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Twelfth International Specialty Conference on Cold-Formed Steel Structures 
St. Louis, Missouri, U.S.A., October 18-19, 1994 

Elastoplastic Large Deflection Analysis of Cold-Formed Members 
Using Spline Finite Strip Method 

By Shi-Lin Chenl , Shao-Fu Li2 and Shan-Feng Fangl 

ABSTRACT: The elastoplastic large deflection behaviour of cold-fonned members 
is analysed by a nonlinear spline finite strip method. The methOd is developed using the 
principle of virtual work, based on the total Lagrangian description. It is used to deal 
with problems of geometric and material nonlinearity. The displacement function of a 
strip is expressed as the prOduct of transverse interpolation polynomials and 
longitudinal B3-splines. The effect of arbitrary initial imperfections is taken into 
consideration. The influence of cold-bending residual stress on the local and overall 
behaviour of cold-fonned lipped angle columns is investigated especially. The numeric 
examples show that the methOd possesses such advantages as fewer degrees of freedom, 
fine continuity, good boundary adaptation, quick computation speed and high accuracy 
etc. 

INTRODUCTION 

The fmite element method(FEM) is a powerful analytical approach that can be used to study 
almost any kind of problem in structures(Bathe and Wilson 1976; Zienkiewicz 1977; Cook 
1981). However it is inconvenient to apply the methOd to some complex problems. For some 
problems, FEM may not be the best method. In such cases, classic semi-analytical finite strip 
method(CFSM) may be appropriate(Cheung 1976) because of its easy derivation, less number 
of degrees of freedom, etc. For example, CFSM is one of the most efficient methOds for solving 
regular prismatic structures with simply supported ends and simple initial imperfections. 
However, it is difficult to treat arbitrary initial imperfections, complicate boundary arid loading 
conditions as well as actual plastic development, etc., by CFSM. In order to both overcome 
such difficulties and retain the advantages of CFSM, a spline 'finite strip method(SFSM) is 
developed(Cheung and Fan 1982). 

No matter what kind of analysis method is adopted, research into linear elastic and small 
deflection problems has been undertaken much more. The main new field of structural analysis 
is nonlinear structural behaviour(Bathe and Wilson 1976; Owen and Hinton 1980; Cook 1981). 
To develop a method that can be conveniently and effectively used to solve many complicate 
nonlinear problems of plates, shells and cold-fonned thin-walJed structures and'members, based 
on the total Lagrangian description and using the principle of virtual work, the nonlinear spline 
finite strip method(NSFSM) for problems of large elastoplastic deflection is derived in this 
paper. The NSFSM can deal with arbitrary initial imperfections, such as initial defonnation 
and residual stress, different loading patterns, real plastic development as well as special 
support and displacement restraining conditions. Its boundary adaptability is very satisrying, 

lAssoc. Prof., Dept. ofCiv. Engrg., Tsinghua University, Beijing, P. R. of China .. 
2Prof., Dept. ofCiv. Engrg., Tsinghua University, Beijing, P. R. of China. 
3Prof., Wuhan Univ. of Hydraulic & Electric Engrg., Wuhan, P. R. of China. 
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and the shape of displacement function can be rectified by itself corresponding to the 
development of buckling deformation and plasticity, so that the method can approach the actual 
situation much more. 

The behaviour of practical cold-formed members is under the influence of initial geometric 
imperfections and residual stresses to different extent. The second type of buckling, nonlinear 
buckling always occurs in cold-formed members. It has been found that the distribution of cold­
bending residual stresses along the thick direction is not uniform but nearly linear(Weng and 
Pekoz 1988; Fang et al. 1993). As a further example, the influence of cold-bending residual 
stresses on the local and overall behaviour of cold-formed lipped angle colunms is analyzeded in 
this paper. The nonlinear spline finite strip method can be effectively used to study elastoplastic 
large deflection behaviour of plates, shells and cold-formed thin-walled members under various 
complicated conditions. 

