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On the Influence of Local-Distortional Interaction in the Behavior and 

Design of Cold-Formed Steel Web-Stiffened Lipped Channel Columns 
 

André D. Martins1, Pedro Borges Dinis1, Dinar Camotim1 and Paulo Providência2 
 

Abstract 

This paper reports the results of a numerical (ABAQUS shell finite element analysis) 

investigation on the influence of local-distortional (L-D) interaction in the ultimate 

strength and design of cold-formed steel fixed-ended web-stiffened lipped channel 

columns  hereafter termed “WSLC columns”. These results concern columns with 

various geometries and yield stresses, ensuring a wide variety of combined ratios 

between (i) the distortional and local critical buckling stresses, and (ii) the yield and the 

higher of the above buckling stresses. The objectives of this work are two-fold: (i) to 

acquire in-depth understanding on the mechanics underlying the L-D interaction in the 

WSLC columns analyzed, all selected to ensure that local buckling is triggered by the 

flanges, and also (ii) to provide a first contribution towards the efficient Direct Strength 

Method (DSM) design of these structural elements. The results presented and discussed 

concern the (i) post-buckling behavior (elastic and elastic-plastic), (ii) ultimate strength 

and (iii) failure mechanisms of the WSLC columns previously selected to undergo L-D 

interaction. Special attention is paid to comparing the ultimate strength erosions, 

due to L-D interaction, exhibited by the WSLC columns investigated here and the “plain 

cross-section” (i.e., without intermediate stiffeners) columns studied earlier by the 

authors (Martins et al. 2014a). Finally, the paper closes with some considerations 

about the impact of the findings reported in this work on the design of cold-formed steel 

columns undergoing different levels of L-D interaction.  

Introduction 

Cold-formed steel structural systems commonly used in the construction industry are 

very often formed by slender open-section thin-walled members, which exhibit a low 

torsion stiffness and a high susceptibility to instability phenomena involving cross-section 

deformation, namely local, distortional and/or global buckling – Figs. 1(b)-(d) show 
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buckled web-stiffened lipped channel (WSLC) cross-sections associated with column 

local (flange-triggered), distortional and global (flexural-torsional and flexural) modes. 

Moreover, cold-formed steel member often display geometries (cross-section shape 

and/or dimensions, and unrestrained length) that lead to fairly close local (L) and 

distortional (D) critical buckling stresses, which means that their post-buckling behavior 

(elastic or elastic-plastic), ultimate strength and failure mode are likely to be affected, 

to a smaller or larger extent, by interaction effects involving these two instability 

phenomena, i.e., by local-distortional (L-D) interaction. 
 

A considerable amount of research activity has been recently devoted to the structural 

response and load-carrying capacity of cold-formed steel columns affected by L-D 

interaction, including experimental investigations, numerical simulations and design 

proposals. However, the vast majority of the available results concerns columns with 

plain lipped channel columns  for instance, the works reported by Kwon & Hancock 

(1992), Yang & Hancock (2004), Dinis et al. (2007), Yap & Hancock (2009, 2011), 

Kwon et al. (2009), Silvestre et al. (2012), Young et al. (2013) and Martins et al. 

(2014a). Although to a lesser extent, research work has also been reported on 

columns with other cross-sections shapes: (i) Dinis et al. (2011) (hat-sections), (ii) 

Dinis et al. (2014a) (rack-sections), and (iii) Dinis et al. (2012) and Dinis & Camotim 

(2014) (zed, hat and rack-sections). For all the above cross-section shapes, local 

buckling is practically always triggered by the web, where most of the L-D interaction 

takes place. This situation may change when intermediate stiffeners (e.g., “v-shaped” 

stiffeners) are added (see Fig. 1(a)), since local buckling is bound to be triggered by 

the flanges, with very little deformation occurring in the web (see Fig. 1(b)), which 

naturally alters considerably the L-D interaction features  this fact has been 

demonstrated both experimentally and numerically by Kwon & Hancock (1992), 

Kwon et al. (2009), Yap & Hancock (2011) and Dinis et al. (2014b). 
 

Since the assessment of the structural response and strength of cold-formed steel 

members constitutes a complex task, which is not yet adequately reflected in several 

current design codes, a fair amount of research has been devoted to develop efficient 

(safe and economic) design rules for such members. The most relevant fruit of this 

research activity was the DSM, which (i) has its roots in the work of Hancock et al. 

(1994), (ii) was originally proposed by Schafer & Peköz (1998), and (iii) has already  
 

 

 (a)                            (b)                           (c)                           (d1)                            (d2) 

d2 bw 

d1 bl 

bf 

Fig. 1. Web-Stiffened lipped channel (a) geometry and buckled shapes associated with column, (b) 

local (flange-triggered), (c) distortional and (d) global (d1) flexural-torsional and (d2) flexural buckling 
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been included in the latest versions of the Australian/New Zealand and North American 

cold-formed steel specifications. The DSM has been shown to provide an efficient and 

general approach to estimate the ultimate strength of cold-formed steel columns and 

beams failing in local (L), distortional (D), global (G) and local-global (L-G) interactive 

modes. Unfortunately, the consideration of these limit states is not sufficient for the 

design of such members, since interaction phenomena involving distortional buckling, 

namely, L-D, D-G and L-D-G interactions may also erode significantly the member 

ultimate strength  neglecting these interaction phenomena may lead to unacceptably 

low reliability indices, i.e., to a high likelihood of reaching unsafe designs. 
 

