximal** *subordinate to* x;

(b) *inequivalent* to i(x, H') if $H \neq H'$ are two polarizations at x.

Nilpotent groups



4. Compact groups

5. Euclid's group

B and C are maximal subordinate but only C is a polarization. So i(x, C), I(x, C), i(x, B) are irreducible but I(x, B) is not.

 $\begin{array}{c}
\downarrow \\
\downarrow \\
q \\
 \end{array} \mathfrak{b}^{*} = \left\{ \left(\begin{array}{c}
0 \ \beta \ 0 \ \alpha \\
0 \ \beta \ 0 \\
0 \ 0 \\
 \end{array} \right) \right\}^{*}$

All act by $(g\psi)({}^r_t) = e^{-ia}e^{-i\{b(r-c)-\frac{1}{2}b^2(t-e)\}}\psi({}^{r-c-b(t-e)}_{t-e})$, but **1** I(x, B) in L² functions of $({}^r_t)$

2 I(x, C) in L² solutions of Schrödinger's equation i∂_tψ = ¹/₂∂²_rψ
3 i(x, C) in almost periodic solutions, norm² lim ¹/_{2R} ∫^R_{-R} |ψ|² dr

4 i(x, B) in ℓ^2 functions — no Schrödinger equation needed!

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compact groups

5. Euclid's group

Theorem

Every quantum representation of a compact Lie group G is continuous. The irreducible with highest weight λ is quantum for the coadjoint orbit with dominant element $\mu \Leftrightarrow \lambda \leqslant \mu$.

So even for compact G, Souriau's definition does not recover the usual 'orbit method' (which posits $\lambda = \mu$). In contrast we have, with $T \subset G$ a maximal torus:

Theorem

- If μ is dominant integral, then there is a unique quantum state m for $X = G(\mu)$ localized at $\{\mu_{|\mathfrak{t}}\} \subset \mathfrak{t}^*$; GNS_m is the irreducible representation with highest weight μ .
- If μ is dominant and not integral, then there is no such state.

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compact groups

5. Euclid's group

Euclid's group G = $\left\{g = \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} : \begin{array}{c} A \in SO(3) \\ c \in R^3 \end{array}\right\}$

Example: TS²

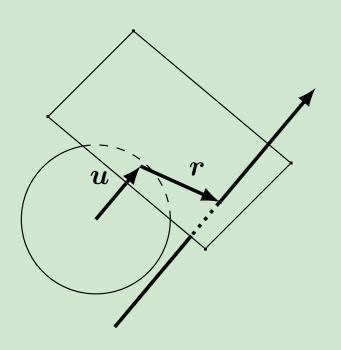
G acts naturally and symplectically on the manifold $X \simeq TS^2$ of oriented lines (a.k.a. light rays) in \mathbb{R}^3 . 2-form_{*k*,*s*}:

 $\omega = k \ d\langle u, dr
angle + s \operatorname{Area}_{\mathrm{S}^2}.$

The moment map

$$\Phi(\boldsymbol{u}, \boldsymbol{r}) = egin{pmatrix} \boldsymbol{r} imes \boldsymbol{k} \boldsymbol{u} + \boldsymbol{s} \boldsymbol{u} \ \boldsymbol{k} \boldsymbol{u} \end{pmatrix}$$

makes X into a coadjoint orbit of G.



Case s = 0:

We have localized states on 3 types of lagrangians:

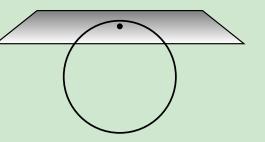
1. Quantum states

2. Localized states

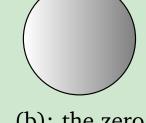
3. Nilpotent groups

4. Compact groups

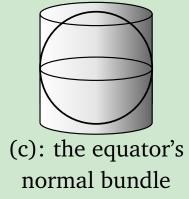
5. Euclid's group



(a): the tangent space at the north pole



(b): the zero section



(a)
$$m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\langle ke_3, c \rangle} & \text{if } Ae_3 = e_3, \\ 0 & \text{otherwise.} \end{cases}$$

(b) $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \frac{\sin \|kc\|}{\|kc\|}$
(c) $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} J_0(\|kc_{\perp}\|) & \text{if } Ae_3 = \pm e_3, \\ 0 & \text{otherwise} \end{cases}$

The resulting GNS modules can be realized as various spaces of solutions of Helmholtz's equation $\Delta \psi + k^2 \psi = 0$, with G-action $(g\psi)(r) = \psi(A^{-1}(r-c))$.

Case s = 0:

We have localized states on 3 types of lagrangians:

(a) $m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\langle ke_3, c \rangle} & \text{if } Ae_3 = e_3, \\ 0 & \text{otherwise.} \end{cases}$

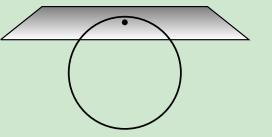
1. Quantum

2. Localized

3. Nilpotent

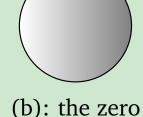
4. Compact

5. Euclid's group

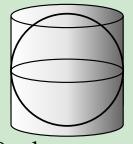


(a): the tangent space at the north pole

(b) $m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \frac{\sin \|kc\|}{\|kc\|}$



section



(c): the equator's normal bundle

cyclic vector:

$$\psi(\boldsymbol{r}) = \mathrm{e}^{-\mathrm{i}kz}$$

ψ

$$\psi(r) = e^{-ikz}$$

$$(r) = rac{\sin \|kr\|}{\|kr\|}$$

(c) $m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} J_0(\|kc_{\perp}\|) & \text{if } Ae_3 = \pm e_3, \\ 0 & \text{otherwise} \end{cases} \psi(r) = J_0(\|kr_{\perp}\|)$

The resulting GNS modules can be realized as various spaces of solutions of Helmholtz's equation $\Delta \psi + k^2 \psi = 0$, with G-action $(q\psi)(r) = \psi(\mathsf{A}^{-1}(r-c)).$

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compact groups

5. Euclid's group

Case s = 1 (zero section no longer lagrangian):

The unique quantum state localized on the tangent space (a) becomes

$$m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\alpha} e^{i\langle ke_3, c \rangle} & \text{if } A = e^{j(\alpha e_3)}, \quad (j(\alpha) = \alpha \times \cdot) \\ 0 & \text{otherwise.} \end{cases}$$

 $GNS_m = \{\ell^2 \text{ sections } b \text{ of the tangent bundle } TS^2 \to S^2\}, \text{ with } G\text{-action } (gb)(u) = e^{\langle u, kc \rangle J}Ab(A^{-1}u) \text{ where } J\delta u = j(u)\delta u.$ Putting

$$\mathbf{F}(r) = (\mathbf{B} + \mathrm{i}\mathbf{E})(r) := \sum_{u \in \mathrm{S}^2} \mathrm{e}^{-\langle u, kr
angle \mathrm{J}}(b - \mathrm{i}\mathrm{J}b)(u)$$

one obtains a Hilbert space of almost-periodic solutions of the reduced Maxwell equations

$$\operatorname{div} \mathbf{B} = 0,$$
 $\operatorname{curl} \mathbf{B} = k\mathbf{B},$
 $\operatorname{div} \mathbf{E} = 0,$ $\operatorname{curl} \mathbf{E} = k\mathbf{E},$

with G-action $(g\mathbf{F})(\mathbf{r}) = A\mathbf{F}(A^{-1}(\mathbf{r} - \mathbf{c}))$. The cyclic vector is $\mathbf{F}(\mathbf{r}) = e^{-ikz}(e_1 - ie_2)$.