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Impact of global flexural imperfections on the cold-formed 
steel column curve 

 
 

Schafer, B.W.1, Zeinoddini, V.M2. 
 
 

ABSTRACT 
 
Due to inherent complications in manufacturing and installation global out-of-
straightness imperfections in cold-formed steel columns may sometimes be 
greater than L/960, which is the maximum amount assumed in North American 
cold-formed steel design specifications. The correction that should be applied to 
currently used column design curves to account for imperfections larger than 
L/960 is unknown. To find this correction the strength of typical cold-formed 
steel columns with explicit imperfections is determined using a geometric and 
material nonlinear beam finite element solution, and a closed-formed solution. 
The closed-formed solution is shown to agree well with the finite element 
solution and accurately recreates the current design specification column curves 
at the L/960 imperfection level. The closed-formed solution is used as the basis 
for predicting reductions in the nominal column stress for columns with 
imperfections that are greater than L/960. The developed solution is 
recommended in design for those situations in which large out-of-straightness 
imperfections are encountered. 
 
INTRODUCTION 
 
Cold-formed steel columns, like all columns, are sensitive to geometric 
imperfections, such as out-of-straightness. Under axial load, imperfections (δo) 
lead to lateral deformations (δ) which create bending demand on the columns, 
known as P-δ moments. As a result of imperfections, even a column with 
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perfectly aligned axial load undergoes compression and bending. However, it is 
inconvenient to consider every column as a beam-column, thus the effect of P-δ 
moments occurring due to δo imperfections are empirically buried into column 
curves used in design.  
 
For hot-rolled steel the AISC column curve (i.e., AISC 2005) assumes an out-of-
straightness imperfection, δo, of L/960, where L is the column length (Galambos 
1998). The column curve for cold-formed steel was determined based on 
comparing test data to the AISC column curve, with appropriate reductions for 
local buckling. This comparison lead to the adoption of the AISC column curve 
in cold-formed steel design (i.e., AISI-S100 2007). As a result, the maximum 
assumed out-of-straightness in a cold-formed steel column curve is also L/960. 
 
Production of a cold-formed steel column involves the potential for larger out-
of-straightness imperfections than a typical hot-rolled steel column. Therefore, 
this paper investigates the implication of considering larger δo imperfections in 
cold-formed steel and the impact of these larger δo imperfections on cold-formed 
steel column capacity and the cold-formed steel column design curve. 
 
AISI-COFS Stud Preliminary Out-of-Straightness Study Request 
In May of 2007 a task group of the American Iron and Steel Institute – 
Committee on Framing Standards (AISI-COFS) developed the outline for a 
study to assess the impact of global (sweep) imperfections on cold-formed steel 
columns. Essentially, the idea for their study was to model columns in 
MASTAN (Ziemian 2007) with explicit geometric imperfections and vary the 
length of columns in order to generate column capacities as a function of the 
size of geometric imperfection. This paper was written in response to this study, 
but goes beyond the specific requests of this study to explore column curve 
sensitivity to global imperfections using both MASTAN and a more 
straightforward closed-formed solution. 
 
NUMERICALLY GENERATED COLUMN CURVE VIA MASTAN 
 
Column strength for different imperfections 
Material and geometric nonlinear MASTAN analysis (simple step using ~ 1000 
steps to failure) of simply supported columns with an initial circular out-of-
straightness δo of L/960, L/768, and L/384 was completed on a 350S162-33 
(SSMA nomenclature) stud with fy = 33ksi and KL/ry varying from 62 to 122. 
The predicted column capacity from these MASTAN analyses is provided along 
with the AISI column curve in Figure 1. The MASTAN predicted column 
curves follow the same basic trend as the AISI column curve, indicating that the 
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analysis is capturing the basic column failure. The MASTAN analyses 
conducted here only include the impact of out-of-straightness on global weak-
axis flexural buckling. Local buckling, torsional-flexural buckling, details of the 
material stress-strain curve, residual stresses, etc. are ignored. 
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Figure 1 MASTAN predicted column curves for 350S162-33 

 with varying imperfection size 
 
Influence of imperfection shape 
Due to the manufacturing process a likely out-of-straightness imperfection shape 
for a cold-formed steel column is a constant curvature sweep in the weak-axis 
direction. Typical theoretical solutions employ a sinusoidal imperfection (since 
the solution from the differential equation for the buckling mode is itself a 
sinusoid). The simplest imperfection to introduce into a model is a kink, where 
the column is modeled as 2 straight lines with an imperfection at midspan.  
 
