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Towards the design of cold-formed  
steel foam sandwich columns 

 
Szyniszewski, S.1, Smith, B.H.2, Zeinoddini, V.M.3,  

Hajjar, J.F.4, Arwade, S.R.5, Schafer, B.W.6 
 

Abstract 
 
In this paper a design method for the compressive capacity of sandwich panels 
comprised of steel face sheets and foamed steel cores is derived and verified. 
Foamed steel, literally steel with internal voids, provides the potential to 
mitigate many local stability issues through increasing the effective width-to-
thickness of the component for the same amount of material. Winter’s classical 
effective width expression was generalized to the case of steel foam sandwich 
panels. The provided analytical expressions are verified with finite element 
simulations employing brick elements that explicitly model the steel face sheets 
and steel foam cores. The closed-form design expressions are employed to 
conduct parametric studies of steel foam sandwich panels with various face 
sheet and steel foamed core configurations. The studies show the significant 
strength improvements possible with steel foam sandwich panels when 
compared with plain steel sheet/plate. 
 
Introduction 
 
Foamed steel intentionally introduces internal voids in steel, e.g. Figure 1. A 
variety of manufacturing methods are used to introduce the voids from powder 
metallurgy and sintering of hollow spheres to gasification (Ashby et al. 2000). 
Steel foams are largely still under development, e.g. Kremer et al. (2004); 
however steel foam sandwich panels have been utilized in a demonstration 
project as a parking garage slab (Hipke 2011) while mass production of 
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aluminum foam sandwich panels already exists (Figure 2, Banhart and Seeliger, 
2008). In general, metal foams have high effective bending stiffness and energy 
absorption. In addition, metal foams have improved thermal conductivity 
(Neugebauer et al. 2005), enhanced fire resistance (Coquard et al. 2010), better 
noise attenuation (Ashby et al. 2000; Bao and Han 2009) , and provide improved 
electromagnetic and radiation shielding (Losito et al. 2010; Xu et al. 2010) when 
compared with solid metals. 
 

  
a) 

b) 

 
c) 

Figure 1: Steel hollow sphere foam 18% relative density: a) interior foam 
morphology, b) contact between spheres, c) sphere walls are not fully dense. 

 
The overall objective of this study is to develop a design method for the 
determination of the in-plane compressive strength of steel foam sandwich 
panels comprised of solid steel face sheets and foamed steel cores. The design 
method development requires: (a) determination of the effective bending 
rigidity, including shear deformations, and the resulting local buckling stress, (b) 
determination of the yield strength for the composite (solid and foamed steel) 
panel, and (c) application and verification/calibration of Winter’s (1947) 
effective width expression suitably modified by (a) and (b). 
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a) b) 
Figure 2: Aluminum foam sandwich panels a) on pallet, b) in section 

Photo credit: Banhart and Seeliger (2008) 
 
Basic steel foam material properties 
A typical compressive stress-strain curve for the steel foam of Figure 1 is 
provided in Figure 3. This commercially available steel foam, manufactured by 
the Fraunhofer Institute in Germany, employs sintered hollow steel spheres and 
has a relative density ρ=0.18. For a typical sample the initial compression 
modulus, ܧ௙௖ is approximately 3150 MPa, the yield stress in compression ௬݂௙ is 

approximately 6 MPa, and the compressive strain before the compaction of the 
steel foam walls is nearly 90%. In tension the initial modulus and yield stress are 
similar but tensile strain capacity is only on the order of 4%. 
 
Local buckling of foamed steel sandwich panels 
For the foamed steel sandwich panel the in-plane elastic local plate buckling 
stress, fcr, is proportional to the plate bending rigidity (Allen 1969): 

௖݂௥ ൌ ݇௣
௣ܦଶߨ

ܾଶሺݐ௖ ൅ ௦ሻݐ2
 (1) 

where kp is the plate buckling coefficient, b is the plate width, ݐ௖,  ௦ are core andݐ
face sheet thickness, ܦ௣ is a panel bending rigidity. 
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Figure 3: Uniaxial compression test for calibration of steel foam plasticity 

 
The approach of Allen, for incorporation of shear and face sheet bending, is to 
(a) simplify the bending rigidity, and (b) smear the rest of the effects into the 
plate buckling coefficient, k. The plate bending rigidity, Dp, is reduced (and 
simplified) by ignoring the stiffness of the core, resulting in:  