DISPLACEMENT FUNCTIONS OF SPLINE FINITE STRIP 

The displacement functions of a classic semi-analytic finite strip are expressed in product 
form. Interpolation functions of simple polynomials are used in one direction, and continuous 
and smooth series in another direction. For a spline finite strip(as shown in Fig. 1), interpolation 
functions of B3-splines are used in another direction, so that it is convenient and simple to treat 
various boundary conditions, and it is easy to converge for concentric loading conditions. B3-
splines can be obtained from a general fourth order differential equation, it is a cubic 
polynomials in subsections and twice continuously differentiable (Ahlberg et al. 1967, Prenter 
1981). For a dividing For a dividing 1t of region [a, b]: 
x_1<a=xO<x1 <,··<xm_1 <xm=b<xm+l' h=xj+1-xj=(b-a)/m (1) 

m is the number of subsections, h is the equal length of section. A standard B3-spline base ¢ j 
as show in Fig.2 is 

(2) 

The B3-spline interpolation function for the dividing 1t is expressed as the sununation of 
(m+3) local B3-spline by 

m+l 
Y(x) = L a/Pj(x) x E [a,b] (3) 

j=-l 

where 3j is a coefficient to be detemlined, corresponding to local B3 -spline ¢ j' Because of the 

feature of local non-zero, the number of related non·zero terms at any point in the region is not 
more than four(Fig.3). In order to self adapt the end boundary conditions such as simply 
supported,clamped sliding, clamped and free, only reqnire to locally amend the B3-spline 

base,i.e., 

[<I>(X)] = [¢-l, ¢o, ¢l' ¢2' ... , ¢m-2, ¢m-l, ¢m, ¢m+l] 

where ¢j is an amended boundary local spline(Fig.4). 

The displacement functions of a spline finite strip are expressed as following 

{U} . [[NMl ][[NMl ]{{a M}} {d}= : =[NJ[<I>.l= [Npl [Npl lap} 

(4) 

(5) 
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in which {a} is a general displacement vector for a spline strip, each section knot has four 
degrees of freedom corresponding to the two membrane displacement u, v and the two flexural 

. deformations v, 9. Using subscdpt "M" and "F" denote the membrane and flexural parts 
respectively, if let ~=x!b, NI=I-~, N2=~, N3=1-3~2+2~3, N4=bW-2~+~2), N5=3~2-2~3, 

~:~:~~~~'~:. :} •. ,_[[IlI"] [Ill,,] [Ill,,] . l;{aJ(}=[:::~) 
[Ill.] {v J } 

(6) 

[Npl=[N, N, N, N6 ];[<l>pl = [[<l>" 1 [<l>9I 1 [<l>v, 1 l;{ap}=lf:~t) 
[<l>., 1 {/iI,} 

(7) 

the vectors of spline function bases as well as displacement coefficients are defined by 

(8) 

(9) 

INITIAL IMPERFECTIONS 

It is important to study the influence of initial imperfections such as initial geometric 
imperfection and residual stresses. Initial geometric imperfection in structures is treated as a 
known state to start the process of incremental solution. It can be considered as the 
displacement or deformation from ideal perfect structures. It is a smooth, continuous field. If 
actual data are short of or some approximate assumption can be made, certain simple function 
will be used in description. If it is required to analyze structures as close as possible to the 
actual situation, the actual data of initial deformation should be measured. Because initial 
deformation is in a field distribution, it can only be expressed by interpolation based on the data. 

Residual stresses always exit in actual structures for plastic deformation caused by welding, 
cutting, rolling, punching and cold-bending, etc. The actual distribution of residual stress may 
be very complicated, such as it is nonlinear in the wide direction and non-uuiform in whether 
longitudinal or thick direction, but it is simplified through assumption some times. There is a 
requirement to develop a new method that can deal with arbitrary residual stress. In this paper, 
the residual stress is treated as initial stress field corresponding to the initial known state(i.e., 
initial deformation). 

NONLINEAR SPLINE FINITE STRIP METHOD 

Incremental Equilibrium Equations 
In the total Lagrangian description, the state without any deformation is taken as the 

reference state and the state of initial imperfection is the next known state. The principle of 
virtual work expressing the equilibrium conditions of structure corresponding to state o(n+ 1) is 
wdten as following 
J 5( {5} +{l>8})T ({ a} + {Aa})dV - J 5( {d} +{Ad})T ({p} + {Ap} )dV 
y(~ yW - J 5({d}+{Ad}f ({q}+{Aq})dS = 0 (10) 

s~O) 

in which {d}, {E}, { cr} are the displacement, Green strain, Kirchhoff stress vectors at known 
state o(n), {p}, {q} are the volume and surface distributing force respectively, "A" denotes 
increment from o(n) to o(n+l), "eS" denotes variation. In the following description {s}, {cr} are 
general values, defined for a spline strip as 
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{c}=[c. c y Y", P. Py Pxy r (II) 