The importance of imperfection shape is studied for a 350S162-33 at KL/ry of 97 
with δo=L/960 in Figure 2. Figure 2 demonstrates that the magnitude of the 
midspan deflection (δo) is far more important than the shape. A sinusoidal 
imperfection delivers slightly less P-δ moment than a constant curvature circular 
imperfection, but the difference is insignificant. The kink or 2-line imperfection 
is slightly unconservative, in that less P-δ moment is generated at a given level 
of P when compared with the circular or sinusoid imperfection shape. 



84 
 

 
 
 
CLOSED-FORM SOLUTION FOR COLUMN CURVE 
 
For the simplified case of a pin-ended column in flexural buckling it is possible 
to develop a closed–form expression for the column capacity as a function of 
initial imperfection magnitude. The derivation relies on (i) providing the P-δ 
moment in a functional form, and (ii) providing the beam-column interaction 
equation (yield surface in MASTAN parlance) in a functional form. The 
intersection of the load, P, and moment, P-δ, with the beam-column interaction 
equation provides the column capacity.  
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Figure 2 P-δ response for different out-of-straightness imperfection shapes on a 
350S162-33 stud with a KL/ry of 97.2 under increasing axial load 

 
Geometric nonlinearity 
For a pin-ended column with a sinusoidal initial imperfection of midspan 
magnitude, δo, it may be shown (e.g., Chen and Lui 1987) that the midspan 
moment, which in the linear elastic case is simply Pδo grows significantly as the 
axial load approaches the buckling load of the column. In particular, the 
midspan moment M may be expressed as  

M = B1Mo (1) 
Mo = Pδo  (2) 
B1 = 1/(1-P/Pcr) (3) 
Pcr = π2EIy/L2 (4) 
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Interaction equation 
Column failure occurs when the P-δ moment, M, grows to the extent that the 
bending capacity of the column is exceeded. A linear beam-column interaction 
equation as used in AISI-S100 may be used for predicting when this occurs, via: 

P/Pno + M/Mno < 1 (5) 
Where the equation is anchored by the assumed capacity in pure compression 
(Pno) and in pure bending (Mno). For the work herein: 

Pno = Agfy = Py (6) 
Mno = Seffyfy (7) 

where the weak axis effective section modulus (Seffy) is determined via AISI-
S1003. The squash load Agfy is used instead of the effective axial load Aefffy only 
to provide more convenient comparison between AISI and the generated closed-
formed curves. (If Aefffy is used for Pno the closed-form solution of this section is 
unchanged, but the AISI column curve determines Aeff at stress fn, where fn 
varies from fy down to fcr for global buckling as a function of the column global 
slenderness. To avoid calculation of Aeff for any global column slenderness in 
generation of the AISI column curve, Aeff is set to Ag herein.)  
 
Column strength as a function of imperfection size 
Substituting Eq. (2) and (3) into Eq. (1) and the resulting expression into Eq. (5) 
one finds: 

P/Pno + [Pδo(1/(1-P/Pcr))]/Mno < 1 (8) 
Setting the interaction equation equal to 1.0 and solving for the axial load, P, 
results in a quadratic equation in terms of P. The solution to Eq. (8) provides a 
column capacity, P, which is a function of Pcr, Pno, Mno, and δo, where the typical 
column curve can be shown to be a function of only Pcr and Pno, but independent 
of Mno and δo. Solving Eq. (8) for P, the column capacity, results in: 

0PMPP)MPPPPM(PM crnononononocr0crno
2

no =+−δ−−+  (9) 

The solution to which is readily found as: 

a2
ac4bbP

2 −−−
=  (10) 

where: noMa =  (11) 

            nononocr0crno MPPPPMb −δ−−=  (12) 

            crnono PMPc =  (13) 

                                                 
3 AISIWIN v7.0 (Madsen 2007) was used for determining Seffy. 
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Example column curves using closed-form solution 
Using Eq. (10) column curves were generated for a 362S162-68 (50 ksi) and a 
800S200-97 (50 ksi) as given in Figure 3 and Figure 4. The generated column 
curves using the closed-formed solution agree well with the AISI column curve 
in trend and magnitude and also shed further light on the regimes where 
sensitivity to out-of-straightness imperfection are the greatest. The results 
confirm that the existing AISI column curve inherently assumes an imperfection 
in the neighborhood of L/960 and that the closed-formed solution can accurately 
model this effect. 
 
