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ELASTIC-PLASTIC BUCKLING OF COLD-FORMED CIRCULAR RINGS

2
By Subhash C. Amd} M.ASCE and Alvin R. Griffithy A.M. ASCE

INTRODUCTION

Circular rings ae structural elements find many applications in the
field of engineering design. One of the most common usages, however,
is as a stiffening element for externally loaded cylindrical shells.
Used in this capacity, & primary consideration with respect to the design
of the ring is its buckling strength., The buckling is mssumed to occur
in the plane of the ring and results from a uniform pressure directed
radially toward the center of the ring.

A common fabrication technique for circular rings consists of press
forming or rolling a long straight bar of the desired cross section to
a required radiue and completing the ring with a single butt weld. Since
this process is generally accomplished without any heat treatment, sig-
nificant residual stresses are induced in the ring. Theae residual
stresses will necessarily affect the in-service performance of the ring.

Work relating to the effects of residual stresses on buckling has
been reported in the literature for structures other than the cold~formed
rirgs. Osgood (9)3 derived a general expression for the buckling load
of a column containing residual stresses through the use of the Tangent
Modulus Theory for inelastic columns as introduced by Shanley (10).
Beedle, Tall, Yang, Johnston, and Huber (1,7,14) correlated this same
approach to data resulting from buckling tests of built-up columns and
wide flange sections that contained residual stresses. The source of
the residual stresses in these studies was the cooling of the respective
sections after the hot rolling process. In a later study, Gjelsvik and
Bodner (5) used the classical Reduced Modulus Theory to derive an ex-
pression for the buckling of an elastic-plastic cylinder subjected to
external pressure and heating from one surface. The resulting stress
listributions were derived with both the thick walled and the thin walled
theories, while the buckling problem was formulated on the basis of the
thin walled theory only. Finally, in a recent study, Tao and Gjelsvik (11)
considered the stability of a heated elastic~-plastic column and concluded
that column behavior as affected by residual stresses is most realistically
predicted with the use of the Tangent Modulus Theory.

The purpose of the present investigation is to evaluate the
buckling strength of thin cold-formed circular rings on the basis of
their particular residual stress distribution. A stability criteria
is derived from a consideration of the total potential energy of the
ring system. Throughout this discussion the ring's material is assumed

to be elastic-perfectly plastic.

STRESS DISTRIBUTION

The initel state of stress ang the prebuckled state of stress for
a ring, which has been cold-formed into its final configuration, is

established in the following sections.

lAssociute Professor of Civil Engineering, Illinois Institute of
Technology, Chicago, Illinois,

2
‘Aasociate Engineer, Chas. T. Main, Inc., Boston, Maseachusetta,

3N\.u::era.'ls in parentheses refer to correaponding items in Appendix
I. - References.

Initial Residual Stresses

The mechanica of cold-forming a ring involves two basic events.
The flat bar from which the ring is to be fabricated must first be bent
or rolled plastically to some curvature greater than that finally de-
sired. During this bending or rolling process, external force is being
applied which must be in equilibrium with the internal stresses. The
second phase occurs when the external force is removed. At this time
the ring springs back elastically to the finally desired curvature, This
gequence is illustrated for a segment of a ring in Fig. 1, and may be

expressed mathematically by

Pp= Py + 8o - bp, (€8]
in which Pp = final curvature; po = initial curvature; Apc = curvature
change to constrained position; and Aps = curvature change during
springback.

The assumption that plane sections remain plane during bending

leads to the expression

p=e/c (2)
in which ¢ = extreme fiber strain; and ¢ = % s the half thickness of
the ring. Substitution of Eq. 2 into Eq. 1 yields, for zero initial

curvature,

Pp= (e, ~e)/c (3

where ¢ ana €5 are extreme fiber strains in constrained position
and during springback, respectively. With Py = 1/R, where R is the
final radius of the ring, Eq. 3 may be solved for the strain in the

constrained position to yield

€= ¢/R + € (4)
The state of stress in the constrained position is shown in Fig. 2a
in which the boundary between the elastic and plastic regions in the

cross section is defined by ¥1e measured from the neutra) axis, and is

given by
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Fig. 2 - Ring Residual Stresses: (a) Constrained; (b) Springback; and {c) ' Final



