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Sixteenth International Specialty Conference on Cold-Formed Steel Structures 
Orlando, Florida USA, October 17-18, 2002 

ABSTRACT 

GBT-Based Distortional Buckling Formulae for 

Thin-Walled Channel Columns and Beams 

Nuno Silvestre! and Dinar Camotim2 

After a brief outline of the Generalized Beam Theory (GBT) fundamentals and linear stability 
analysis procedure, the main concepts and steps involved in the derivation of GBT -based fully 
analytical formulae are described and discussed. Such formulae provide distortional bifurcation 
stress estimates in cold-formed steel channel columns and beams with arbitrary sloping single-lip 
edge stiffeners and pinned/free-to-warp or fixed/warping-free end sections. The application of the 
proposed formulae is illustrated in detail and, in order to assess their accuracy and validity, results 
concerning several specific channel columns and beams are presented. In particular, the GBT­
based analytical estimates are compared with exact numerical results and, whenever possible, also 
with values yielded by the formulae developed by Lau & Hancock, Hancock and Schafer. 

1. INTRODUCTION 

The slender thin-walled open cross-sections displayed by most cold-formed steel members make 
them highly susceptible to local buckling, i.e., buckling phenomena involving only in-plane cross­
section deformations, as the member axis remains undeformed. It is still possible to make a 
distinction between local-plate buckling (plate bending with no fold line motions) and distortional 
buckling (plate bending and fold line motions). Figure l(b) depicts the distortional buckling mode 
(DM) configuration exhibited by lipped channel columns and beams. Since the application of all 
available code rules3, concerning the cold-formed steel member distortional buckling behavior, 
requires a previous determination of the corresponding bifurcation stress values, it is essential for 
designers to possess accurate and easy-to-use tools to perform this task. In spite of the growing 
availability of user-friendly finite strip and/or finite element computer programs, (approximate) 
analytical formulae are still sought and regarded as the most popular and efficient design aids. 

Experimental tests and numerical simulations, performed in either columns or beams undergoing 
distortional buckling, have provided clear evidence that (i) only the web exhibits relevant flexural 

1 Ph.D. Student, Civil Eng. Dept., 1ST, Tech. Univ. of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal 
2 Associate Professor, Civil Eng. Dept., 1ST, Tech. Univ. of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal 
3 The AustralianlNew Zealand code (ASINZS 4600) was the first to incorporate specific and rational provisions 

intended for to the design against distortional buckling. A very thorough report recently made available by Schafer 
(2000) indicates that the North American (A1S1) Specification will soon follow this trend. 
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Fig. 1 - Lipped channel: (a) geometry, (b) column and beam DM configurations, 
(c) structural model and (d) column and beam web deformed configurations 

deformations and (ii) the compressed flange-stiffener assemblies remain practically undeformed, 
as they simply experience "rigid-body" rotation about the web-flange longitudinal edge (see 
figure l(b». Based on such evidence, Lau & Hancock (1987) unveiled the structural similarity 
existing between (i) the thin-walled member distortional buckling behavior and (ii) the flexural­
torsional buckling behavior of the (fictitious) structural model shown in figure l(c), consisting of 
an uniformly compressed "flange-stiffener strut", elastically supported at the web-flange edge. 
The flexural-torsional buckling behavior of this structural model involves the "strut cross­
section" rotation (compressed flange-stiffener assembly) about the supported edge (web-flange 
fold line) and the distributed elastic rotational spring (stiffness k,) stands for the restraining effect 
provided by the member web. Obviously, such restraining effect differs in columns (both flange­
stiffener assemblies are compressed and the web exhibits single-curvature bending - see figure 
l(d!» and beams (only one compressed flange-stiffener assembly and double-curvature bending 
in the web - see figure 1(d2». In addition, the compressed flange-stiffener assemblies are assumed 
free to translate horizontally, which amounts to neglecting the translational spring stiffness lex, 
shown in figure l(c). Based on the flexural-torsional instability of the above strut model, Lau & 
Hancock (1987) and Hancock (1997) developed approximate analytical formulae! which are, at 
present, routinely employed to obtain column and beam distortional bifurcation stress estimates. 