௣ܦ ൌ
௖ݐ௦ሺݐ௙ܧ ൅ ௦ሻଶݐ

2൫1 െ ௙ߥ
ଶ൯

 (2) 

For a simply supported plate of length a, width b, uniformly compressed on the 
sides with width b, the plate buckling coefficient, k, of Allen, including shear 
deformation is as follows: 
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݇௣ ൌ ቆ
ܾ݉
ܽ

൅
݊ଶܽ
ܾ݉

ቇ
ଶ

൞
1

1 ൅ ݎ ൬
݉ଶܾଶ

ܽଶ ൅ ݊ଶ൰
൅

௦ݐ
ଶ

3ሺݐ௖ ൅  ௦ሻଶൢ (3)ݐ

where the first term in the parentheses is the classic isotropic plate solution (and 
converges to k=4 as ba / ), m is the number of transverse buckling half-

waves, n is the number of longitudinal (in the direction of loading) buckling 
half-waves, and r accounts for shear deformation as given by: 

ݎ ൌ  
ଶߨ

ܾଶ  
௣ܦ

௖ݐ௖ሺܩ ൅ ௖ݐ/௦ሻଶݐ
ൌ

ଶߨ

2ሺ1 െ ௖ߥ
ଶሻ

௦ܧ

௖ܩ

௖ݐ௦ݐ

ܾଶ  (4) 

Note, if the core is isotropic unfoamed steel r depends on ߥ and the ratio of 
tstc/b

2, and for typical b/t, r is less than 0.1. If the core is completely rigid in 
shear r=0. Note, even for r=0 Equation 3 still predicts a reduction in the plate 
buckling coefficient (note the last term) as Allen’s method accounts for both 
face sheet bending and overall shear deformations. 
 
As illustrated in Figure 4a, in classic isotropic theory the minimum k occurs at 
a/b = integer and converge to 4 as ba / . However, for k of Equation 3 the 

minima no longer occur at integer values and instead occur at ܽ/ܾ ൌ  ߯௠௜௡ 

where min is a function of r and ݐ௦/ሺݐ௖ ൅  ௦ሻ. Allen proposed that iteration beݐ
used, i.e. for a given a/b iterate on m and n until the minimal k is determined. 
Eigenbuckling analysis was performed on the developed finite element model to 
explore the accuracy of Allen’s elastic buckling solution. For the eigenbuckling 
models, based on a ݐ௜௡௜ ൌ 1 ݉݉, 30% of the solid sheet was foamed to 18% 
relative density (i.e. the foam of Figure 1) resulting in ݐ௦ ൌ 0.35 ݉݉  and 
௖ݐ ൌ 1.67 ݉݉. Panel width b was varied from 50 to 200 to explore a wide range 
of ܾ/ݐ ratios. Figure 4b shows that Allen’s elastic buckling solution works well 
for steel foam sandwich panels over a large variation in b/t ratios (and shear 
deformation ratio, r). 
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a)  

b)
Figure 4: a) Plate buckling coefficient, k, as a function of plate aspect ratio (a/b) 
for  ݎ ൌ 0.3 and ݐ௦/ሺݐ௖ ൅ ௦ሻݐ ൌ 0.1; b) Comparison of Allen’s elastic buckling 

solution with numerical plate buckling model 
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Strength of in-plane loaded sandwich panels 
The squash load is the compressive load at which the section is fully yielded. In 
the case of steel foam sandwich panels this is modified to the compressive load 
at which the steel face sheets are fully yielded. The equivalent yield stress for 
the sandwich panel, fyp, may then be found from simple force balance: 

௬݂௣ ൌ
ଶ ௧ೞ௙೤ೞା௧೎ ·௠௜௡൬௙೤೎,ா೎

೑೤ೞ
ಶೞ

൰

ଶ௧ೞା௧೎
 (5) 

where the yield stress of the face sheets, fy, is explicitly denoted here as fys, and 
the yield stress and modulus in the foamed core are denoted as fyc and Ec. 
Typically, the core is still elastic when the face sheets yield, thus the second 
term of the minimum in Equation 5 usually controls. 
 