This work deals solely with the design of columns against L-D interactive failures. 

Although several attempts have been made to develop a DSM-based design approach 

that covers also column L-D interactive failures, it is consensual that further research is 

still needed before the DSM can be successfully and generally applied to members 

affected by this type of mode interaction. In the particular case of lipped channels 

columns (either pin-ended or fixed-ended) experiencing L-D interaction, the second and 

third authors performed extensive numerical simulations that (i) made it possible to 

obtain clear evidence that the current DSM local and distortional design curves cannot 

capture the ultimate strength erosion due to this coupling behavior and (ii) unveiled 

features that must appear in a DSM design approach intended for such members. These 

findings were incorporated into a DSM-based design approach recently proposed by 

Silvestre et al. (2012), termed here “MNDL approach”, only for plain lipped channel 

columns (exhibiting web-triggered local buckling). The above approach was later 

extended to plain zed, hat and rack-section columns by Dinis & Camotim (2014)  it is 

worth noting that these proposals concern exclusively columns affected by L-D 

interaction stemming from fairly close local and distortional critical buckling stresses, i.e., 

columns affected by “true” L-D interaction (Martins et al. 2014a). Recently, Martins et 

al. (2014a) extended the scope of the previous findings and assessed the performance of 

the MNDL design approach for plain lipped channel, hat, zed and rack-section columns 

affected by L-D interaction caused by a “secondary bifurcation”, which (i) occurs when 

the local and distortional critical buckling stresses are not so close and (ii) stems from the 

high (moderate) local (distortional) post-critical strength reserve, provided that the yield 

stress is sufficiently high to allow that it comes into play. It was found that the above 

approach provides good estimates for a fairly wide range of ratios between the local and 

distortional critical buckling stresses and constitutes, at present, the most efficient (safe 

and accurate) DSM-based design approach against L-D interactive failures. However, 

this approach was developed, calibrated and validated solely on the basis of analyses 

involving plain cross-section columns − the main purposes of this work is to assess 

whether this approach can be readily extended to WSLC columns.  
 

The objectives of this paper are (i) to present and discuss numerical results aimed at 

acquiring in-depth understanding on the mechanics underlying L-D interaction in web-

stiffened lipped channel columns (flange-triggered local buckling) and (ii) to provide a 
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first contribution towards the efficient DSM design of such structural elements3. 

A systematic numerical investigation is carried out, in order to characterize the post-

buckling behavior and strength of WSLC columns experiencing more or less severe 

L-D interaction effects. Moreover, it is also intended to assess whether the available 

findings and design procedures, developed and proposed in the context of “plain 

cross-section” columns, can be readily extended to the columns under consideration. The 

results presented and discussed, obtained through ABAQUS shell finite element analyses, 

concern the (i) post-buckling behavior (elastic and elastic-plastic), (ii) ultimate strength 

and (iii) failure mechanisms of WSLC columns selected to undergo considerable L-D 

interaction. Special attention is devoted to comparing the ultimate strength erosions, due 

to L-D interaction, in plain and WSLC columns − the former were recently 

investigated by Martins et al. (2014a). This comparison is essential to assess 

whether the DSM-based design approaches developed for L-D interactive 

failures of “plain cross-section” columns are also applicable to their WSLC counterparts. 

Finally, the paper closes with some considerations concerning the impact of the 

findings reported in this work on the possibility of developing a general DSM-based 

design approach capable of efficiently (safely and accurately) predicting the load-

carrying capacity of “plain cross-section” and WSLC cold-formed steel columns 

undergoing various levels of L-D interaction. 

Buckling Analysis – Column Geometry Selection 

In order to investigate the numerical ultimate strength of fixed-ended WSLC columns 

affected by various levels of L-D interaction, the first step consists of selecting column 

geometries (cross-section dimensions and length) associated with different “levels of 

closeness” between their local and distortional critical buckling stresses (i.e., RDL=fcrd/fcrl 

values). As done in previous studies, the column geometry selection was made by 

means of a “trial-and-error” procedure involving the performance of GBT-based 

buckling analysis sequences using the code GBTUL (Bebiano et al. 2008), which 

makes it possible to determine buckling loads associated with “pure” local, distortional 

and global buckling modes. Fig. 2(a) shows the GBT discretization adopted for all 

WSLC columns analyzed, which (i) comprises 21 (9 natural and 12 intermediate) 

nodes, and (ii) leads to 21 deformation modes (4 global, 5 distortional and 12 local)  

Fig. 3 shows the in-plane deformed shapes of all these modes. The “pure” fcrl, fcrd and fcrg 

are obtained through GBT analyses including the following deformation modes: 

(i) fcrg: modes 2 + 4, for the WSLC columns, since the critical global mode is flexural-

torsional (of course, very long columns buckle in minor-axis flexural modes). 

