MISSOURI
s Missouri University of Science and Technology

Scholars' Mine

International Specialty Conference on Cold- (1973) - 2nd International Specialty Conference
Formed Steel Structures on Cold-Formed Steel Structures

Oct 22nd, 12:00 AM

Dynamic Response of Thin-walled Beams

Rodney L. Dreisbach
Martin L. Moody

James K. lverson

Follow this and additional works at: https://scholarsmine.mst.edu/isccss

b Part of the Structural Engineering Commons

Recommended Citation

Dreisbach, Rodney L.; Moody, Martin L.; and lverson, James K., "Dynamic Response of Thin-walled Beams'
(1973). International Specialty Conference on Cold-Formed Steel Structures. 4.
https://scholarsmine.mst.edu/isccss/2iccfss/2iccfss-session3/4

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in International Specialty Conference on Cold-Formed Steel Structures by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.


http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/isccss
https://scholarsmine.mst.edu/isccss
https://scholarsmine.mst.edu/isccss/2iccfss
https://scholarsmine.mst.edu/isccss/2iccfss
https://scholarsmine.mst.edu/isccss?utm_source=scholarsmine.mst.edu%2Fisccss%2F2iccfss%2F2iccfss-session3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/256?utm_source=scholarsmine.mst.edu%2Fisccss%2F2iccfss%2F2iccfss-session3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/isccss/2iccfss/2iccfss-session3/4?utm_source=scholarsmine.mst.edu%2Fisccss%2F2iccfss%2F2iccfss-session3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

DYNAMIC RESPONSE OF THIN-WALLED BEAMS
By
Redney L. Dreisbach!, A.M. ASCE,
Martin L. Moody?, M. ASCE, and

James K. Iverson®, M. ASCE
INTRODUCTION

The economy and light weight of flexural members of light gage cold-formed
Steel has resulted in theip increased use throughout industry. If the cross-
section is closed, as in standard square and round pipe, torsional rigidity is
high and secondary torsional-flexural coupling is of little concern. However,
if the cross-section is open, as in the channel, zee and angle sections, flexural-
worsional coupling may contribute to buckling and excessive deflections (18)".
This type of member is often used where dynamic machine loads are encountered,
bt because of the complexity of dynamic analysis little guidance is available
0 the designer ag to the importance of the cross-section parameters such as
“orsional rigidsey, warping rigidity or ratio of bending stiffnesses. Parametric
flex""alhtwsional coupling and inertial effects may lead to buckling in such

be % .
s loaded dynamically parallel to a nonsymmetric axis, even if the extermal

loagd .
Passes through the shear center so as to cause no torsion.
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This paper presents an investigation of the dynamic response of such bears
with an open thin-walled shape. Torsional-flexural coupling is considered.
The beam is assumed to be slender, elastic, uniform in cross-section, simply
supported and local buckling is assumed to be negligible. Loading is a sunusoids

force at midspan. Various geometric, and material parameters are studied to

determine their effect on beam deflections.

The method of analysis is presented in the following sections. The
governing equations of motion are uncoupled using Budnov-Galerkin's method and
numerical integration was accomplished on a CDC 6400 computer to determine
displacements.

The general theory regarding the strength and stability of thin-walled
members was derived by Goodier (5,6), Timoshenko (13), Viasov (17), and others.
Vibrations of thin-walled bars and beams has been discussed by Viasov (17),

Gere (3), Gere and Lin (4), and Tso (15, 16). The parametric excitation

phenomena in the dynamic stability of such members has been studied by Bolotin
EL)
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GOVERNING EQUATIONS OF MOTION

Consider the portion of a uniform thin-walled member with an asymmetrical,

open cross-section shown in Fig. 1. The triad of axes, x., X., and Xgs is taken

1I: 2

3s a Lagrangian reference frame whose origin is considered to be fixed at point
0, which is the shear center of the section, at one end of the beam. Axes X
ad x, are parallel to the principal axes of the cross-section, and X, is the
longitudinal axis of the beam. Axes ;(J.’ >'<2, and ;(3 form an Eulerian reference

frame, at a distance %y from the end of the beam, which translates and rotates
With the cross-section. The moving frame is oriented such that ;‘l .emti“x2 are
alvays parallel to the principal axes of the section. The centroid C of the

Sections is located by the coordinates (Cl’c2) relative to the x,-x, axes or

the il'xz axes.