{CT} = [N. Ny N", 
1/2 

M% M . M r y '" 
= f[ CT% CT y 7:", ZCT % ZCT y Z7:",r dz (12) 

-t12 

Nonlinear Strain and Displacement Relationship 

For large deformation problems, membrane strain Ex of state n(n+I) is defined by 

ex = O(U~AU) +±[( O(U~AU)r +( O(V~AV)r +( O(W~AW)n (\3) 

therefore the incremental relationship between strain and displacement can be obtained 

L'1sx = L'1~o +L'1e~1 +L'1~ (14) 
in which 

ACL1 = au 8Au + iJv 8Av + Ow 8Aw. 
x acac acac ac ac' 

As: = H (8!U r +( 8: )2 +( 8: r] 
the following expression can also be obtained similarly 

L'1ey = L'1e~o + L'1s~1 + L'1e; 

L'1rxy = L'1r~ +L'1~ +L'1~ 
Flexural strain and its increment are 

- _ &(w+L'1w). L'1 __ &L'1w. 
Px - &:2 ' Px - &:2' 

similarly 

&L'1w 
L'1pY=-7; 

L'1 =_2&L'1w. 
Pxy &:0" 

(15) 

(16) 

(17) 

(18) 

So the incremental relationship between strain and displacement of large deformation can be 
written as follows 

{L'1e} = {L'1eLO } + {L'1eL1 } + {L'1£!l} 

o{ L'1e} = [B]o{ L'1a} 

(19) 

(20) 

in which "LO" denotes the part independent of any displacement variable, "Ll" and "N" denote 
the parts linearly depending on {a} and {Aa} respectively, [B]=[BLO]+[BLl]+[BN] is called 
incremental strain matrix, and 

B = [[B;)'] ] + [[Bt:] [B;I]]+[[B~] [B;]] 
. [ ] [B;o [0] [0] [0] [0] 

in which 

[ 

1 
--[<1J .] b ., 

[B~O] = [0] 

(1- ~)[<1J~i] 

[0] 

(1- ~[<1J~i] 
1 

--[<1J .] 
b " 

1 
b[<1J·j ] 

[0] 

~<1J~j] 

(21) 



6 
b'(1-2{)[<D wi l 

[B;'l= -(l-3q' +2q3)[<D~,l 

_1: (q' _ {)[<D~i 1 
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2 
b(2-3{)[<D.,1 

-bq(l- 2q+ q')[<D'~l 

-2(l-4q+3q')[<D~1 

b~ (2q-l)[<D wj l 

(2q3-3q')[<D~jl 

1: (q' _ {)[<D~j 1 

r 
{aM }T[<D M f[N:'" flN:"'U<D M 1 {aFf[<DF f[N~f[N~ U<DF 11 

BLI BLI _ {aM}T[<D~flNMf[NMU<D~l {aFf[<D~f[NFf[NFU<D~l. 
II M][ F 11- {aM}T~[~Mf[~:"'Y,[NM][<D~l {aF}T~[~Ff[~~f~NF][<D~l' 

+[<DMl [NMl [NM][<DMD +[<DFl [NFl [NF][<DFD 

the expression of [[ B~ :I [B;]] is similar to the above one except that {aM}, {aF} is replaced by 

{AaM},{AaF} respectively. 

Nolinear General Stress and Strain Relationship 
The stress and strain vectors are related by the constitutive relation of material. During the 

elastic loading period the stress and strain relationship remains constant. When material is 
loaded into plastic range, the Prantl-Reuss plastic flow rule, von Mises yielding criterion with 
isotropic hardening and the incremental theory of plasticity are adopted. The strip elements are 
divided into layers to consider plastic zone spreading due to the yield of material at integral 
points. The Simpson formulation is used for the mathematical integration in the thick direction. 
The real constructive relation at any point can be written in 

d{S} = [15,p ]d{E} (22) 

in which {S}=[crx cry 'txylT, {E}={sM}+z{sF} are real stress and strain at the point,[Depl is 

the constructive matrix depending on the level of stress and history of plastic development. 
In the spline finite strip analysis, an increment general constructive relationship as follows is 

built through integration along the thick direction, and the Simpson integration formulation is 
used. 