(ii) fcrd: unlike in plain lipped channel columns (see Young et al. 2013), for which all 

distortional modes are considered to determine fcrd, in WSLC columns some of the 

3 It is worth noting that the authors (Martins et al. 2014b) have recently reported the first results of this 

investigation, concerning columns with very close local and distortional critical buckling stresses. 
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five distortional modes (modes 5 to 9 – see Fig. 3) are only termed “distortional” 

because they exhibit natural node in-plane displacements (the natural nodes 

are shown in Fig. 2(a)). For instance, modes 8 and 9 are clearly “disguised local 

modes” with web single and double curvature – note that these deformation modes 

are the web-stiffened counterparts of the plain modes 7 and 8. Therefore, the 

determination of fcrd was made by means of buckling analyses including only 

deformation modes 5 + 6. 

(iii) fcrl: in view of the content of the previous item, the buckling analyses providing fcrl 

include exclusively deformations modes 7 to 21. Due to the very short local half-

wave length, the column longitudinal discretization must be finer than that 

adopted to calculate fcrd and fcrg – 40-60 beam finite elements were considered.  
 

The output of this effort are the 35 distinct combinations of cross-section dimensions (bw, 

bf, bl, t  web-flange-lip widths and wall thickness) and lengths (L) given in Table 1 – the 

“v-shaped” intermediate stiffeners have d1=10mm and d2=20mm (see Fig. 1(a)) for all 

columns. The half-wave numbers of the critical local (nl) and distortional (nd) buckling 

modes are also presented. These fixed-ended cold-formed steel (E=210GPa, v=0.3) 

columns (i) exhibit RDL values such that 0.40<RDL<2.40 and (ii) have global critical 
buckling stresses (ii1) much higher than their local and distortional counterparts 

(fcrg/fcr.max>5.2, with fcr.max=max(fcrl;fcrd)) and (ii2) higher than all the yield stresses 

considered (fcrg/fy.max>1.1), thus ensuring that no interaction with global (flexural-

torsional) modes occurs – the values of these two ratios are also given in the table. In 

order to enable an in-depth investigation of the influence of strong L-D interaction  

(0.90≤RDL≤1.10), 12 columns were selected in this RDL range. Fig. 2(b) shows (i) a curve 

providing the variation of Pcr (critical buckling load) with the column length L (in 

logarithmic scale) for a fixed-ended WSLC column with RDL=1.00 (column WS16  see 

Table 1), and (ii) the column “mixed” buckling mode for LDL=80cm, which combines 1D 
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Fig. 2. WSLC column (a) GBT discretization and (b) critical buckling curve Pcr vs. L (WS16) 
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Fig. 3. In-plane deformed configurations concerning GBT conventional deformation modes 

 

half-wave and 10 L half-waves. It seems clear that the post-buckling behavior (elastic 

or elastic-plastic) and ultimate strength of this columns will be strongly affected by L-D 

interaction, taking place predominantly in the flanges. 

 

Post-Buckling Behavior of WSLC Columns under L-D Interaction 

Finite Element Modeling 

This chapter presents and discusses the main results of the numerical 

investigation aimed at acquiring in-depth understanding on the mechanics 

underlying the flange-triggered L-D interaction in fixed-ended web-stiffened 

lipped channels columns. The results were obtained through ABAQUS (Simulia Inc 

2008) analyses using the SFE elastic-plastic model adopted earlier by Dinis et al. 

(2007) and involving (i) columns discretized into fine meshes of 4-node 

isoparametric shell (S4) (length-to-width ratio close to 1), (ii) end supports 

simulated by rigid plates attached to the end section centroids and (iii) the steel 

material behavior modeled by a linear-elastic/perfectly-plastic stress-strain curve 

(both residual stresses and corner strength effects are disregarded). 

Elastic-Plastic Post-Buckling Interactive Behavior 

This section addresses the elastic-plastic post-buckling behavior of the fixed-ended 

WSLC columns considered in this work. Fig. 4(a) shows the P/Pcr vs. v/t equilibrium 

paths (v is again the mid-span flange-lip corner vertical displacement) of WS16 

columns (RDL=1.00) (i) containing pure distortional initial geometrical imperfections 

involving inward flange-lip motions – this shape leads to the lowest columns 

strengths as was reported by Martins et al. (2014b) and (ii) exhibiting yield stresses 

corresponding to 9 critical slenderness values cr=(fy/fcr)0.5 (recall that for these columns: 

fcr=fcrd=fcrl), which cover a wide range: 1.00, 1.25, 1.50, 1.75, 2.00, 2.50, 3.00, 3.25, 3.50,  – 
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Table 1. WSLC columns selected column geometries, local/distortional/global buckling 

stresses, buckling mode half-wave numbers and relevant stress ratios 

 

 

 

 
bw bf bl t L fcrd nd fcrl nl RDL fcrg 

.max
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.max

crg
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WS1 170 130 12.0 2.400 1.70 136 2 343 11 0.40 1766 5.2 1.1 