¥y = ege/e, (5 b) Elastic-Plastic Case: One Plastic Zome -- In this case, p > p, and
(c!; + a.) < g_, for which the stress distribution is shown in Figure 4,
where ¢ = strain at initial yield. Substituting from Eq. 4 into Eq. § y

Distances ¥, and y, defining the limits of the plastic zone, may be de-
for €. and multiplying both the numerator and the demominator by E gives 3

rived as functions of the atresses Tyr Oy and cy. and the distances ¥y
g c

y, = Y (6) and ¢ in the form
1 Ec/R+ 0
s o, - (y,/¢c)o
] 1 -]

. Vo= |2- 5T 70% ()
in which gy = extreme fiber stress during springback; cy = yield stress Yy 4t 8
of material; and E = Young's modulus. The moment existing in the ring

and ¥z = ¢ [1 -~ 0y/o.] (15)
of unit width in the constrained position is given by
) > in which the following restrictions must apply, i.e., [0 < Yo < 2yl]
¥y
M=o [c - ] 7
- < - .
y 3 and [0 < yy (e -y, 0]

Upon release of the constraining moment the ring springs back The upper limit of Case b) ia determined by that pressure and in
elastically producing the stress diagram shown in Fig. 2b where the turn by that % which brings the outside fiber stress to the yield
extreme fiber stresses are given by 1limit, i.e., Op + Tgp = cy and together with Eq. 9 gives

Gy, = 20, - @ (16)
o, =6 w3 H2cd 82 vy~ %

in whieh Tgo = limit stress for Case b). With this value of Tgor Egs. 14
into which a substitution of the value of M obtained from Eq. 7 yields

and 15 define the upper limits of the stress diagram in this case as

g, - Us
Yoo = Yy 1- h‘y;ﬁ—] Qa7

Yy 3

G 2>
oy =2 [3- (3,/09 ®

s

For a ring of radius R, the two unknowns, o and Yp» are obtained

by solving 2g9s. 6 and 8 simultaneously by trial and error procedure.

O Outside fiber O¢ Ce+ 0%
The residual stress distribution is found by combining Figs. 2a and
2b to yield Fig. 2c. The stresses at the extreme fiber and at y, are y
-on o, - O,
defined as og and Oy» respectively and may be expressed as yl c ¢ M
M ) E;
O = 95 = % c O'M O'va O';
and (9
oy =9y - (yl/f:)crs A
-O¢ Ingide fiber %—UE
Prebuckled State of Stress (a) + (b) = (¢)

For the case of an elastic thin ring free of residual stresses
Fig. 3 - Stregses -- Case a) (a) Residual, (b) Change and (c) Final
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in which @, = circumferential stress; ¢, = circumferential strain; ¢ y ¢ -P|ustic
¢ A -Oy Oy -Ou
N{’ = circumferential stress resultant; and p = the uniform external 7| yz
pressure. The second of these equations yields the prebuckled radiel ¢ Yy
<= o,
displacement W given by o.u Cc o;l - 3 y
o s
W o= = 11) " -
o © EE ¢ -Op  Inside fiber T3~ Ok
Rings with some residual stress pattern lead to the following (a) + (b) z (¢)

elastic-plastic cases:

Fig. 4 - Stresses -- Case b) (a) Residual, (b) Change and {c) Final
a) Elastic Case -~ For a ring with a residual stress distribution of

the form shown in Fig, 2c, the response remains linear elastic until and y}z = 2¢ [1-°y/°s] a7

yield develops at some fiber in the cross section. The limit of this where ¥5p = upper 1imit of ¥ and y}z = upper limit of y} for Case b).

case is determined by that pressure which causes the stress at y = -y The total stress resultant and the pressure at this upper limit, as

to reach cy or ) a function of Yoo and y}2' are given by
=% " % {; ) , }
Ngo =t 9y - 3 lc+y) - Yzp = y22][20y—r75 i+y,/e)]
Substitution of %y from Eq. 9 yields and (18)
Py = N.Z/R
o4 = (yl/zt)as {12)

and the corresponding N. for py <p<p, by

and P e2y o/R (13
1 1% ) .
where g, and p, are, respectively, the limit stress and the limit prespure Ny =t og - {E le +¥) - ¥, - ¥3llog - (y,/e)a )} 19)
for Case a). The residual stresses, the change jin the atreas due to In Eq. 19, t, ¢, ¥, and g, are established values; and y, and ¥
pressure, and the final stresses for all p £ p) are ehown in Fig. 3. are secondary unknowns expressable as functions of the primary unknown