Winter’s design method 
For thin solid steel plates the most widely accepted engineering approach to 
predicting their in-plane compressive strength is Winter’s effective width 
approach (Winter 1947) or some variant thereof. Ultimately, modern 
specifications (AISI 2007) have led to further small modifications. Winter’s 
approach provides the reduced width of the plate, be, that is effective in carrying 
the maximum stress, fy, per: 
  

ܾ௘ ൌ  ቐ
ܾ       ݂݅ ௖݂௥ ൒ 2.2 ௬݂

ܾ ൬1 െ 0.22ට
௙೎ೝ

௙೤
൰ ට

௙೎ೝ

௙೤
݂݅ ௖݂௥ ൏ 2.2 ௬݂

 (6) 

 
where b is the plate width, fcr is the local plate buckling stress, and fy is the plate 
material yield stress. The method results in a predicted compressive strength, Pn, 
for the plate of 

 ௡ܲ ൌ ܾ௘ݐ ௬݂ (7) 

 
Here we explore the generalization of this design approach where fy is replaced 
with fyp of Equation 5 and fcr includes Allen’s reductions for shear deformation 
and face sheet bending of Equations 1, 2, 3 and 4. 
 
Sandwich panel collapse simulations 
The LS-DYNA brick element model, employing J-2 plasticity for the face sheets 
and the triaxial stress dependent Deshpande and Fleck (2000) model for the 
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foamed steel core is employed here to conduct material and geometric nonlinear 
collapse analysis of simply supported steel foam sandwich panels loaded under 
in-plane compression. Geometric imperfections in the shape of the first 
eigenmode with magnitudes of 0.1t and 0.34t (Vieira Jr. et al. 2011) where t is 
the total thickness, were employed. As in the eigenbuckling analysis: ݐ௜௡௜ ൌ
1 ݉݉ , = 30%, and = 18% (i.e. the foam of Figure 1) which results in 
௦ݐ ൌ 0.35 ݉݉  and ݐ௖ ൌ 1.67 ݉݉ . Panel width b was varied from 
 The force at collapse in the models (normalized by the solid .݉݉ 200 ݋ݐ 50
sheet squash load Py=btinifys) is provided as a function of the unfoamed solid 
plate width-to-thickness ratio in Figure 5.  
 

 
Figure 5: Comparison of FEA collapse simulations of steel foam sandwich 
panels with predicted strength based on modified version of Winter’s method. 
 
Three curves are provided for Winter’s method: solid steel (unfoamed) sheet; 
sandwich panel - ignoring shear effects, and; sandwich panel - including shear 
effects. The results indicate that shear effects must be included in the solution, 
but if they are included (and the yield stress suitably modified to fyp) Winter’s 
method provides an accurate prediction of strength. Further, even granting the 
small loss in capacity due to shear deformations, the foamed panel outperforms 
the solid steel sheet for a large range of b/t ratios. 
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Steel foam sandwich panel optimization 
To illustrate the performance that is possible with steel foam sandwich panels 
the strength predicted by the suitably modified and validated Winter’s method is 
compared to a solid plate (thickness=tini) of the same weight for a variety of 
different foamed depths. The commercially available steel foam of Figure 1 

(=18%) is again used for the core density, and the depth of foaming, , is 
varied from 0.1 to 0.6 (i.e. the initial portion of the plate that is foamed varies 
from 0.1tini to 0.6tini). The plate width is varied and the resulting strength 
prediction is provided in Figure 6. Fundamentally, foaming decreases fy (to fyp 
via Equation 5) and increases the local buckling stress fcr (through an enhanced 
plate rigidity appropriately reduced for shear deformations and face bending 
Equations 1, 2, 3 and 4).  
 
Thus, as shown in Figure 6 for stocky plates (low b/tini) the sandwich panel has a 
reduced capacity when compared to a solid plate of the same weight, but as 
slenderness increases the sandwich panel capacity exceeds that of the solid plate. 
In striking the balance between reduced fy and enhanced fcr it is shown that a 

foamed depth of 0.3tini (=0.3) provides the biggest improvements over the solid 
plate, over the widest range of b/tini, In the studied case strength gains above the 
solid plate between 150% and 200% are realized for b/tin>100. 
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Figure 6: Strength of solid steel and sandwich panels of the same weight 

normalized to yield as a function of initial plate width-to-thickness, =18% in 
the foam cores and depth of foaming varied 

 
Design examples 
In this section the traditional effective width design of a steel section is 
compared with the proposed procedure for sandwich panels. Calculations for the 
solid and foam sections are presented side by side to facilitate understanding of 
the proposed procedure for sandwich panels (Figure 7). Calculations pertaining 
to panels have ‘p’ subscript to differentiate them from the solid steel section. 
The effective width method in the AISI specification (AISI, 2007) was 
employed to calculate the strength of the rectangular sections under concentric 
compression (Eq. C.4.1-1 in AISI 2007). 
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Figure 7: Cold-formed steel (left) and sandwich panel section (right). Both 

sections have the same weight. 
 