WS2 150 110 10.0 1.940 1.20 138 2 309 9 0.45 2723 8.8 1.7 
WS3 150 110 10.0 2.000 1.00 165 2 329 7 0.50 3919 11.9 2.0 

WS4 150 100 11.0 1.780 1.15 170 2 309 12 0.55 2914 9.4 1.5 

WS5 150 100 10.0 1.510 1.15 133 2 221 12 0.60 2880 13.0 1.9 
WS6 160 130 10.0 1.390 1.45 73 2 112 12 0.65 2150 19.2 2.5 

WS7 160 130 10.0 1.400 1.20 80 1 113 10 0.70 3138 27.7 3.4 

WS8 120 90 10.0 1.200 1.20 129 2 173 14 0.75 1816 10.5 1.2 
WS9 150 95 12.0 1.360 1.10 157 1 196 12 0.80 3164 16.2 1.7 

WS10 150 95 12.0 1.280 1.10 148 1 173 12 0.85 3164 18.3 1.8 

WS11 120 90 10.0 1.100 0.90 128 1 142 11 0.90 3226 22.7 2.1 
WS12 120 90 10.0 1.100 0.85 132 1 142 10 0.93 3616 25.5 2.2 

WS13 120 90 10.0 1.100 0.80 137 1 142 10 0.96 4081 28.7 2.5 

WS14 160 125 12.5 1.375 1.00 113 1 115 8 0.98 4583 40.0 3.3 
WS15 120 90 10.0 1.075 0.80 134 1 136 10 0.99 4081 30.1 2.5 

WS16 120 90 10.0 1.050 0.80 129 1 129 10 1.00 4081 31.7 2.6 
WS17 160 125 12.5 1.325 1.00 109 1 106 8 1.02 4583 42.1 3.5 

WS18 120 90 10.0 1.025 0.80 129 1 124 10 1.05 4081 31.6 2.7 

WS19 160 125 12.5 1.300 1.00 108 1 103 8 1.06 4583 42.2 3.7 
WS20 120 90 10.0 1.000 0.80 126 1 118 10 1.07 4081 32.3 2.8 

WS21 150 95 12.0 1.030 1.10 122 1 112 12 1.09 3162 26.0 2.3 

WS22 120 90 10.0 0.950 0.85 117 1 106 10 1.10 4080 34.9 3.1 
WS23 120 90 10.0 0.895 0.90 115 1 96 11 1.20 3224 28.1 2.8 

WS24 120 90 10.0 0.830 0.85 106 1 81 10 1.31 3614 34.0 3.6 

WS25 120 90 10.0 0.800 0.90 107 1 76 11 1.40 3224 30.2 3.4 

WS26 120 90 10.0 0.790 0.85 113 1 75 10 1.50 3614 32.1 4.0 

WS27 150 100 10.0 0.766 0.90 89 1 56 10 1.60 4695 52.5 6.9 

WS28 150 100 10.0 0.737 0.90 88 1 52 10 1.70 4695 53.4 7.4 
WS29 160 125 12.3 0.950 1.00 102 1 56 9 1.82 4581 45.0 6.8 

WS30 160 125 12.5 1.011 0.90 121 1 64 8 1.90 5656 46.8 7.4 

WS31 160 125 12.5 1.030 0.85 132 1 66 7 2.00 6341 48.0 8.0 
WS32 160 125 12.5 1.000 0.85 131 1 62 7 2.10 6341 48.4 8.4 

WS33 160 120 12.5 1.000 0.85 148 1 67 7 2.20 7096 48.0 8.8 

WS34 160 125 12.5 1.000 0.80 144 1 62 7 2.30 7158 49.8 9.5 
WS35 160 125 12.5 0.927 0.85 128 1 53 7 2.40 6340 49.5 9.8 

the last corresponds to elastic behavior. As for Fig. 4(b), it displays the deformed 

configurations and plastic strain distributions, at the onset of collapse, for 

columns with cr=1.00, 1.75, 3.00, 3.50 – note the cr=1.00 deformed 

configuration depicted in Fig. 4(b) is amplified 30 times. On the other hand, Fig. 

4(c) concerns the column with cr=3.25 and displays four plastic strain diagrams, 

corresponding to the equilibrium states indicated on its equilibrium path (see Fig. 

4(a)), including (i) an elastic state, (ii) a state immediately after first yielding, (iii) 

the onset of collapse and (iv) a state on the equilibrium path descending branch. 

The observation of these post-buckling results prompts the following remarks: 
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Fig. 4. WS16 column (a) elastic post-buckling equilibrium paths P/Pcr vs. v/t associated with D  
and 9 slenderness values, (b) failure modes and plastic strains for cr={1.0, 1.75, 3.0, 3.5} and 
(c) deformed configurations and plastic strains evolutions at four equilibrium states (cr=3.25) 

(i) First of all, the 9 WSLC columns with distinct yield stresses are affected by 

L-D interaction, particularly visible in the flanges (see Fig. 4(b)). These 

coupling effects (i1) are “intrinsic to the column”, due to the closeness between the 

local and distortional critically buckling loads, (i2) gradually evolve as loading 

progresses and (i3) take place regardless of the yield stress value (provided, of 

course, that fy/fcr is not significantly below 1.0, in which case collapse basically 

involves plasticity), i.e., this phenomena corresponds to “true L-D interaction” 

as was reported by Martins et al. (2014a) for “plain cross-section” columns. 

(ii) The nature and characteristics of the column elastic-plastic post-buckling behavior 

and collapse mechanism of clearly depend on the slenderness value (cr). 

(iii) In the cr=1.00 and cr=1.25 columns (i.e., when cr is close to 1.0), yielding starts 

when the normal stress distribution is still “not too far from uniform” and, therefore, 

precipitates a rather abrupt (plastic) collapse (see Fig. 4(a)). 