A general section defined by the coordinate x, can move to a new position
3 illustrated in Fig. 2 in which positive displacements are shown. Translations
°f the shear center are depicted by u, (x,) and u,(x,). Angular displacement o5
the section is denoted by ¢(x3). Positive internal stress resultants Ei:
(i = 1,2,...86), relative to the moving reference system at an arbitrary, dis-
Placed section are shown in Fig. 2. These forces and moments are located in a
TeMREr such that {Ei} is a generalized force system.

To describe the general flexural-torsional response of a thin-walled beam,

thr s . :
e equations are employed. Bending effects in two orthogonal directions are

accoy
fted for by the moment-curvature equations
1" L (1)
EL My = Py

1" e
i Bl
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in which E is the modulus of elasticity, 1, and I, are the principal moments of

1
inertia of the cross section, ﬁu and 55 are the internal bending moments, and
primes denote differentiation with respect to Ry The nonuniform torgue-twist

equation (14) is

‘Bc ¢m_GJ ¢I-‘,(_J_c,f_z __ z)¢'=- (3)
W e P3gp" Py T Pg % Pg

in which Cy is the warping coefficient, G is the shearing modulus of elasticity,
d is St. Venant's torsional constant, A is the cross-sectional area, J is the
polar moment of inertia of A relative to the shear center axis, 53 is the axial
axis, and Z. and Z, are constants

3 1 2
which depend on geometric properties of the section given by

load, 56 is the internal torque about the x

J.€

1 2 1 2 o 2 )
2, = = [ R*(x,-C ) dA = =~ [ R’k dA - =22 (&
17T 4, 2 72 I, A" "2 I,
ik 2 sk 2 Jocl 5)
2y 2 [AR (%,-C,) da = + [ R x, dA - == (
2 2 2
; 7 2 2 2
hich = (8)
in whic R xl + x2

For a dynamic loading condition, the internal force system at any section

can be considered to be composed of two contributions so that
p. = E. + g, (i = 1525:%:6) )

That is, ﬁi is composed of forces and moments due to (?i) the externally applied

loads, and (éi) the inertial loads. Employing d'Alembert's principle of dynamics
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and differentiating Eqs., 1, 2, and 3 approximately results in the following

lirear system of equations:

2 "
EIlu2 = £ !'n(u2 + cl¢J (8a)
LN N = o (8b)
ELu, =t m(ul - C,%)
- Jo - - "
T ' vo _ 7 0
Ecw¢* GJ ¢'" + [(f3 i f572)¢ ]
= £+ m{Cili, - C.%. = i%} (8c)
T~ Y oy T Py TR

The rass per unit length of the beam, which is considered to be uniform, is

d S 2 .
fioted by m, and dots above a function indicate differentiation with respect

0 time,

sMcentrated Load on 3 Simple Beam. -- The particular mathematical model for

which . .
< responge data are presented is shown by Fig. 3. A constant-directicn,

C"I'.I{:e .
Tentrated force, P, at midspan, designated by point "a", of a simply sup-

¥rted bean jg investigated. The load is considered to act in the direction
i *] 3Xis. For a general loading condition, the principle of superposition
*f forces fan, of course, be utilized,

The kinematic and dynamic boundary conditions for the simple supports are

lefineg by

ul(c) = uz{o) = $(0) = ulu_) = ug(z) =9(2) =0 (9a)

(9b)

4(0) = wi(o) = ¢m(0) = uf(R) = u(e) = 9"(2) = 0
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where Lis the length of the beam. The location of P relative to the shear center

| is specified by the El-ig coordinates (xi,xg).
Allowing the beam to take on a general deformed configuration and employing

\matrix methods of structural mechanics (7), the internal force system due to

the external load can be conveniently expressed. Singularity functions expressed

by the Clebsch-Macauley method (9,10) are employed.