The strength, Pn, of a concentrically loaded compression member may be 
calculated based on section C4 in AISI 2007 per Eq. C4.1-1: 

௡ܲ ൌ ௡ ௡ܲ௣ܨ௘ܣ ൌ  ௡௣ (8)ܨ௘௣ܣ
 
The effective area, Ae, is calculated from the effective section based on section 
B2.1 in AISI 2007. The nominal buckling stress, Fn, is obtained from AISI 2007 
section C4.1. 

௡ܨ ൌ ൞
0.658ఒ೎

మ
௖ߣ ௬   ifܨ ൑ 1.5

0.877

௖ߣ
ଶ ௖ߣ ௬        ifܨ ൐ 1.5

௡௣ܨ  ൌ ൞
0.658ఒ೎೛

మ
௬௣ܨ if ௖௣ߣ ൑ 1.5

0.877

௖௣ߣ
ଶ ௬௣ܨ if ௖௣ߣ ൐ 1.5

 (9) 

 
where the global slenderness factor, λc, is obtained per AISI 2007 Eq. C4.1-4.  

௖ߣ ൌ ඨ
௬ܨ

௘ܨ
௖௣ߣ  ൌ ඨ

௬௣ܨ

௘௣ܨ
 (10) 

 

where Fe, or Fep is the least of flexural, torsional, flexural-torsional buckling 
stresses and in this case: 

௘ܨ ൌ ௖ܲ௥

ܣ
ൌ

ܫܧଶߨ
ሺܮܭሻଶܣ

௘௣ܨ  ൌ ௖ܲ௥௣

௣ܣ
ൌ

௦ଵܫ௦ܧଶሺߨ ൅ ௖ܫ௖ܧ ൅ ௦ଶሻܫ௦ܧ
ሺܮܭሻଶሺܣ௦ଵ ൅ ௖ܣ ൅ ௦ଶሻܣ

 (11) 

where K is the effective length factor and I is the moment of inertia and A is the 
area of the cross-section. The panel flexural buckling load (Pcrp) of the 
equivalent cross section is used, where Is1 and As1 are the moment of inertia and 

a

b

a

b

8’
KL=2’
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area of the inner face steel sheet and Is2 and As2 correspond to the outer face 
sheet. The steel foam core is characterized with Ic and Ac.  The yield stress, Fy, is 

௬݂ ൌ  ௬݂௦  
௬݂௣ ൌ

2 ௦ݐ ௬݂௦ ൅ ௖ݐ · ݉݅݊ ൬ ௬݂௖, ௖ܧ
௬݂௦

௦ܧ
൰

௦ݐ2 ൅ ௖ݐ
 

(12) 

 
The effective section is composed of corner portions of the section plus the 
effective width, b, of the flat parts, w, of the elements. The effective width of 
each element of the cross section is determined according to Section B2.1 of 
AISI 2007. 

ܾ ൌ ቐ

ߣ if                      ݓ ൑ 0.673

ݓ
1 െ

0.22
ߣ

ߣ
   if ߣ ൐ 0.673

 ܾ௣ ൌ

ە
۔

ۓ
௣ݓ if ௣ߣ ൑ 0.673

௣ݓ

1 െ
0.22
௣ߣ

௣ߣ
if ௣ߣ ൐ 0.673

 (13) 

 
where λ is the local slenderness factor of the element per AISI 2007, Eq. B2.1-4: 

ߣ ൌ  ඨ
݂

௖௥ܨ
ൌ ඨ

௡ܨ

௖௥ܨ
௣ߣ  ൌ ඨ ௣݂

௖௥ܨ
ൌ ඨ

௡௣ܨ

௖௥ܨ
 (14) 

 
where f = Fn for compressive members and Fcr is the plate elastic buckling stress 
for the flat portion of the element per AISI 2007 Eq. B2.1-5: 