{ AO'} = [ DT ]{ As} (23) 

[ Dr] = [[[c~]] [[~n 
(24) 

in which 
t/2 112 tI2 

[e] = f[D,p}tz; [D] = f z2[D,p}tz; [cd] = f Z[D,p}tz (25) 
-112 -1/2 -112 

Incremental Equilibrium Equations 
During the period of incremental solving, the displacement and strain of state o(n) is known, 

therefore 

o({d} + {Ad}) = [N][<I> a]o{Aa} 

o({ s} + {As}) = [B]o{Aa} 

(26) 

(27) 

introduce them into the virtual work equation and notice the arbitrary feature of I) {Aa}, then 

J[Bl{Aa}dA+ J [BNt{O'}dA+ J ([BLot +[BLl t){0'}dA7{R'}=O (28) 
A~ A~ A~ 

in which {R}' is the equivalent knot force vector of state o(n+l) corresponding to external load, 

i.e. 
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{If} = f[<DS[Nt {p}dV + f[<D.]'[Nt {q}dV 
V OO s~ 

(29) 

after a series of derivations, it is easy to obtain such equation as 

f[BN t {O-}dA = [KO"]{Aa} 
A(O) (30) 

[KO"J= f[Gf[M][G]dA 
A(O) (31) 

[Kcr1 is called as initial stress matrix or nonlinear strain stiffness matrix, in which 

] [ 1 ] N,,,[13 1 . _ 
Ny [/,1 ,[1,1- 1 1 

[G1 = [O[N1 I &[<1>. 1J. [M1 = [Nx [1,1 
[NJo[<I>.1/0" Nxy[1,l (32) 

and let 

{Rs }= f([BLJ + [B L1 y>{cr}d4 (33) 
A(O) 

{Rs} is the equivalent knot force vector of state Q(n) corresponding to internal stress field. 
Introducing Eq.(23) and Eq.(30) into Eq.(28), and ignoring the high order items, after further 

derivation we can obtain the increment equilibrium equations as following 

[KT J{Aa} = {R}-{Rs } 

in which 

[ KT ] = [ Ko] + [ Ku ] + [KO"] 

[Ko] = f[BLJ[DT ][BLO]dA 
A(O) 

[Ku] = I ([BLJ[DT ][BLl]+[ BLlnDT ][BLO]+[ BL1y[DT ][BLl])dA 
A(O) 

Solution to the Equilibrium Equations 

(34) 

(35) 

(36) 

(37) 

The nonlinear equilibrium equations Eq.(34» are solved by mixed methods, which combine 
the incremental method with various iterative modifYing techniques, for example, Newton­
Raphson method. In order to overcome the limit points of plastic or post-buckling problems. 
reducing load increment and the method restraining the length of displacement vector is 
applied(Crisfield 1981). For slow convergence or divergence due to "hardening", small 
incremental step or low loosing method is used. After the linearization of nonlinear equations. 
the solution is by means of Cholesky method with one-dimentional blocking store. Besides, the 
iterative criterion is mainly based on the convergence of modulus of displacement vector. For 
the efficiency of computation and convenience of programming, some beneficial techniques 
about coordinates transformation, stiffness matrix formulation, boundary conditions and so on 
are used. 

APPLICATIONS 

Elastic Large Deflection Analysis of Hinged Cylindrical Shell 
The cylindrical shell shown in Fig.5 is subjected to point load at the centre. The two straight 

edges are hinged supported, but the two other two curve edges are free to move. L=20in(508 
mm), R=100in(2540mm), t=0.5in(12.7mm), 9=O.lrad, E=4.5ksi (3102.75 N/mm2). 1-1=0.3. 
Elastic large deflection analysis is performed on the shell by the nonlinear spline finite strip 
method. According to symmetrical condition, one fourth part of the shell is modelled with 6 
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strips and 4 sections. Let the load increment M' =0.1 I 24kip(0.5kN) to begin the analysis. The 
modified Ne"ton-Raphson method is used to solve nonlinear equilibrium equations in most 
steps, but a Newton-Raphson method combined with restraining the length of displacement 
vector is applied to overcome the limit point. The load P a at the limit point "A" is 
0.4978kip(2.2l5kN). Bathe and Bolourichi(1980) only solve the loading path before the limit 
point, Pa=0.5034kip(2.24kN). Sabir and Lock(1972) also allow the limit point to be passed, 
Pa=0.4989kip(2.22kN), but existing small difference that the elastic modulous 
E=450.23ksi(3105N/mm2), the length L=19.843in(S04 mm). Their results are also given in 
Fig.S and in close agreement with the solution of this paper. 