15



oy by Eqs. 14 and 15. Writing Eq. 10 with all of the appropriate sub-
stitutiona for l.. 7, and 13 vielda a quadratic function in Iy of the

form

2 - =
O.(-IZ/Z) * a.(t +a ;2/2 - .l/a) + (a AI/Z pR) = O
which may further bs written as
nka: v s 8 m0 (20)
with the constants defined as follows:
[ (yl/c)u. 8. yl/(tvy - a)
s, = c/o!
A= IZ/Z
and G ma .}/2 - R

ay = -(ul - yl)

ls =t + au2/2 - n3/2

Equation 20 may be solved directly for the unknown, a9

¢) Elastic-Flastic Case:r Two Plastic Zopes - In this case p > p, and

(a. - f.vM) < oy. The strese distribution for thia case, in which two
plastic regions are separated by an elastic region, is shown in Fig. 5.
The distancea ¥s and ’3 in this case are again given by Eqs. 14 and 15.

In a similar manner, the distance ¥y, may be expressed as
- (c/qs)<2°y'°0) - (21)

in which the following restrictions must spply, i.e., [0 <y, < (c-yl)]-
The upper limit for Came c) is that pressure which will cause full
yielding of the cross section, i.e., .

Ny, =0t
3%y
and (22)

Py ® N.J/R
where NU e limiting streas resultant of Case c); and p3 = the corres-
ponding limiting pressure.

The stress condition, Ogs for this case may be defined in a similar
manner as for case b) to yield an expression for the stress resultent, NQ,
analogous to Eq, 19, i.e.,

By =t oy - Hlv,yd0 -a-0y + vylo, - 0,1} @23
Again, a quadratic function in % results from the appropriate substi-
tutions for Yo y3 and vy in Eq. 23 to yield

°§ (agec/o,) + q'(-n7-asag-2c) + (n7|9+c cs+2pR-2tcy) =0

which may be reduced to the form

8075 * &y Oy s agp = 0 (a4
where 8, = [y +aa st qy/aaj ag = [a4-03]
8 = EZay-nJ 8y = [Aaoi:/a!J

a5, =-[n7¢.819¢2c] a4, = [n7;9+cas+2(pﬂ-toy)3

The complete stress distribution in the ring as a function of the
external pressure, p, is thus described by three Egs. 10, 20, and 24,

corresponding to the extent of yielding developed in the thickneas of

the ring.
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STABILITY CRITERION
The equilibrium and the stability of any continuous structural
system may be determined through an investigation into the nature of the
total change in the petential energy resulting from an infinitesimally
emall displacement from any arbitrary configuration which satisfies the
physical constraints (boundary conditions) of the system. For conser-
vative systems, the total potential energy is expressed as (8)
' Val+Q (25)
in which V = total potential energy; U = internal or strain energy;
and 0 = potential energy of external forces.
Within the framework of the calculus of variations, a change in
the total potential energy is constructed by replacing the displacement
parateters implicit to Eq. 25 with an arbitrary admissible displacment

function plus some infinitesimal functional displacement.

The change
thus achieved is written as
1,2 1,3 '
AV = &V + 5 e e
+ 216 vV + 316 vV o+ (26)

where 8V = the change in the total potential energy; 8V = that part of

the change which is linear in the infinitesimal displacement parameter;

8%V =

displacement paremeter; and so on.