௖௥ܨ ൌ  ݇
௦ܧଶߨ

12ሺ1 െ ௦ߥ
ଶሻ

൬
ݐ
ݓ

൰
ଶ

௖௥௣ܨ  ൌ ݇௣
௣ܦଶߨ

௣ݓ
ଶሺݐ௖ ൅ ௦ሻݐ2

 (15) 

 
where k is the plate buckling coefficient and is equal to 4 for solid plate, t is the 
thickness of the steel panel, and Es and νs are the Young’s modulus and 
Poisson’s ratio of steel. Sandwich panels with steel face sheets and a steel foam 
core may experience shear deformations in the core, and its local buckling 
critical stress is expressed in terms of core tc and face sheet thickness ts. Panel 
bending rigidity Dp and its buckling constant kp are given in Eq. 2 and 3. 
 
The effective area, Ae, for the box section is: 

௘ܣ ൌ ሺ2ܾଵ ൅ 2ܾଶ ൅ ݐሻݎߨ2 ௘௣ܣ  ൌ ൫2ܾଵ௣ ൅ 2ܾଶ௣ ൅ ௦ݐ൯ሺ2ݎߨ2 ൅  ௖ሻ  (16)ݐ
 
where b1 and b2 are the effective widths of the two sides of the box section (a 
and b) and r is the corner radius of the section. 
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A typical cold-formed steel box with thickness ݐ ൌ 0.033 ݅݊ is considered. The 
box dimensions are selected based on approximating two channel section 
600S162-33’s connected together. Therefore, one side of the box is 6 in wide 
and the other side is 3.25 in wide. A corner radius of 0.185 in is assumed.  The 
strength of the steel cross-section is compared with the steel foam sandwich 
column in Figure 7. The optimized panel is obtained by replacing 30% of the 
steel plate with the steel foam core, and the remaining 70% of the steel is 
divided between the two face sheets. Thus, the sandwich panel consists of two 
steel face sheets ts and a foam core tc: 

ݐ ൌ ௖ݐ ݊݅ 0.033 ൌ
0.3
ߩ

ݐ ൌ 0.054 ݅݊, ௦ݐ ൌ
0.7
2

ݐ ൌ 0.012 ݅݊ (17) 

where ߩ ൌ 0.18 is the foam relative density, indicating that 18% of the volume 
is steel, and 82% is void space. Foam with ߩ ൌ 0.18 is approximately five times 
thicker than a steel sheet which has the same weight. 
 
The calculation for the steel and sandwich panel section is given below. 

௘ܨ ൌ ௘௣ܨ ݅ݏ݇ 1010 ൌ 314.7  (18) ݅ݏ݇
 

௬݂ ൌ ௬݂௣  ݅ݏ݇ 50  ൌ 15.6  (19) ݅ݏ݇
 
 per AISI 2007 Eq. C4.1-4. 

௖ߣ ൌ ඨ
50

1010
ൌ 0.22 ൏ ௖௣ߣ 1.5 ൌ ඨ

15.6
314.7

ൌ 0.22 ൏ 1.5 (20) 

 
The nominal buckling stress, Fn, is obtained from AISI 2007 section C4.1. 

௡ܨ ൌ 0.658଴.ଶଶమ
50 ൌ 48.97 ௡௣ܨ ݅ݏ݇ ൌ 0.658଴.ଶଶమ

15.6 ൌ 15.28  (21) ݅ݏ݇
 
The local buckling stress of the 6 ݅݊ plate, per AISI 2007 Eq. B2.1-5: 

௖௥ଵܨ ൌ  ݇
௦ܧଶߨ

12ሺ1 െ ௦ߥ
ଶሻ

൬
ݐ
ݓ

൰
ଶ

ൌ  ݅ݏ݇ 3.66

௖௥௣ଵܨ ൌ ݇௣
௣ܦଶߨ

௖ݐଶሺݓ ൅ ௦ሻݐ2
ൌ 12.3  ݅ݏ݇

(22) 
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The local slenderness of the element per AISI 2007, Eq. B2.1-4: 

ଵߣ ൌ  ඨ
௡ܨ

௖௥ଵܨ
ൌ 3.65 ൐ ௣ଵߣ 0.673 ൌ ඨ

15.6
12.3

ൌ 1.11 ൐ 0.673 (23) 