(iv) On the other hand, in the columns with higher cr values first yielding takes place 

when the normal stress distribution is already “highly non-uniform” and, thus, 

does not lead to an immediate failure – collapse occurs following a fairly smooth 

stiffness decrease. Note that the WSLC columns have a significant elastic-plastic 

cr=1.75 

cr=3.50 

cr=1.00 

cr=3.00 
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strength reserve (see Fig. 4(a))  e.g., the cr=3.25 column exhibits a 14% applied 

load difference between first yielding and the onset of collapse, which is obviously 

due to the fairly high D and L (mostly) post-critical strength reserves. 

(v) In the cr=3.25 column, the elastic regime (diagram I in Fig. 4(c)) ends when 

yielding initiates at the intermediate stiffener mid-span regions (diagram II in 

Fig. 4(c)). Then, plasticity spreads rapidly towards the web-flange corners over the 

whole column length and yielding also occurs near the end section intermediate 

stiffeners (diagram III in Fig. 4(c)). This behavior is clearly distinct from that 

exhibited by the plain lipped channels columns, which stems from the different 

stress distribution evolutions. Moreover, the comparison between the results 

presented in this paper and those reported by Silvestre et al. (2012), for plain 

lipped channel columns, makes it possible to conclude that the addition of the web 

intermediate stiffener leads to a reasonable post-buckling strength increase, most 

likely due to the higher web transverse bending stiffness, which entails much 

smaller effective centroid shifts (a major source of stiffness and strength erosion). 

Direct Strength Method (DSM) Design  

The development of the Direct Strength Method (DSM) was motivated by the need to 

overcome the difficulties (and time consumption) associated with the application of the 

classical Effective Width Method (EWM) to more complex cross-sections such as those 

commonly used in cold-formed steel construction, i.e., exhibiting large numbers of walls, 

including more or less involved lips and/or intermediate stiffeners. The method has been 

shown to provide efficient (safe and accurate) estimates of the ultimate strength of cold-

formed steel columns and beams on the sole basis of the steel yield stress and elastic 

critical buckling stresses (for the whole cross-section, rather than (i) the individual 

walls/plates and (ii) simply supported boundary conditions between walls/plates, like in 

the traditional EWM) associated with local, distortional and global modes. 
 

For columns, the DSM nominal strengths against local (fNL) and distortional (fND) failures 

are provided by “Winter-type” expressions (calibrated against a fairly large numbers of 

experimental and numerical failure loads, mostly involving fixed-ended columns) that can 

be found in Schafer’s state-of-the-art report (Schafer 2008). Moreover, two distinct 

strategies were proposed by Schafer (2002) to estimate the ultimate strength of columns 

experiencing L-D interaction: replacing fy by either (i) fND in the fNL equations (NLD 

approach  fNLD) or (ii) fNL in the fND equations (NDL approach  fNDL). Later, Silvestre et 

al. (2012) assessed the performance of these two approaches, for fixed-ended plain lipped 

channel columns, and concluded that they provide similar results, even if the quality of the 

fNDL estimates was found to be marginally higher  quite recently, Dinis & Camotim 

(2014) extended these findings to hat, zed and rack-section fixed-ended columns.  
 

A novel design approach intended specifically to handle L-D interactive failures was 

(i) recently developed by Silvestre et al. (2012), for fixed-ended plain lipped channel 
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columns, and (ii) subsequently extended by Dinis & Camotim (2014) to cover also hat, 

zed and rack-section fixed-ended columns. This approach, termed here “modified NDL 

approach” (MNDL), (i) coincides with fND for D <1.5 and, for the more slender columns 

(D1.5), (ii) defines a modified local strength f*NL, which depends on the critical half-

wave length ratio LcrD/LcrL (obtained from simply supported column signature curves) 

and estimates the column ultimate strength by replacing of fNL with f*NL in the NDL 

equations. This modified local strength, which leads to fND and fNDL estimates for 

LcrD/LcrL4 and LcrD/LcrL8, respectively, is given by (1) 
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It is worth noting that the MNDL approach was developed, calibrated and validated on 

the basis of numerical (SFEA) ultimate strength values concerning fixed-ended 

“plain cross-section” columns exhibiting RDL values comprised between 0.90 and 1.10. 

This means that the numerical results were restricted to columns strongly affected by 

L-D interaction, for which the ultimate strength erosion is most severe (all are included in 

the “true L-D interaction” region – see Martins et al. 2014a). Recently, the authors 

(Martins et al. 2014a) extended the previous findings and assessed the performance of 

the MNDL for “plain cross-section” columns affected also by a “secondary bifurcation”, 

which occurs when the local and distortional critical buckling stresses are not so 

close and stems from the high (moderate) local (distortional) post-critical strength 

reserve. It was found that the above MNDL approach provides also good estimates far 

from its original domain of application, namely inside the range 0.70<RDL<1.60. As 

mentioned by Martins et al. (2014b), the application of the MNDL approach cannot be 

readily extended to stiffened columns, since the LcrD/LcrL limits appearing in (1) may 

not be suitable for web-stiffened lipped channel columns. Fortunately, it is possible to 

retain the elegance of the MNDL approach and still obtain efficient estimates for 

these stiffened cross-sections. It suffices to find new LcrD/LcrL limits that are best 

suited for the stiffened columns, as had already been anticipated by Silvestre et al. 