that part of the change which is quadratic in the infinitesimal

The "Theorem of Stationary Potential Energy" states that the

amount of the total potential energy, V, remains stationary when a

structure is gisplaced from its equilibrium position to an infinitesimally

near configuration. This cen be exXpressed as

BV = U+ 80 =8(U + Q) =0 (27)
in which again 8V is that portion of &V which is linear in the infini-

tesimal displacement paramters. For any structure, there exist three

possible conditions of equilibrium state; namely, stable, neutral and

unatable. The equilibrium condition is determined by the sign of the

change in the total potential energy, aV., 1In particular, the conditions

of stable, neutral and unstable equilibrium are associated with positive,

zero, and negative values of &V, The sign of AV is determined uniquely

by the sign of GZV, the quadratic portion of &V, This dependency on the

sign results from the fact that 8V = 0 and that the absolute value of

2
8V is greater than two times the abmolute value of the sum of all other

terms of the total variation, i.e.,

\l02v|>z|n}l
where
B ovagatv.. .,

The term QZV 18 & quadratic form and its character must be evaluated

on the basis of the algebraio theory of quadratio forms (8), Acoordingly,



the stability load of a structure will be defined as that load for which
the second variation of the potential energy, 62V, changes its character
from positive definite to negative definite, negative semidefinite or in-

definite.

RING WITHOUT RESIDUAL STRESSES
The structural system to be considered is shown in Fig. 6. For
the y and & ccordinate system shown in the figure, w and v are defined

as the radial and the tangential displacements, respectively.

Potential Energy Expression.

The strain energy of the ring is given by
EbR ¢p 2
U:—-é-“‘ewdzpdy (28)

in which b = width of the ring; and e(p = the strain in the tangential

direction. Expressing the strain, GW as

€ =6 +yK 2
@ y (29)
where € = strain at the neutral axis; ¥ = curvature change; and y = dis-

tance from the neutral axis; and substituting into Eq. 28 yields after

simplification

U= EEE L jznt dp + IZW = KZ (%)
o]

It is convenient at this time to introduce a notation which will be
useful at a later stage when the effect of residual stresses in the ring

will be considered. The strain energy function may be written as

2 2 2 3 ;
U = EbR/Z {Ae + BeK + CK" + De + FK + Gy do (31)
O
The constants, A, B, C, D, F, and G are a direct result of the integra-
tion of a generalized energy expression in terms of € and X with respect
to the radial coordinate, y. For the ring problem this integration

results in the values
A=t,B=0,C= t3/12 and D= F=G=0
The next step in the strain energy formulation is the introduction

of the desired set of kinematic relations. For a ring, several sets of

kinematic relations are available. Using Donnell equations %)

and (32)

into Eq. 30 yields the expression for the strain energy

T 20 2

in which ( )" =d ()/ d o,

U= EbR {tL
Q

The expression for the potential energy of external loads used in
the ring problem is based on the Donnell assumption that the magnitude
and direction of the loading remain constant during deformation. On this
basis, the potential energy of external loads, i.e., pressure p, may be

expressed as a linear function by
Q=R IZ" - pw d @ (34)
[}

The total potential energy is then given by the sum of Eqs. 33 and 34

to yield

(£35)

Second Variation

To construct the second variation of the potential energy it is
necessary to replace the displacement terms v and w in Eq. 35 with
(vo + Vl) and @o + ul), respectively; in which v and wj correspond to
the equilibrium configuration of the unbuckled ring, gnd vy and w, are
infinitesimal incremental displacements from that equilibrium position.
This replacement yields the total change in the potential energy; and
that part of the total change which is quadratic in the incremental dis-

placements is the desired variatioen, which is given by
3
1,2 EbR]'Z[tr 2 .1 ,2] t [.2]}
56V (v - e g LA (Hl) + I;;K (wl) dp (36)

Limit of Positive Definiteness - Stability Equations

The criterion for the limit of positive-definiteness of a functional
such as that in Eq. 3 is attributed to Trefftz (13). It consists of
determining that value of pressure, p, for which AZV is stationary in
some particular vy and W To establish the desired relationship it is
then necessary to apply the criterion & (62V) = 0. This is equivalent to
the requirement that the variables involved satisfy the appropriate Euler
equations arising from the caloulus of variations.