 

ܾଵ ൌ ሺ6 െ 2 · 0.185ሻ
1 െ

0.22
3.65

3.65
ൌ 1.45 ݅݊

ܾ௣ଵ ൌ ሺ6 െ 2 · 0.185ሻ
1 െ

0.22
1.11

1.11
ൌ 4.1 ݅݊ 

(24) 

 
The local buckling stress of the 3.25 ሾ݅݊ሿ plate, per AISI 2007 Eq. B2.1-5: 

௖௥ଶܨ ൌ  ݇
௦ܧଶߨ

12ሺ1 െ ௦ߥ
ଶሻ

൬
ݐ
ݓ

൰
ଶ

ൌ  ݅ݏ݇ 14.1

௖௥௣ଶܨ ൌ ݇௣
௣ܦଶߨ

௖ݐଶሺݓ ൅ ௦ሻݐ2
ൌ 39.5 ݅ݏ݇

(25) 

 
The local slenderness factor of the element per AISI 2007, Eq. B2.1-4: 

ଶߣ ൌ  ඨ
௡ܨ

௖௥ଵܨ
ൌ 1.86 ൐ ௣ଶߣ 0.673 ൌ ඨ

15.6
39.5

ൌ 0.62 ൏ 0.673 (26) 

 

ܾଶ ൌ ሺ3.25 െ 2 · 0.185ሻ
1 െ

0.22
1.86

1.86
ൌ 1.36 ݅݊

ܾ௣ଶ ൌ ଶݓ െ ݎ2 ൌ 3.25 െ 2 · 0.185
ൌ 2.88 ݅݊ 

(27) 

 
The effective area: 

௘ܣ ൌ 0.22 ݅݊ଶ  ܣ௘௣ ൌ 1.18 ݅݊ଶ (28) 
 
The column strength: 

௡ܲ ൌ 0.22 · 48.97 ൌ 10.9 ௡ܲ௣ ݌݅݇ ൌ 1.18 · 15.28 ൌ 18.0  (29)  ݌݅݇
 
The above example is repeated for thicknesses of 0.018 and 0.097 in. with the 
same box dimensions and a comparison of steel and sandwich panel sections as 
given in Table 1. Thinner (t=0.033 in.) and non-structural sections (t=0.018 in.) 
benefit greatly from the local buckling mitigation through the use of the steel 
foam sandwich panels. Locally slender (ܾ ⁄ݐ ൐ 100 ) sandwich columns are 
significantly stronger than traditional steel sections which have the same weight. 
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Table 1: Comparison of steel and sandwich panel columns (in, kip) 

௦ݐ௦ ௡ܲ 2ݐ ൅ /௖ ௡ܲ௣ ௡ܲ௣ݐ ௡ܲ 
in kip in kip  

0.033 10.9 0.077 18.0 1.65 
0.097 68.2 0.225 62.6 0.92 
0.018 3.8 0.042 6.7 1.75 

 
Conclusions 
Steel foam is emerging as a new structural material with intriguing properties: 
high stiffness-to-weight ratio, high energy absorption, and other advantages. 
Foaming steel increases bending rigidity, but decreases the effective modulus 
and yield stress. A steel foam sandwich panel, consisting of solid steel faces and 
an interior of foamed steel further increases the bending rigidity, and limits the 
loss in effective modulus and yield stress. However, depending on the density of 
the foamed steel core, shear deformations and non-composite bending of the 
face sheets, must be accounted for in the behavior of steel foam sandwich 
panels. It is found that the approximation of Allen (1969) effectively captures 
these phenomena in the prediction of the elastic local buckling stress for a steel 
foam sandwich panel. This observation is verified, by detailed continuum finite 
element models of a steel foam sandwich panel with brick elements. 
 
The ultimate strength of steel foam sandwich panels is explored with the 
detailed finite element model and it is found that Winter’s classic effective width 
method suitably modified for the effective yield stress (derivations provided 
herein) and local buckling stress (based on Allen’s method) is an excellent 
predictor of steel foam sandwich panels over a wide slenderness range. Further, 
exploration of the developed expressions utilizing commercially available steel 
foam demonstrates that foaming the middle 30% of a solid steel plate leads to 
optimal strength gains, which can be in excess of 170% of the strength of the 
solid steel section of the same mass. 
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