The loss in column capacity for the 362S162-68 (50 ksi) and 800S200-97 (50 
ksi) as δo increases above L/960 is shown in Figure 5 and Figure 6. The 
reduction in the column capacity is greatest in the low to intermediate 
slenderness range. If a column is slender the initial imperfection does not have a 
significant impact on the capacity, this is because as P approaches Pcr the P-δ 
moments quickly amplify leading to a capacity for P that asymptotes to Pcr for 
any δo. However, in the inelastic regime the δo can have a significant impact, for 
instance a strong reduction occurs around an unbraced length of 3 ft for the 
362S162-68 and 4 ft for the 800S200-97.  
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(a) L (ft) vs P (kips) (b) λc = cry P/P vs. P/Pno 

Figure 3 Predicted column curves for 362S162-68 (50 ksi) for varying imperfections 
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(a) L (ft) vs P (kips) (b) λc = cry P/P vs. P/Pno 

Figure 4 Predicted column curves for 800S200-97 (50 ksi) for varying imperfections 
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Figure 5 Predicted loss in strength for 362S162-68 (50 ksi)  
as imperfections increase beyond L/960 
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Figure 6 Predicted loss in strength for 800S200-97 (50 ksi)  
as imperfections increase beyond L/960 
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Figure 7 Maximum loss in column strength as a function of imperfection size 

 
Column curve reductions for imperfections 
The maximum reduction in the column capacity (peak error in Figure 5 and 
Figure 6) is plotted as a function of imperfection size in Figure 7. Interestingly, 
the reduction as a function of Py is  nearly the same for the 362S162-68 and the 
800S200-97, which is a bit surprising given how substantially different these 
sections are. Taking advantage of this fact, a simple empirical relation is found 
for the reduced capacity: 

(ΔP/Py)max = 95(δo/L-1/960) for δo>L/960 (14) 

Use of Eq. (14) for predicting the loss in strength due to imperfections captures 
only the maximum loss in strength; however this loss varies as a function of 
length (or equivalently λc) as shown in Figure 5 and Figure 6. With the peak loss 
known from Eq. (14) a simple empirical relation is found for the loss at all 
column slenderness: 

85.0  if  
85.0)P/P(

85.0  if      
85.0

)P/P(

P/P
c2

c

2
maxy

cc
maxy

y
>λ

λ

Δ

≤λλ
Δ

=Δ  (15) 

Comparison of Eq. (15) to the closed-form solution of Eq. (10) is provided in 
Figure 8. The empirical relationship of Eq. (15) provides a reasonably accurate 
estimation to the more involved closed-form expressions. 
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for 362S162-68 
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for 800S200-97  
Figure 8 Comparison of closed-form solution (Eq. 10) with empirical expressions 

(Eq. 15) for predicting the loss in column capacity for imperfections beyond L/960 
 
 
COMPARISON OF MASTAN AND CLOSED-FORMED SOLUTION 
 
Geometric nonlinearity 
The closed-form solution uses the B1 multiplier (Eq. 3) to determine the P-δ 
moments. To demonstrate that B1 and MASTAN provide the same solution to 
this geometrically nonlinear problem a 350S163-33 with δo=L/960 and KL/r = 
64.8 and 130 was analyzed in MASTAN and compared to Eq. (3) in Figure 9. 
MASTAN closely tracks the theoretical solution. In this simple case, B1 can 
replace the more involved geometrically nonlinear analysis completed in 
MASTAN as shown in Figure 9. 
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Figure 9 Prediction of P-δ moments 
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Yield surface 
In MASTAN the failure of the column is predicted to occur when the midspan 
P-δ moment increases to the point it reaches the yield surface4. The yield surface 
is anchored by the assumed capacity in pure compression (Pno) and in pure 
bending (Mno) as discussed previously.When the P-δ moments increase to such 
an extent that they intersect the yield surface – at this point a plastic hinge is 
assumed to form in the column, and for an isolated pin-ended column, this hinge 
formation is equivalent to axial collapse. The normalized yield surface 
employed in MASTAN, along with a simple linear yield surface (as used in the 
closed-formed solution) is shown along with the demands from two analyses in 
Figure 10. The two analyses are for a 350S162-33 with δo=L/960, fy=33ksi, 
Pno=Agfy, Mno=Seffyfy, and KL/ry=64.8 and 130. The axial load (P) at which the 
demand curves intersect the yield surface is the column capacity. 
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Figure 10 Comparison of yield surfaces 