Although the approach outlined in the previous paragraph (i) is reasonably easy-to-use and (ii) 
provides quite accurate distortional bifurcation stress (O"dist) values for commonly used cross­
section dimensions, it is possible to identify a number of limitations, namely: 

(i) The evaluation of O"dist involves a two-step (iterative) procedure. 
(ii) It was developed exclusively in the context of members with pinned and free-to-warp end 

sections, which means that it cannot be readily applicable to other support conditions. 
(iii) Does not yield accurate results for members displaying very slender webs, i.e., members 

for which distortional buckling is triggered (governed) by the flexural instability of the 
web (i.e., high b,/bfvalues), as recently pointed out by Schafer (2000). In fact, for high 
b,/bf values, the rotational stiffness k, becomes negative and the method ceases to yield 
meaningful results2• It is worth mentioning that, in order to overcome this limitation, 
relatively minor alterations to Lau & Hancock's approach were proposed by Davies & 
Jiang (l996a, 1996b), both for columns and beams. 

I Analytical procedures is probably a better way to describe this approach. 
2 In order to overcome this limitation, Hancock et al. (1996) proposed a modified procedure for flexuml members. 
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Also motivated by the inability of Lau & Hancock's approach to handle the situations in which 
krp<O, Schafer (1997) developed a slightly different methodology to calculate O'dist estimates, 
applicable to either columns or beams. The novel idea behind such methodology, which still 
employs the structural model depicted in figure l(c), consists of expressing k¢ explicitly in terms 
of the bifurcation stress, by including the web stiffness reduction due to geometrical effects. This 
idea makes it possible to obtain, after some simplifications!, an analytical expression which (i) 
provides directly the O'dist estimate (no iteration required) and (ii) is also valid when krp< O. 

On the other hand, the Generalized Beam Theory (GBT - Schardt, 1989, and Davies et al., 1994), 
has also been employed to develop an expression to evaluate O'dist in thin-walled columns with 
pinned and free-to-warp end sections (Davies & Jiang, 1998). However, since such an expression 
requires the knowledge of a "distortional cross-section geometrical property", which can only be 
determined through an involved numerical procedure (first order GBT), it seems fair to argue that 
its "analytical character" is quite debatable. The objective of this work is to present the derivation 
and illustrate the application of a number of fully analytical GBT-based formulae to estimate 
distortional bifurcation stresses in cold-formed steel channel columns (uniformly compressed 
members) and beams (members under major axis bending) with arbitrarily inclined single-lip edge 
stiffeners (see figure l(a)), including hat-sections (8=-90'). Two support conditions are dealt 
with, namely members with end sections (i) pinned and free-to-warp or (ii) fixed and warping­
free. In order to (i) assess the accuracy and validity and (ii) show the potential of the derived 
analytical expressions, several numerical results are presented and discussed. In particular, the 
analytical estimates provided by the GBT -based formulae are compared with the (i) results of 
exact linear stability analyses and, for some pinned/free-to-warp members only, also with (ii) the 
values yielded by the formulae developed by Lau & Hancock (1987) and Schafer (1997). 

2. BRIEF GBT OUTLINE 

The Generalized Beam Theory (GBT) was first developed by Schardt (1989), in the context of 
isotropic thin-walled members, and later extensively employed by Davies et al. (1994, 1998) to 
investigate the stability behavior of cold-formed steel structural elements. It has been shown to 
provide a general and unified approach to obtain accurate and clarifying solutions for a wide 
range of structural problems, namely buckling (bifurcation) problems. In fact, by decomposing 
the member deformed configuration (buckling mode shape) into a linear combination of cross­
section deformation modes (including local modes, which involve using folded-plate theory) GBT 
offers unique possibilities, which complement and compete with the use of powerful numerical 
techniques, such as the finite element or finite strip methods. The distortional buckling formulae 
developed here provide a perfect illustration of this statement. 