Post-Buckling Behaviour of Rectangular Plate 
The elastic-plastic post-buckling behaviour of a rectangniar plate with initial deformation is 

investigated by the present method. The simply supported plate, with its side edges free to move 
under a uniform edge compression, has such assumed initial imperfection as WO=O.OOlbSin(7t 
xIb)Sin(7ty/a) in the out-of-plane direction, referred to Fig.6. b/t=S5,a/b=0.875, E=2.99x 
104ksi(2.062xl05N/mm2), J.1=0.3, cry==36.2Sksi(250N/mm2). Rerkshanandana, Usarni and 
Karasudhi(l9 81) used a finite element method based on Lagrangian description and modified 
Ilyushin yield criterion to analyse the problem. In this paper, the 114 part of the plate is 
subdivided into 4 strips and 4 sections. The Mises yield criterion is used and the plastic 
development in the thick direction can be considered through Simpson integration. It is shown 
that the present method can be effectively used to study the post-buckling behaviour of plate 
through the comparison of resnlts in Fig.6. 

Lateral-Buckling of Eccentrically Loaded Column 
There are initial imperfections in an eccentrically loaded H-coluum. The eccentricity of 

loading e is 2.47in(62.7mm) in the web direction(Fig.7a). The slenderness ratio Llr is 60. 
B=H=8in(203mm), tF0.435in(I1.05mm), tw=0.287in(7.29mm). The initial curvature is 
assumed as very small, U ofL= 1/ 1 00000, so that an nltimate load of lateral instability can be 
obtained. The residual stress ill the section is shown in Fig.7a. E=2.958x104ksi(2.04x 
105N/mm2), J.1=0.3, cry==3S.975ksi(248.lN/mm2), the maximum compressive residual stress 
errc =-0.3 cry. The computiIi.g resillts by a finite beam element method(Lu 1983) and the present 
method are both given in Fig.7b. It is shown that an excellent agreement exists between them. 

Elastic-Plastic Buckling of Biaxially Loaded Member 
A series of H-coluums loaded eccentrically with respect to both principle axes of the end 

sections wee experimentally investigated by Birnstiel(Birnstiel 1968). The No.7 specimen of 
type B in the experimental program is taken as an example to be studied by the present method. 
The specimen was made by machining the edges of the flanges of rolled wide flange shapes 
which had been stress-relieved. The maximum values of initial deformation are UO=O.O, 
WO=0.03in(0.762mm), 90=0.00lrad. The ends were simply supported and their warping were 
prevented. The cross-sectional dimensions are B=5in(127mm), H=6.3in (160mm), 
tw=0.33in(8.4mm), tF0.472in(12mm). The length Lis 96in(243S.4mm). The eccentricities of 
loading at top and bottom end are ext=-0.92in(-23.4mm), ezt=2.7Sin (70.6mm) and ~b=-
0.SSin(-21.6mm), ezb=2.S7in(72.9mm), respectively. The material is ASTM A36 steel with 
E=2.95S>d04ksi(2.04xl05N/mm2), J.1=0.3, cry==34.075ksi (235N/mm2). The ultimate load of 
experiment is 77.97Skip(347 kN). The present method is adopted to analyse this problem. The 
initial deformation and plastic development are considered. The theoretical ultimate load is 
SO.067kip(356.3kN). The curves of load versus strain at the midheight from computation are 
compared with that of experiment(BirnstieI196S), as shown in Fig.S. 



258 

INFLUENCE OF COLD-BENDING RESIDUAL. STRESS ON COLD-FORMED 
MEMBERS 

The residual stress in a cold-fonned thin-walled member are quite different from those in a 
hot-rolled or other member(Wengand Pekoz 1988; Fang et al. 1993). The magnitude and 
distribution of residual stress in a cold-fonned lipped angle column were studied experimentally 
in Fang et al.(1993) through the electric discharge machining(EDM) technique, referred to 
Fig. 9. Besides, the behaviour of short and long columns simply supported and centrically loaded 
was also studied as shown in Fig.lO and Fig. 11. The lengths are 250mm and 1200mm 
respectively. The widths of flange and lip are Wl=2.76in(70mm) and W2=0.79in(20mm) 
respectively, plate thickness t=0.098in(2.5mm). Young's modules E=2.997xl04ksi(2.067xl05 

N/mm2), Poisson's ratio fl=0.3, yield stress o"y=46.922ksi(323.6N/mm2), ultimate stress cru= 
63.032ksi(434.7N/mm2). 