(2012) – obviously, this procedure may be viewed an optimization problem. Before 

finding the new LcrD/LcrL limits, where (i) “a” stands for the lower limit and (ii) “b” 

identifies the upper limit (see Fig. 5), it is necessary to generalize the MNDL approach to 

other cross-section shapes. This generalization is carried out by changing the “modified 

local strength” (f*NL), defined in (1), while retaining the essence of the MNDL approach: 

(i) LcrD/LcrLa leads to fND estimates and (ii) LcrD/LcrLb leads to fNDL estimates. 

This generalization is expressed by in (2) – note that if a=4 and b=8 leads to (1). 
 

The optimization problem, allowing for the determination of the design variable 

x [ , ]a b , is formulated as a minimization problem for which the objective function is 
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Fig. 5. Generalized MNDL approach: variation of fMNDL /fy with the column slenderness for dl 

(adapted from Silvestre et al. (2012)) 
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which means that the minimization problem becomes simply 
 

 
       ( )

. . :     0

            , 0

min f

s a b a

a b

 



x
 (4) 

where (i) 
,

SFEA

U if  and 
,

MNDL

U if  are the ith numerical ultimate strength and corresponding 

MNDL estimate (based on the modified local strength defined in (2)) and (ii) n is 

the total number of numerical ultimate strengths. It is worth noting that: 

(i) Only function 
,

MNDL

U if , discontinuous at D=1.5, depends on the design variables. 

(ii) The design variables are discrete (but greater than one), even if the homologous 

problem with continuum variables provides better MNDL estimates. 

(iii) Due to the content of items (i) and (ii), the minimization problem was solved 

employing Genetic Algorithms (GAs)  popular stochastic search algorithms based 

on Darwin’s evolution theory idea and introduced by John Holland in 1975.  

(iv) The application of this technique to the prediction of the ultimate strengths of the 

WSLC columns such that 0.70<RDL<1.60 yields a=8 and b=12. It is still worth 

noting that, if the design variables were deemed continuous, the solution would be 

a=7.70 and b=12.16, causing only a 0.90% decrease in the objective function (3). 
 

Next, the numerical ultimate strengths obtained are compared with their estimates 

provided (i) by the current DSM L and D strength curves (fNL and fND) and also 

(ii) by the DSM approaches specifically developed to deal with L-D interactive 

failures (NDL, NLD and the generalized MNDL  fNDL, fNLD and fMNDL). The results 

concerning a representative fraction/sample of the columns identified in Table 1 are 

presented and discussed  although it is not possible to address all the results 

obtained (due to space limitations), the sample selected provides enough information 
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to investigate the how the quality of the DSM ultimate strength predictions vary with 

the RDL value. The columns considered, which cover the whole RDL range, are WS1-

5-9-16-24-27-31-35 (RDL=0.40-0.60-0.80-1.00-1.30-1.60-2.00-2.40). For the sake of 

clarity, it was decided to (i) begin by addressing the results concerning WSLC columns 

(Figs. 6-7) and (ii) compare afterwards results concerning WS and plain lipped 

channel columns with very similar RDL values, i.e., virtually identical levels of L-D 

interaction (Figs. 9-10). Once again, each of the above 8 columns was analyzed with 9 

distinct yield stresses, covering a quite wide critical (D or L) slenderness range. 
 

Figs. 6(a1)-(b4) and 7(a1)-(b4) plot the fU/fy values against λL and λD for the 8 WSLC 

column sets identified in the previous paragraph. The numerical fU/fy values concerning 

each RDL value are compared with their DSM predictions: (i) fNL or fND, (ii) fNDL and (iii) 

fMNDL – the latter adopting the LcrD/LcrL limits determined earlier (a=8 and b=12), on the 

basis of the columns with 0.70<RDL<1.604. On the basis of these comparisons, it is 

possible to extract the following conclusions: 

(i) All the numerical fU/fy values are well aligned along “Winter-type” curves. 

(ii) Generally speaking, the observations made by Martins et al. (2014a), in the context 

of plain lipped channel columns, remain qualitatively valid. 

(iii) As it would be logical to expect, for the RDL=0.40 and RDL=0.60 columns the fND 

values provide safe and fairly accurate ultimate strength estimates for the whole 

slenderness range, which means that no perceptible ultimate strength erosion due 

to L-D interaction occurs. These columns exhibit typical distortional collapse 

modes and only in quite slender columns minor local deformations were detected 

(they stem from a “secondary local bifurcation”, due to the high yield stress). 

Fig. 8(a1) concerns a column under these circumstances, more specifically the 

column with RDL=0.50 and cr=3.25, and shows its collapse mode. Fig. 8(a2), 

providing a close-up of the top flange deformed configuration (amplified 2.5 times), 

unveils the presence of small (but clearly perceptible) local deformations. Finally, 

note that fNDfMNDL for all the RDL=0.40 and RDL=0.60 columns. 