Thus, the external, time-dependent load can be represented by
_%—1

| q=F <Ry

|where the shorthand nctation

£ .
| <x3—§an AR (n = integer)

[#ill be adepted in this paper. This is equivalent to the Dirac Delta function

forn = -1,

Substituting the necessary expressions fop the internal forces into

|Eas. B8 leads to the three, coupled, fourth-orden, linear, variable coefficient,

nonhomogeneous, partial differential equations as follows:

| - i = _P o, @ - " 1.2 -1
ET uy 5{(Clul uy KQ)xl 2(1+2Clu1-2u%x2) < >713 . m(ul_cza)

wi - E O 1" e, & " "
| ELjup" = gl(2¢7-uy xy-uy'c )x, + ¢ Xy = 2(4-2ufx,-2ute,) < >-1] - m(U,+C, §)

neo_ " P ' " ' (]
| EGST TG00 = L2 0ng + 2,00k - 2009 ) < 51
JO
. + m(C,,~C, U --2g)
o

|in which X) = l1-~2<3>

= _ o
Xg = Mgg T Uy *on,

(10)

(11)

(12a)

(12b)

(12¢)

(13a)

(13b)
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5 o 1 4
= = < >
Xg = Ry - 2 (13¢)
and 02a is the displacement of the shear center at midspan in the Xy direction.
‘fe external force P is harmonic with a frequency of w.
Elimination of the external load terms in Eqs. 12 leads to Gere's form
of linear free-vibration equations of motion for coupled bending and nonuniform

torsion (4).

SOLUTION OF ZQUATIONS OF MOTION
Separation of the time and spatial coordinates involved in Egs. 12 is
iccomplished by using the Bubnov-Galerkin averaging technigue (8). Approximate

soluti :
1ons ef these equations can be expressed as

i 1'1?1’)!3 (]_14 )
- 4 . a
ul(xs,t) = ELZ nln(n) sin—
=
i
jcrxs
_ ; (1ub)
uQ(xa,t) = ﬂ-z nzj(t) sin—
j=1
N
kwx
; 3
oxgt) = ) g (t)  sing (14c)

k=1

= whi : : :
ich the dimensionless functions of time, nij’(i = 1,0, 478 14250.-N)s

ire th . 3
® Beneralized coordinates which are undetermined. The chosen spatial

..
-4nct = .us *
ons are linearly independent and satisfy the boundary conditions given

Xy Ecs, + : : 2
#+ 9. Each of the N spatial functions or mode shapes in each of the

erieg o - %
FEQs. 14 represents a degree of freedom. Multimode solutions of the

gc"’&}"n"n . = -
"€ fquations have been obtained by the senior author (2). It was de

#7ineg s i 1
that for the problem under investigation, the first term 1n the series
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of Eqs. 14, a single-mode solution, was adequate in predicting the response of
the system. Thus, fundamental-mode solutions are presented and discussed in
this writing, and the generalized coordinates become n i Ji= 1,243).

Since the assumed approximate solutions are unlikely to satisfy the complex
equations identically, substitution of the first term in each of Egs. 14 into

Egs. 12 yields three equations which are not equal to zero but to some respective

residual Re(ji). (f = I,ITI,ITI). In accordance with the averaging technique, the

following equations evolve:

2 3 - = (15)
fo R (3) sin—= dx, = 0 (3=1,I1,I1I)

This procedure yields three, coupled, second-order, ordinary differential equa-
tions with time as the independent variable.

To manipulate the resulting equations more easily, certain dimensionless

system parameters are introduced as follow:

c c
4=, 4 =2
C GJ
c*:-—-*-—- E‘= e
w 2! $
121 512
1 J
1":-—"‘. . Jk = 2 (16)
I M2'
o o
xo*l:‘—l.. ok x2
A VI e e
z Z
b 2
: ] i
e Bt o

(16 cont'd:)
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W w w w

wk = = —FTNI7 = — 3
Bl 94 1/2 mB? Wpo (1)2 12 1/2

( ) 2 m

Ef w 0 1/2
k& = [cr + BN, i 110 < L

W "2 T3 wTG B2 X
£2
® = . # = P
T wBQt P <W2£I ) I
2

% = PR sin(wk T
Pt P SJ‘“(“’BET)

The time-dependent, external force, P%, is considered in the following to be

4 sinusoidal function of time as indicated above. The second-order

icceleration equations can be uncoupled by considering the equations as

“eing algebraic ip nature and by using Cramer's rule of mathematics, This leads
i the following three, coupled, second-order, linear, variable coefficient,