The two kinds of specimens are analysed by the present method with the subdivision of 12 
strips( 6 strips and 1 strip for each flange and lip) and 6 sections for 112 length. The 3 x3 Gauss 
fonnulation in plate plane and Simpson fonnulation with 7 points in the thick direction are used 
to integrate numerically. The actual residual stress measured is introduced into analysis. The 
initial curvature of the long specimen is assumed as VOIL=1I1000. Fig.10 and Fig.ll show the 
results of average stress versus strain in short column and load versus lateral displacement in 
long column, respectively. The theoretic ultimate load of lateral buckling of long specimen is 
20.647kip(91.88kN), which is clozed to the experimental value 20.0kip(89.0kN). It is shown 
that the method can analyse the influence of complicated residual stress effectively. 

SUMMARY AND CONCLUSIONS 

Based on the principle of virtual work and the total Lagrangian description, a nonlinear 
spline finite strip method for problems of large elastoplastic deflection is developed, and applied 
to analyze plates, shells and cold-fonned thin-walled structures and members o£geometric and 
material nonlinearity. 

To deal with the material noulinearity, the Prantl-Reuss plastic flow rule, von Mises yielding 
criterion with isotropic hardening and the incremental theory of plasticity are adopted. The strip 
elements are divided into layers to consider plastic zone spreading due to the yield of material at 
integral points. The Simpson fonnulation is used for the mathematical integration in the depth 
direction. The present method can deal with many kinds of complicated conditions such as 
arbitrary initial imperfections, different loading patterns, real plastic development as well as 
special support and displacement restraining conditions. It also provides a theoretical basis for 
further study on second type of interactive buckling in cold-fonned thin-walled members and 
other complex noulinear buckling problems. 

The distribution of cold-bending residual stresses is complicated. The effect of the residual 
stresses on the local and overall buckling of cold-fonned lip angle columns sometimes cannot be 
neglected, it should be taken into consideration. At inelastic stage, the local and overall 
behaviour of cold-fonned thin-walled members are deteriorated by cold-bending residual stress. 
It is shown that the method can analyse the influence of complicated cold-bending residual 
stress effectively. 

The numeric examples show that the nonlinear spline finite strip method possesses such 
advantages as less degrees of freedom, fine continuity, good boundary adaptation, quick 
computatioual speed and high accuracy etc. The efficiency of solving problems by the method is 
very satisfactory. 
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APPENDIX II.--NOTATION 

The following symbols are used in this paper: 

A 
{a} 
{aM}, {aF} 
b 
[BJ 
[BLOl 
[BLll,[BNl 

{d} 

[Depl,[DTl 

E 
{E} 
h 
[KTl 
[Kol 
[Ku],[Kcrl 
L 
m 
[Nl 
[NM1,[NFl 

{p},{q} 
(R"} 
{RS} 
{S} 
t 
u,v,w,9 
U,V,W,9 
X,Y,Z 
X,Y,Z 
{M 
{E} 

[<I>l 

¢,¢ 
f.L 
{cr} 

area; 
general displacement vector of a spline strip; 
membrane and flexure parts of general displacement vector; 
plate width or strip width; 
strain matrix; 
part of strain matrix independent of displacement; 
parts of strain matrix linearly depending on total; 
and incremental displacement, respectively; 
real displacement vector at a point; 

real and general constructive matrices of material, respectively; 

Young's modules; 
real Green strain at a point, EX,' Ey' "(xy, 
section length of spline interpolation 
tangential stiffuess matrix 
linear component of tangential stiffuess matrix 
noulinear components of tangential stiffuess matrix 
strip length or member length 
number of spline sections 
matrix oftransverse shape functions 
matrices of transverse shape functions of strip corresponding 
to membrane and flexure parts, respectively 
volume, surface distributing force vectors 
equivalent knot force vector of external load at state n(n+ 1) 
equivalent knot force vector of stress field at state n(n) 
real Kirchhoff stress vector at a point, crx ' cry , 'txy 
thickness 
strip displacements and rotation in local coordinate system 
strip displacements and rotation in global coordinate system 
local coordinate axes of strip 
global coordinate axes of structure 
real displacement vector at a point 
general strain vector of a spline strip 
matrix of B3-spline of a spline strip 

standard and amended local B3-spline, respectively 
Poisson's ratio 
General stress vector of a spline strip 
residual stress 
yield stress and ultimate stress of material, respectively 
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