For a functiqnal such as that in Eq. 36 with two dependent and one
independent variables, the Euler equations are of the form

AF 4 (dF
S " xq)=°

4 (EN, & (R
T dp (ﬁ:;/ dcpa \'k_"l") =

37)

¥
5
-

in which T is the expression within the brackets {} in Eq. 36. Per-
torming the above operations yields the stability equations
’ o
(vl - wl) =0

and . v 8
(vl

HO
Sw)

Critical Buckling Load

Assuming the displacements vy and wy in the post buckled ring as
v, = S sin (np) and w =T cos (n®) where S and T are arbitrary con-
stants and n is the buckling mode, i.e., n = 2, 3, 4 ...; Eq. 38 leads
to the stability equations

sin (ng) [S (-n%) + T (0] =

(39)
cos (no) [S (n) + T (-1 -n" w /R - 2212897 = 0

The non-trivial solution of these equations is determined by setting the
determinant of the coefficients of S and T equal to zero. Expanding the
determinant and noting that W, = —pRa/Et leads tq the value of the critical

buckling pressure

2 3
E(t7/12)
Per = —+R (40)

This equation varies slightly from the classical buckling solution for
the ring problem in which the buckling mode factor, nz, is replaced by
(n2 - 1). This modification results directly from the use of the Donnell

kinematic relations (BEq, 32) which are simplified strain-displacement

relations based upon the assumption of a large number of circumferential



waves, The buckling pressure given by Eq. 40 for n = 2 is obtained by
multiplying with a factor of 0.75. The results due to the Donnell equa-
tions are generally less than 10 per cent in error for rings that buckle
with three circumferential waves (4). Therefore, for the lowest buckling
mode possible for the ring, i.e., for n = 2, the critical preasure is
given by

Pop = 3 EL/E (41)

where [ = t}/12.

RING WITH RESIDUAL STRESSES

Structural systems with plastic deformations are non-conservative
and, therefore, must be analyzed by developing a modified potential
energy function which includes the irreversible snergy expended in
plastic deformations.

The general form of the modified potential energy function is
given as (6)

V=U=+0+1U* (42)
in which V = total potential energy; U = elastic strain energy; QO =
potential energy of external loadsi and U* = plastic strain energy.

Depending on the R/t ratio of a given ring, buckling may ocour in any
one of the three cases discussed earlier. For large values of the R/t
ratio the ring buckles as in Case a) and the entire section remains
eiastic. In this case, the strain energy is given by Eq. 28, the
total potential energy remains independent of the residual streses
pattern and the buckling load is given by Eq, 41. However, for rings
which 4o not buckle i1n accordance with Case a), the strain energy and
hence the total potential energy, become functions of the residual

ot

in the ring. The amount of strain energy stored per unit
volure at a point, which is elastic before the application of pressure
p and plastic afterwards, is given by the shaded area in Fig. 7 and

can te expressed for a volume V as

L1t
=5 (oy - aR)(Z% + € - ey) dv (43)
v
in which g = residual stress, € = additional strain, €p = residual

strain and Ey = yieid strain.

It is obvious that the extent of yielding in a ring is dependent
“pot the magnitude of the external pressure. In addition, the constants
Ay By C, Uy F, and G in the generalized energy expression, Eq. 31, be-

come functions of the residual stress pattern. The determination of

the buckling pressure then becomes a trial and error procedure. The

desired solution is achieved when the pressure assumed to establish a

o /

o

€

’
/
/

/

€ ‘ €¢

Fig. 7 - Stress - Strain Diagram -- Elagtic - Plastic Fibers
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particular set of constants A, B, etc. leads to a value of the critical
buckling pressure equal to this assumed value.,

The fundemental step in the above process is the determination of
a set of coefficients and the associated buckling equation as a funce
tion of a given external pressure. This procedure may be generalized
for the three cases by using the stress block for Case c), as shown
in Fig. 5b, along with judicious choice of the respective limits on
distances You y} and vy of Fig. 5. The essential elements of the
stress block of Case c), insofar as the buckling problem is concerned,
are given in Fig. 8 in which the distance Yna locates that particular
fiber for which no extensional strain results from the bending action
in the buckling process. For the elastic-perfectly plastic material,
the only portion of the cross section available to resist the bending
action during buckling is the remaining elastic portion (9). This

leads to the location of the neutral axis which is given by

Ypa * (l/te)[y,_‘ (y1 +y,/2) + ye(yl - ¥,/2) + yj(y/2 - 0)] (hb)

where te = Yo + Y3 + ¥,. In general, the other distances in Fig. 8 are

defined by Y= y Ypg hich yields

L Ul Y Yy =¥ - Yo - Y,

Y, =¥ + Yo = -

2=y s Y5 =¥ YAy - Yy, (45)
V3= ¥ = Ypa Y6 = ¢ = Ypa

Potential Energy Function
The strain energy ¢f the elastic portions of a cross section is

given by Eq. 28 which for Fig. 8 becomes

Yin

2 -
<, dep dy (46)