T . . . 1 .
onhomogeneous , ordinary differential equations in matrix form:

H a_onl _CiCE # lery)
fiy a-cy®)  -cies of i‘
1
o' = —ctey oD -og|  [(12)] Qan
172, P R 12 o ‘
5 ! 8 % 1 (T3),
iy . 3 =53 ]
in which
(18a)
(T1) = - -QP* Qi _xo n,———
i [Cfnyxp 21T?. J
®
= o 1. 1 (18b)
(12) = ~T¥n,-upt [(Cgmz )nf(ﬁ?}%]
(18¢c)
(T3) = ks —P* n, +(z*+—-x }n ]
LTS r‘|2 3
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The system of equations is now dyna.ﬁ'lically uncoupled. However, it remains
statically coupled as can be noted by the expressions for (T1), (T2) and (T3)
in Egs. 17.

By defining appropriate new variables, these equations can be reduced to
a system of first-order, ordinary differential equatioms. Hamming's modified

predictor-corrector method (11, 12) was adopted to integrate the equations

numerically.

RESULTS
The parameter studies presented here were made for cross-sections such as

channels and zees which are symmetric about one axis (taken as the X, axis here),

hence C‘i and Z\Ji_ are zero. The external sinusoidal force P* was located at the

span centerline acting parallel to the x, axis and fixed to act through the

shear center (xi’ and x;* equal zero). P* yas taken as having a maximum magni-
tude of 0.06 of the Euler buckling load for the beam as an axially loaded member .
Initial displacements and velocities were set atzero.

The system was assumed to have become unstable if the dimensionless dis-
placement variables n, or n, reached 0.2 or if Ny reached 0.3, This defines
instability as occurring when the translation of any point veached 0.2 of the

span or when rotation exceeded approximately 17 degrees.

Parameters Used in the Study. -- The particular class of beams as outlined above

was studied, thus CE. PR, xi*. x;* and zg‘; are specified constants and are

not varied. Seven other parameters were studied over a range of values as outlined
in Table 1. These values were picked to represent a range encountered in channel

and zee shapes. The parameter "’%2 which was chosen to determine the frequency

of the midspan dynamic force was set at two values, 1.2 and 2.0.
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TABLE 1. -~ SELECTED VALUES OF DIMENSIONLESS PARAMETERS
a8
Parapeter Range of Parameter Mean Value
m il )3 (3) J.
%
¥ 0.0 0.0
c5 0.9 - 0.025 0.01H
ci 0.0 - 0.005 0.003
E# 0.001 - 0.015 0.008
L 0.03 ~ 0.14 0.085
2 0.001 - 0.025 0.014
P 0.0 0.06
o%
By 0.0 0.0
o
) 0.0 0.0
2% 0.0 - 0.015 0.008
zg 0.0 0.0
B |
“p
arameters with no range in magnitude were specified
by the associated constants listed in the mean-value
column,
—_—

211
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The studies were conducted by setting all parameters at their mean value
and then studying beam displacements with a single parameter set at maximum,

then at mean, and then at minimum value. This was done independently for each

= ide
of the parameters, and for the two values of wj},. Since the intent was to provi

guidance as to relative effects of each of these parameters, a simplified pre”

sentation of presults is used. The responses of the beam with the study parameter

set at its various values and with other parameters at mean value are compared:
Each of the three displacement parameters were individually compared and the
range of the effect was noted as follows:

no effect = (--) = 5% or less difference,

slight effect = (-)

significant effect = (4)

20% or less difference,

100% difference,
very significant effect = (++)

the system becomes unstable.
The results are summarized in Table 2.

One significant result can be noted in the lower line of this table:
zg the geometric parameter derived from torsional-flexural coupling has no
effect for either loading condition or for any displacement and could be ignored
throughout the problem.

J%, representing the polar moment of inertia, seems to have the most

significant effect and its variation leads to instability of the rotational
displacement at minimm parameter values.