 
The MASTAN yield surface is less conservative than the simple linear yield 
surface (interaction equation). For low moment (little P-δ effect) the difference 
in axial load prediction between the two surfaces can be fairly large; however, in 
cases with larger P-δ moment the demand is nearly horizontal and the resulting 
difference in P is small. AISI-S100 conservatively assumes the linear interaction 

                                                 
4 In conventional finite element analysis the yield surface is a function of stress, for 
concentrated plasticity beam elements typically the yield surface is integrated over the 
cross-section so that the surface is a function of forces and moments. The resulting yield-
surface in force-moment space is essentially a beam-column interaction equation. In 
MASTAN the default yield surface follows the following equation: p2+m2+3.5p2m2=1 
(Eq. 10.18 McGuire et al. 2000) and is calibrated to match a typical W-section in strong-
axis bending. With appropriate changes to the compression and bending anchors this 
function has been shown to be a reasonable (but approximate) choice for other shapes. 
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equation is applicable to cold-formed steel beam-columns, and this is used in the 
closed-formed solution provided herein. 
 
Column curves 
The only real difference between the closed-formed solution and MASTAN is 
the shape of the yield surface, as described in the previous section. This 
difference does result in slightly different predictions for the column capacity, as 
shown in Figure 11 for a 350S162-33 (33ksi), δo=L/960. 
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Figure 11 Comparison of MASTAN imperfect models with column curve 

 
Imperfection sensitivity 
Although the column curves from MASTAN and the closed-formed solution are 
slightly different (Figure 11) the relative loss in strength between the different 
imperfection magnitudes is essentially the same. For the same section as Figure 
11 the predicted loss in strength normalized to the squash load is shown for 
MASTAN and the closed-formed solution in Figure 12. Use of the closed-
formed solution is recommended for all cases. 
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Figure 12 Comparison of predicted strength drop between L/960 and L/384 

imperfections for MASTAN and closed-formed solution 
 
 
DESIGN RECOMMENDATIONS 
 
Based on the findings presented herein the following is recommended as a 
correction for the strength of cold-formed steel columns when imperfections are 
found to be greater than L/960. The nominal stress for a column is predicted 
from the existing AISI-S100 column curves as: 

5.1  if F.8770
5.1  if      F658.0

F
cy2

c

cy
*

2
c

n >λ
λ

≤λ
=

λ

 (16) 

where the column slenderness is defined as  

eyc F/F=λ , (17) 

and where Fy is the yield stress, and Fe is the global elastic buckling stress 
(minimum of flexural and torsional-flexural). From Eq. (14) we may define the 
maximum reduction in the nominal column stress due to imperfections which 
are greater than L/960 as:  

( ) ( ) yomaxn F960/1L/95F −δ=Δ  for δo > L/960 (18) 

From Eq. (15) the reduction is known as a function of slenderness, λc, and may 
be expressed as: 
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( )

( )
85.0  if  

85.0F

85.0  if      
85.0

F

F
c2

c

2
maxn

cc
maxn

n
>λ

λ

Δ

≤λλ
Δ

=Δ  (19) 

where finally the nominal stress to be used in design is 

n
*

n FFF
n

Δ−=  (20) 

If a simpler estimate of column nominal stress is needed (ΔFn)max may 
conservatively be used in place of ΔFn. The preceding recommendations 
conservatively extend the reductions found for flexural buckling to the case of 
torsional-flexural buckling. 
 
Tabulated design examples following the equations suggested above are 
provided for the 362S162-68 (50 ksi) and 800S20097 (50ksi) in the Appendix. 
 
CONCLUSIONS 
 
The strength of cold-formed steel columns is sensitive to imperfections. As axial 
load increases the imperfections lead to P-δ moments at midspan which 
eventually cause the bending capacity of the section to be exceeded and collapse 
to occur. It is possible to model both the increasing P-δ moment and the 
combination of axial load and moment that cause collapse using simple 
functions as is reported in the closed-formed solution herein. The presented 
closed-form solution agrees well with empirically derived cold-formed steel 
column design curves as well as advanced geometric and material beam finite 
element analysis solutions (MASTAN). Based on the closed-formed solution 
simple functions were determined for the appropriate reduction in the cold-
formed steel column design strength when imperfections are greater than L/960. 
The reduced nominal column stress is recommended for use in design when out-
of-straightness imperfections are known to be greater than L/960. 
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