2n

EbR

Ui=TI
0

<t

i
in which i is the subscript denoting the zone under consideration. Sub-

stituting for € from Eq. 29 into Eq. 46 leads to the generalized form

_ 2 2

Ui_J.z“{Aic +BicK+CiK}M (472
0

in which Ai = yi+l, i Bi = yi+1,i H Ci = and the dot quan-

tities are defined by

Y, = Y - F

2 -—
Vg o= @0 . (yi)2 (48)

1 - -
and Yag = 506,07 - G%)

The generalized constants introduced in Eq. 47 are all smeen to arise

directly from integration within each zone on the parameter ¥,
18 .




The strain energy of the plastic portions is obtained from Eq. 43,

in which substitutions of cy, ogs and cm and integration within appro-

priate limits yields

LI Jz"{ni €+ F K+ Gi} dep (49)
0
[~ ~ =
where D1 = ZLyi+L,i (ey - bi/E) - y1+l,i (mi/ZE)]
s ~ =
Fyo= Wia,s Oy - 0/B =25, (mi/E)]

and Gl = a constant

~
The constants m and bi define the residual stresses in zone i according
to the relation
_ ~
Opy =M Y+ bi
The value of each constant is evaluated on the basis of Fig., 2c and Eq. 9.
With the potential energy of the external loads and the kinematic
relations defined by Egs. 34 and 32, respectively, the total potential

energy function is constructed from Eq, 42 in the following form

2.2 2
EbRJ { = .];(i:) B rw_]
V=73 AT IR J*CLRZ

ne ”
+ % (T) j] + F [;—2] + G - pr/Eb} do (50)

where A = EAl N

Egquilibrium Equations
The most direct wuy to ohtain the equilibrium equations is to
minimize the expressicn in Eq. 50 with respect to both of the dis-

placement parameters v and w through the Euler equations given in

Eq. 37 which leads to
{ 2Ae D)'
G rR) =0 (51)
v
[ihe D op 2ae D1’ f2cw” F\
ana (S B (2L D)} 2w 22

The braced } tern. in Eq. 52 represents the derivative of a product.

Since the derivative of the second term thereof is equal to zero as
per Eq. 51, the derivative of the entire product becomes
N
Ny rwtg [28e | 2]
dx LR R

and Eq. 5& reduaces to the form

v

-
_2A542+%§]_[2£t*2][wn ’2c2u

=0 (53)
LR R R 2

Of particular interest is the solution of the above equation for the pre-
buckled axi-symmetric case. For this condition all derivatives of the

radial displacement, w, are equal teo zero and the hoop strain ¢ equals

wo/R. Eq. 53 then reduces to
2 Aw
2p °,2 (s4)
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Critical Buckling Pressure -- PCr

The expression for the second variation of the potential energy
function, Eq. 50, containing only terms which are quadratic in the infi-

nitesimal post buckling displacements, vy and ¥ is given as
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As before, the limit of pomitive definiteness is determined by the
application of the Euler equations, Eq. 37, the the braced{}

quantities in Eq. 55 to yield the stability equations
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The non-trivial solution of these equations is obtained in a similar
manner as described before for rings with no residual stresses. The value
of B in Eq. 56 is always zero, based on the definition of the neutral-
axis given in Eq. 44, This fact and the substitution of Eq. 54 in the

above mentioned procedure yields

P -nE Ie/R3' (57)

or
in which Ie = moment of inertia of the elastic portion of the ring cross-

section. Finally, the above equation is reduced tp the form of Eq. 41 by

2

replacing n2 with n"-1 and using the buckling mode corresponding to na2

to yield

- 3
P =3EI/R (58)

RESULTS

CGomputer Program

As mentioned earlier, the solution for the buckling load of the
cold-formed ring is obtained by a trial and error procedure. The buckling
strength of the ring becomes a function of its physical dimensions, the
elastic modulus and the yield strength of the material. In order to
compute the buckling strength over a wide range of these paruameters, a
computer program was developed.