C4, representing the distance from the centroid to the shear center of the

cross-section, will be a direct measure of the inertial force moment arm about
the shear center and has significant effect since at its minimum value (moment

arm 0.0), rotational and translation displacements in the x, direction will be
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TABLE 2. — EFFECT OF VARIOUS VALUES OF PARAMLCTERS AT

SELECTED FORCING FREQUENCIES ON RESPONSE DATA®

———
[ —

VARIATION n
2
OF wk = % = % = % = %=1, wk =2.0
i Y2 wBZ 2.0 mBZ 1.2 mBQ 2.0 wB? 1i2 B0
1) (2) (3) (4) (s) (6) (7
% + + + + + +
£
Cw = - + - + +
E% = L _ — + -
1* + —= ++ + + ]
s + ” + % ++ ++
Z# —_—
l - - " - -
!
e o)

aThe effects on the response
(--) = essentially none, (-)

and (++) = very significant.

data are denoted as follows:

z slight, (+) = significant,

213
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zero and the problem is reduced to plane bending, and as C?‘, is increased, inertial
torsional moment increases directly.

I%, the ratio of bending stiffnesses has significant effect and leads to
instability in the direct translation displacement at low parameter values, when
the loading frequency approaches the fundamental bending frequency of the bean.
This would generally be expected. CX, the torsional varping stiffness parameter,
and E*, the St. Venants torsional stiffness parameter, have significant effect,
primarily on the rotational displacement, although a significant coupling
effect on translational displacements is noted. No instability results for
the range of values studied for these parameters.

This investigation has not studied the effects of joint variation of para~
meters in the inmumerable combinations possible and the response is limited
consideration of the displacements of the centerspan cross-section for shear

center transverse translations and cross-section rotation. This ignores local

buckling and similar localized displacements. The forcing function frequency

parameter was chosen based on the fundamental beam frequency in the stiffest
bending direction and, since coupling effects are emphasized, a study with the
frequency related to the weak axis bending frequency and the torsional freguency

would be considered appropriate for future investigation.

SUMMARY AND CONCLUSIONS
An investigation of the effect of certain gecmetric-material parameters on

the dynamic response of beams with thin-walled, open, monosymmetric cross-gections

has been presented. Torsional-flexural coupling was considered and the con-

centrated, sinusoidal force at midspan was taken as acting through the shear

center so as to produce no direct torsion and to emphasize parametrically

induced displacements.
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It was found that the geometric parameter Z relating to flexural-torsional
coupling has little effect and probably could be ignored. The product of
inertia was found to have considerable effect in the range of values studied and
led to torsiomal instability at minimum values. The torsional stiffness,
torsion-warping stiffness and ratio of bending stiffnesses have significant
effects and all are considered important in limiting cases. The distance between
the shear center and centroid was found to be significant and should be kept to
a minimum. The frequency of the dynamic force has considerable effect as it
approaches the fundamental beam frequency with low bending stiffness in the
beam,

The study provides guidance to the designer and analyst working with problems

of this general type.
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APPENDIX II. — NOTATION

The following symbols are used in this paper:

e.ct

172

EN
Cl,C,2

E®

Ei(i=1,2,...a)

§1(1=1,2,...s)

¥

L1

[

a point at midspand of member where P is applied:

cross-sectional area;

undisplaced and displaced centroid-of cross section, respectively;

- = " r ivelys;
coordinates of centroid in the x -x, or X;-X, directions, respectivelyi

ratios of C. and C

1 2

warping torsional constant;

to &, respectively;

2
ratio of Cu to (121 ¥
Young's modulus;

ratio of (GJe) to (EIZ)"

components of 5 , i=1,2,...6, respectively, due to the
externally applied loads;

components of p., i=1,2,...6, respectively, due to the
inertial loads;

shearing modulus;
integer index;

second principal moments of intertia of Aj;

ratio of Il to 12',

integer index;

St. Venant's torsional constant;
polar moment of inertia of A about Xq3
ratio of JD to (M.z);

integer index;

E*
[Cﬁ * F])



m
n,N

0,0'

p,(i21,2,...6)

P

P

t
TH

(Tl),(TE),{T3)

i
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APPENDIX II. — NOTATION (Continued)

length of member;
mass per unit length of the member;
integer;

undisplaced and displaced shear center of cross section;
respectively;

219

equivalent, generalized force system composed of three forces

and three moments associated with il—EQ-xa;

constant-direction, time-dependent, concentrated load;
. 2 2

ratio of P to the Fuler buckling load, (u EIQ/E Y5

P sin(us TH):
SIH(NBZT ¥

residual of equation when approximate solution is substituted

into the equation;

time;

dimensionless time, product of t and Wpod
quantities defined by Eqs. 18;

translational displacements of shear center in the
¥, and %, directions, respectively;

displacement of shear center at midspan in %, direction;