(iv) On the other hand, and also logically, the fNL values provide fairly accurate ultimate 

strength estimates for the stocky columns with RDL>1.00, since these columns 

 exhibit typical local collapses. For instance, Fig. 8(b1) shows the local collapse 

mode of the column with RDL=2.40 and cr=1.25 (amplified 10 times)  the normal 

stress redistribution, providing the root of the well-known “effective width concept” 

originally proposed by von Kármán (von Kármán et al. 1932), is clearly illustrated 

in this figure. As for the “non-stocky” RDL>1.00 columns (RDL=1.30, RDL=1.60, 

RDL=2.00, RDL=2.40  Figs. 7(a1)-(a4)), practically all their failure loads are well 

overestimated by the current DSM L and D design curves, thus providing clear 

4 Since each plot in Figs. 6 and 7 concerns a single column geometry (with several yield stresses), it is possible to present 

the corresponding MNDL curve, which is associated with the particular LcrD/LcrL ratio exhibited by that column. 
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Fig. 6. Variation of fu /fy and corresponding DSM predictions with (a) l or (b) d for (1)-(4) 

RDL=0.40-0.60-0.80-1.00 web-stiffened fixed-ended columns 
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 evidence of the occurrence of significant L-D interaction (due to a “secondary 

distortional bifurcation”). Fig. 8(b2) depicts the L-D interactive collapse mode 

of the column with RDL=2.40 and cr=3.5 (amplified 2 times). Naturally, the λcr 

values for which L-D interaction effects becomes less relevant increase with RDL. 

Moreover, generally speaking, the RDL >1.00 column ultimate strengths tend to be 

less overestimated by the fNL values as RDL increases (switch from “true L-D 

interaction” to “secondary distortional bifurcation”) and λL decreases, since the L-D 

interaction effects become less relevant  the number of accurate estimates, 

indicating local failures, grows (slowly) with RDL (see Figs. 7(a1)-(a4)). 

(v) As a consequence of what was said in the previous item, the overwhelming 

majority of the RDL=0.80, RDL=1.00, RDL=1.30 and RDL=1.60 column ultimate 

strengths are not adequately predicted by the current DSM local or distortional 

strength curves  only the MNDL approach provides high-quality predictions. 

(vi) Naturally, in the RDL=1.00 columns L-D interaction occurs in the whole slenderness 

range, as clearly shown in Figs. 6(a4)-(b4)  visible difference between the 

numerical ultimate loads and their fND estimates. The MNDL approach merits are 

also evidenced in these figures. 
 

Figs. 9(a1)-(b4) and 10(a1)-(b4) provide the variations of fU/fy with λL or λD for the 8 sets of 

web-stiffened and plain lipped channel columns  these figures only differ from 

Figs. 6(a1)-(b1) and Figs. 7(a1)-(b1) in the fact that they include the plain lipped 

channel results, previously reported by Martins et al. (2014a). The aim is to compare 

the quality of the DSM predictions concerning the two sets of column failure loads, 
which are associated with similar levels of L-D interaction – note that, in order to 

improve the readability of these figures, the MNDL design curves are not shown (the 

assessment of the quality of the fMNDL estimates has just been made). The comparative 

analysis of all these numerical ultimate strengths prompts the following remarks: 

(i) First of all, recall that all the RDL>1.00 columns were analyzed with both L 

(critical-mode) and D initial imperfections. Although the former invariable led to 

lower failure loads, most of the differences were quite small (all the exceptions 

concern stocky columns, for which plasticity precedes distortional buckling). 
 

 

(a1) (b1)                                

(a2)                               (b2)                                

Fig. 8. Failure modes and plastic strains of the (a1)-(a2) WS3 column with cr=3.5+D (including a 

top flange close-up), and (b) WS35 columns with (b1) cr=1.25+L and (b2)cr=3.5+L 
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 (ii) Qualitatively speaking, the results concerning both sets of columns are very similar. 

Indeed, for identical RDL and slenderness values, the web-stiffened and plain lipped 

channel column fU/fy values are nearly coincident, even if the former are generally 

a bit higher. It is worth noting that the failure loads of the two sets of columns 

were obtained considering the most detrimental distortional initial imperfections, 

which involve inward (outward) flange-lip motions in the web-stiffened (plain) 

lipped channel columns. 

(iii) In view of what was mentioned in the previous item, it seems logical to expect 

that it may possible to handle jointly the design of web-stiffened and plain lipped 

channel columns exhibiting L-D interactive failures5. 

Assessment of the Numerical Ultimate Strength Estimates 

On the basis of the limited amount of numerical WSLC column failure loads obtained in 

this work, it is possible to draw some preliminary conclusions concerning the quality of 

their DSM-based predictions. Figs. 11(a)-(d) plot, respectively, (i) fU/fND against L, (ii) 

fU/fNL against D, (iii) fU/fNDL against D and (iv) fU/fMNDL against D
6. It should be noted 

that Figs. 11(a)-(b) include only results concerning columns with RDL1.0 and RDL>1.0, 

respectively, while Figs. 11(c)-(d) include all the columns analyzed. Moreover, 

it should be mentioned that fU is taken as (i) fU,D, for RDL≤1.10, and (ii) the lowest of 

fU,D and fU,L, for RDL>1.10, where fU,D and fU,L are the ultimate strengths determined 

for columns containing “pure” distortional and “pure” local initial geometrical 

imperfections. The observation of these figures prompts the following comments: 

(i) As mentioned already by several authors, the current DSM design curves (fNL and 

fND values) are unable to predict adequately the ultimate strength erosion caused 

by L-D interaction. The local design curve, whose estimates have very poor 

indicators (mean and standard deviation equal to 0.79 and 0.14, with a minimum 

of 0.53)  the only accurate fNL estimates correspond to the stocky columns with 

high RDL values  e.g., see the columns with RDL=2.00 and RDL=2.40 in Figs. 