The basic logic flowchart of the program used is given in Fig. 9.
As indicated in the flowchart, the basic eclements of the program are the

four subroutines, ESTABLISH, CRITPRES, INTERPLT, and SIGMAPHI, and the

input-output features.

START

Input:
Radius
Thickness

Yierld Stress

Subro-tine
CRATEFRLD

Define residual stress
pattern and establish zone
of buckling and initial
interpolation vialues

routine

ABLiSH

Subroutine
51GMAPHI

Interpolate within appropriate

Sl 35 ut
case to critical pressure ubroutine

INTERPLT

subroutine

AQJ CH1TPRES

[7 Qut put

STOP

Fig. 9 - Logic Flowchart of the Computer Program



The first subroutins indicated, ESTABLISH, hae several functions.
It defines the initial residual atresa pattern based on the geometry and
the yield stress. Further, it establishes the particuler case for which
buckling occurs in the ring. This is accomplished by solving for the
critical buckling load with CRITPRES at the respective limits of each
case as given by Eqs. 13, 18 and 22. Buckling occurs in that case for
which Pcr (L.L.) > P,

.L.) = th itical
and Pcr(U'L') < PU where Pcr(L L.) e critic

L L
pressure as a function of the lower limit pressure; PLL = lower limit
pressure; Pcr(U.L) = the critical pressure as a function of the upper
limit pressure; and PUL = upper limit pressure. This provides the re-
quired starting values for the interpolation process within the appro-
priate case.

On the basis of the ring geometry, material properties and the
value of Oy evaluated by Egs, 10, 12, 16, 20 and 24, subroutine
CRITPRES solves for the critical buckling pressure. The major steps
in the computation are: (1) the determination of the elastic-plastic
interfaces, Eqs. 14, 15 and 21; (2) the calculation of the neutral axis
and the corresponding y dimensions, Eqs. 44 and 45; (3) the evalyation of
the constants, Eq. 50; and (4) the computation of the critical pressure,

The function of subroutine INTERPLT is to interpolate within the
appropriate zone until the computed buckling pressure matches the ini-
tially assumed pressure., The interpolation technique is a variation of
the "Secant Method" known as the "Method of False Position" (3). In
general, this interpolation routine needed fewer than five iterations
to achieve convergence to within one-tenth of one per cent.

Finally, the purpose of subroutine SIGMAPHI is to evaluate the
vajue of CQ from either of the Egs. 10, 20, or zh.

The required input for the program are the radius and thickness of
the ring and the yield stress of the material. The Young's Modulus is

defined within the program as %0 x 106 psi.

Numerical Data

Given in Fig. 10 are the curves representing the buckling strengths

of rings as computea on the basis of the theory presented hereir. The
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Fig. 10 - Buckling Stresses of Cald - Formed Cylindrical Rings

R/t ratios are presented on a logrithmic scale and cover a range of five

bto fifty. Separate curves are drawn for each of the commonly specified

yield strengths of steel. In all cases, the ordinate o, is defined
on the basis of the nominsl hoop stress in the ring as computed by the

thin-ring hoop stress formula = pR/t. The dashed curve to the

o
[
right represents the elastic buckling curve for the ring.

CQNCLUSIONS

From the results in Fig. 10, it is evident that the residual stresses
developed during the rolling process of a cold-formed circular ring
account for a significant reduction in the buckling strength. However,
in the evaluation and the application of these results, a particular
limitation of the theory as preszented must be considered,

All of the stress distributions have been developed on the basis
of the thin ring theory, i.e., that the applied external pressure
results in a uniform stress distribution through the thickness. With
reference to the theory of thick rings, the per cent error in the extreme
fiber stresses due to the assumption of uniform stress distribution ranges
from 2 to 5 per cent for R/t ratios of 20 to 10. For an R/t value of 15,
for which the effect of the residual stress is greatest, the maximum
error in the prebuckled state of stress due to the above assumpt‘:ion is of
the order of 3 per cent. In addition, the following conclusions can be
madet
1. The buckling strength of a cold-formed ring is unaffected by the
resulting presence of residual st_resses for R/t ratios of 25 or greater.
2, The maximum reduction in the buckling strength occurs in the R/t
range of 12 to 15 and is of the order of magnitude of thirty-five per
cent.,

. The theory presented is sufficiently accurate for engineering or
design purposes to evaluate the buckling strengths of cold-formed rings

with an R/t ratio of 10 or greater.