Principal, orthogonal, Lagrangian axes;
origin at 0; Ky is the longitudinal axis

principal, orthogonal, Eulerian axes which translate and
rotate with the cross section; origin at 0';

X;-%, coordinates of the point at which the external
16ad”is applied;

o] (o]
1 and Xy
geometric properties of the cross section expressed
by Eqs. 4 and 5

ratios of x to £, respectively;

ratio of zl and Z. to &, respectively;

2
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APPENDIX II. — NOTATION (Continued)

= generalized coordinates for displacements in the

*1 and *q directions and about the %, axis, respectively;

dimensionless, translational displacements of she?r i
center in the x. and x, directions, and the rotationa
displacement ¢, mspec%ively, of the section at midspan

"

absolute, maximum, dimensionless displacements of sheaz
center at midspan in the x, and x, directions and abov vdaceli
the x, axis, respectively, during”the response time cons

"

rotational displacement of cross section about the
Xy axis;

= quantities defined by Eqs. 13;

circular frequency of forcing function;

2 ratios of v to the fundamental natural bending frequencies
El EI o
2 1
Wy = [({")2.(_'.1’_1;)1/2] and . - [(%)2-(__1“_2')1/ 3. respective VH

= ratio of w to the fundamental natural torsional frequency

=N A L 1/2
Upgy = ;{;jg{ac“-i + 61,3175 and

* Macauley notation for singularity functions defined
by Eq. 11,
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Fig. 1. Segment of a Thin-Walled Member
with an Open Cross Section
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P (in X, directon)

] cm—— x3

Fig. 3. Constant-Direction, Concentrated
Load at Midspan of a Simple Beam



BENDING STRENGTH OF DEEP CORRUGATED STEEL PANELS
by

James L. Jorgensonl and Chingmiin Chern2

1. INTRODUCTION

The corrugated metal panels under study are fabricated
from rolled sheet galvanized steel. The fabrication pro-
téss consists of: unrolling, cutting, punching, and then
going through a rollformer which permits the panels to take
on the corrugated shape. If curved panels are desired a
final operation, stretch forming, is used. This consists
of placing the panel in tension and then stretching it

round a mold with the desired radius.

These panels are used in the construction of metal
bulldings. The buildings are either of an arch shape
lncorpoz-ating the curved panels or are planer walls and
T0of incorporating the straight panels. The metal panels

Serve as both a covering of the building and as a structural

frame,
I
Material

The material useq for testing was supplied in accord-

an
¢ with AsTM A525 "gzinc-coated steel sheets of commercial

Qu
sty 1¢ 45 deficient in that the material does not

s::i and Professor of Civil Engineering, North Dakota
2. 31: University, Fargo, North Dakota 58102 ——
tat tant Professor of Civil Engineering, North Dako

¢ University, Fargo, North Dakota 58102
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meet a minimum strength requirement. Future steel should
be purchased in accordance with ASTM A 446 which is similar

to A 525 only it does satisfy minimum strength requirements.

1.2 Code Evaluation

The usual method of strength evaluation for these panel

sections is to apply the criteria of the appropriate building

code. The code used here was the "Specification for the

Design of Cold-Formed Steel Structural Members", 1968 Edition,

by the American Iron and Steel Institute. This section

comments on the problems in directly applying the code and

suggests that a laboratory testing program is necessary to

determine the true strength of the panels.

The allowable bending moment on the panel is dependent
on the shape of the panel and the yield strength of the steel.
The shape of the panel is shown in Fig. 2. It is proportioned

Such that each flange permits full effective design width £or

the compression elements. Using 33 ksi yield steel this will
permit a flexural stress of 20 ksi. However, when consider-

ation 1s given to the deep thin web the allowable flexursl

stress is significantly reduced. The Code 1imit for h/t 18
200, however, the pane) under study has values of 175, 232

280, ana 350 for the 18, 20, 22 andg 24 gage panels. When
these web thickness ratios are used to determine the allow-

able bending stress, the values are 16.4, 9.3, 6.4, and 4.1
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