11(a3)-(a4)), which fail in pure local modes and, therefore, are not affected by L-D 

interaction. On the other hand, the fND predictions exhibit much higher quality, as 

they are clearly more accurate and mostly safe, which is reflected in the 

corresponding indicators (mean and standard deviation equal to 1.03 and 0.08, 

with a minimum of 0.88)  note that the unsafe estimates in Fig. 11(a) concern 

columns affected by “true” L-D interaction (see also Figs. 6(b3)-(b4)). 

(ii) The fNDL values provide only safe ultimate strength estimates, since there is only 

one fU/fNDL ratio below (but very close) to 1.0  see Fig. 11(c) (and also Figs. 6 and  

                                                           
5 The authors are currently working on verifying whether this assertion can also be extended to lipped 

channel columns with intermediate stiffeners in both the web and flanges. 
6 The inclusion of the apparently “illogical” fU/fND vs. L and fU/fNL vs. D plots (instead of the more “logical” 

fU/fND vs. D and fU/fNL vs. L ones) was done to improve the plot “readability”. This is because, in the 

latter plots, various ratio values are located on the same vertical line and “on top of each other”. 
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Fig. 9. Variation of fu /fy and corresponding DSM local and distortional strength predictions with 

(a) L and (b) D for (1)-(4) RDL=0.40-0.60-0.80-1.00 (WS and plain lipped channel columns) 
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Fig. 10. Variation of fu /fy and corresponding DSM local and distortional strength predictions with 

(a) L and (b) D for (1)-(4) RDL=1.30-1.60-2.00-2.40 (WS and plain lipped channel columns) 

188



 7(a1)-(b4)). However, a large fraction of the numerical failure loads are excessively 

underestimated, particularly in the high slenderness range. 

(iii) The fMNDL values provide clearly the best failure load estimates, as can be readily 

attested by looking at Fig. 11(d) and the corresponding fU/fMNDL indicators: (iii1) 

mean value equal to 1.00, (iii2) standard derivation equal to 0.07, (iii3) minimum 

value equal to 0.84 and (iii4) maximum value equal to 1.18. 
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Fig. 11. Plots of (a) fU /fND against L, (b) fU /fNL (c) fU /fNDL and (d) fU /fMNDL against D, 

concerning all the numerical data obtained for web-stiffened lipped channels columns 

 

Conclusion 

A numerical investigation on the influence of L-D interaction effects on the post-

buckling behavior, ultimate strength and DSM design of cold-formed steel fixed-ended 

WSLC columns, exhibiting flange-triggered critical local buckling, was reported. All 

the columns analyzed had geometries (cross-section dimensions and lengths) and yield 

stresses selected to ensure a wide variety of ratios between the (i) distortional and local 

critical buckling stresses (RDL), and (ii) yield and non-critical (local or distortional) 

buckling stresses. ABAQUS geometrically and/or materially non-linear shell finite 

element analyses were employed to assess the structural response of columns (i) 

containing critical-mode initial imperfections with small amplitudes (10% of the wall 

thickness t) and (ii) exhibiting a linear-elastic-perfectly-plastic constitutive law.  
 

After addressing the selection procedure aimed at identifying fixed-ended WSLC 

columns with different ratios between the distortional and local critical buckling loads (as 

(c)       (d)    

 

(a)       (b)    
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well as the output of this procedure), the paper presented a numerical investigation on 

the elastic and elastic-plastic post-buckling behavior of a selected column with 

virtually coincident local and distortional critical buckling loads (highest interaction 

level), with the purpose of acquiring in-depth knowledge about the mechanics 

underlying the local-distortional interaction phenomenon, when local buckling is 

triggered by the flanges. Next, an extensive parametric study was performed to gather 

ultimate strength data concerning fixed-ended WSLC columns (i) containing initial 

geometrical imperfections exhibiting (i) the most detrimental shape and small 

amplitudes, (ii) experiencing various L-D interaction “levels” and (iii) having several 

yield stresses, chosen to cover a wide slenderness range. On the basis of the above 

numerical ultimate strength data bank, it was possible to assess the quality of their 

estimates provided by (i) the current DSM local and distortional design curves and (ii) 

expressions developed specifically to account for the ultimate strength erosion due to L-D 

interaction effects, namely (i) the NDL and NLD approaches proposed by Schafer 

(2002), and (ii) a adapted (slightly modified) version of the MNDL approach originally 

developed by Silvestre et al. (2012), which has been shown to provide very efficient 

estimates for “plain cross-section” columns (Dinis & Camotim 2014, Martins et al. 

2014a). This quality assessment procedure made it possible to conclude that the findings 

reported earlier for the “plain cross-section” columns can be extended to WSLC 

columns exhibiting flange-triggered local buckling. 
 

Finally, one last word to mention that (i) an investigation similar to the one reported in this 

paper and involving lipped channel columns with intermediate stiffeners in both the web 

and flanges is currently under away, and (ii) an experimental test program involving web-

stiffened lipped channel columns with carefully selected geometries, ensuring flange-

triggered local buckling and very clear L-D interaction, is planned for the near future. 
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