APPENDIX I - REFERENCES

1. Beedle, L. S. and Tall, L., "Basic Column Strength", Journal of

thgoStructural Division, Proceedings, ASCE, 86, No, ST 7, July,
1960.

2. Bleich, F., Bucklins Btrength of Metal Structures, McGraw-Hill,
New York, 1952,

3. Conte, S. D., Elementary Numerical Analysis, McGraw-Hill, New
York, 1965.

4, Donnell, L. H., "Stability of Thin Walled Tubes Under Torsion",
NACA TR 479, 1933,

S. Gjeq.svik, A., and Bodner, S. R., "Buckling of an Elastic-Plastic
Cylinder Subjected to External Pressure and Heating", Proceedings

gfsghe Fourth U. S. National Congress of Applied Mechanics, ASME,
9ba.

6. Horne, M. R s "Stabilit i i g
H « R, y of Elastic-Plastic Structures" Progresas
in Solid Mechanics, Vol. II, edited by Sneddon, I.N. am'i Hill, R.,
North-Holland Publishing Co., Amsterdam, 1961,

7. Huber, A. W, and Beedle, L. S., "Residual Stress

and the Compressive
Strength of Steel™, The Welding Journal, 33, 1954 P

8. Langhaar, H, L. Fnergx Methods in Applied Mechanics, Wile New
+ + ley,

9. 0Osgood, W. R., "The Effect of Residusl St
Proceedings -'1at 0.5, Teases on Column Btrength,

oo National Congress in Applied Mechanics, ASME,

10. 8 1. + R
S}c‘::nz;,rlgll;%' "Inelastic Column Theory", Journal of the Aeronautical
11. Tao, L. C., and Gjelavik, A., "Stabilit
. ¥y of Heated Elastic.Plastic
Column", Journal of the Enginnri Mechanice Di
vision
BM5, Proc. Paper 6849, P- 1169-1;58, 1969, onn A3CE, Vel. 95,

12, Timoshenko, 8. and Gere, J, M., Theo

m f K
edition, McGraw-Hill, New York, 1 N 2 tio Stabilie + Znd



13.

14,

A, B,

A
e

b

o>

Trefftz, E,,"Zur,Theorie der Stabilit¥t des Elastischen Gleichgewichts,!
Z,Angew. Math. Mech., 13, 160-165, 1933,

Yang, C. H., Beedle, L. S. and Johnston, B. G., "Residual Stress and
the Yield Strength of Steel Beams', The Welding Journal, 31, 1952.

APPENDIX II - NOTATION

¢, b, F, G, = constants of integration

u

area of elastic portion of cross-section

width of ring

#

= residual stress constant

half-thickness of ring
= modulus of elasticity

moment of inertia

moment of intertia of elastic portion

n

= constraining moment

= slope of residual stress distribution
= normal stress resultant

limiting stress resultant for Case i)

i

buckling mode

radial pressure

n

= critical buckling pressure

limiting pressure for Case i)
= radius of ring
= arbitrary constants

thickness of ring

[

thickness of elastic portion of ring

= elastic strain energy
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plastic strain energy

total potential energy

displacement in circumferential direction,
its value in equilibrium configuration and &

small increment

displacement in radial direction, its value in
equilibrium configuration and a small increment

radial coordinate

value of y at point i

upper limit of bA for Case j)
distance of point i from neutral axis

location of neutral axis

intermediate variables

change in total potential energy

curvature change to constrained position
curvature change during springback

strain at neutral axis

strains in constrained position, springback, at
initial yield and in circumferential direction,
respectively.

curvature change

work energy

circumferential coordinate

curvature, its final and initial values

yield,circumferential and residual stress,
respectively

residual stress at extreme fiber and at yl,
respectively

extreme fiber stress during springback
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