It is beyond the scope of this paper to present a detailed and/or complete account of the second 
order GBT formulation, which can be found elsewhere (Davies et al., 1994, and Silvestre & 
Camotim, 2002). Instead, only the concepts, expressions and procedures more closely related to 
the derivation of the distortional buckling formulae will be very briefly overviewed. Then, let us 
start by considering the system of GBT equilibrium equations 

1 Although Schafer's methodology is applicable to a wider range of cross-sections, the (unavoidable) simplifications 
involved are also responsible for a (small) decrease in accuracy, with respect to Lau & Hancock's approach. 
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, (1) 

which describes the structural behavior associated to member deformed configurations combining 
two distinct cross-section deformation modes, here designated as modes 17 and~. In equations (1), 
(i) x is the member axial coordinate, (ii) ¢,,(x) and ¢lx) are the two "modal amplitude functions", 
defined along the member length, (iii) E and G are Young's and shear moduli and (iv) Oox=d(-)/dx. 
Moreover, notice that, in each equation, (i) the first three terms correspond to the member linear 
behaviour and (ii) the last term, related to the second order effects, accounts for all the interaction 
between in-plane stresses and out-plane deformations. Finally, the components Ck (generalized 
warping constant), Dk (generalized torsion constant), Bk (generalized transverse bending stiffuess) 
and Xpjk (geometric stiffuess related to the applied stress resultant Wp) are given by (k= 17, ~ 

Bk =KI wi....,ds (2) 
s 

where (i) t is the wall thickness, (ii) K is the wall bending stiffuess (K=ErI12(1-V)), (iii) s is the 
coordinate along the cross-section mid-line, (iv) u and v are membrane displacement components 
along x and s, respectively, and (v) w is the flexural displacement component. In columns, the 
stability analysis requires considering up=1 (uniform normal stress diagram), which leads to 
Wp=P (compressive axial force) and Cp=A (cross-section area). In beams, on the other hand, it is 
necessary to consider up=z (linear normal stress diagram) and one has Wp=M (major axis 
bending moment) and Cp= I (major axis moment of inertia). 

It is also important to address the GBT modal decomposition of the column and beam distortional 
buckling mode (DM) shapes, already presented in figure J(b): 

(i) In columns, the DM shape coincides with the symmetric distortional (SD) deformation 
mode shown in figure 2(a). 

(ii) In beams, the DM shape combines the two deformation modes depicted in figure 2(b), 
namely (iiI) a symmetric (SD) and (ih) an anti-symmetric (AD) distortional modes. 

SD SD 

........ 1 _________ l/ 

(a) (b) 

Fig. 2 - Most relevant GBT deformation modes for distortional buckling: (a) columns (b) beams 
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3. LINEAR STABILITY ANALYSIS 

Once (exact or approximate) analytical expressions to describe the amplitude functions of the two 
deformation modes participating in the buckling mode (¢q(x) and ¢lx)) are known, it is possible to 
obtain formulae which provide bifurcation stress estimates. In order to achieve this goal, let us 
write ¢q(x) and ¢lx) in the form 

, (4) 

where (i) ary and a~ are the deformation mode magnitudes and (ii) ~(x) is a shape function which 
describes, either exactly or approximately, their (identical) longitudinal variation. Introducing 
these expressions in equations (1) and applying Galerkin's method l , one is led to the eigenvalue 
problem defined by 

(5) 

where (i) the eigenvalues are the applied stress resultants (Wb), (ii) the eigenvector components 
are the deformation mode magnitudes ({a}) and (iii) one has (i= 17, r;) 

K; =EC;-~--+GD; +B;-~-- . (6) 

J ~:dx J ~:dx 
o 0 

Since all shape functions (~(x)) employed in this work are trigonometric (i.e., periodic with n 
half-waves), a change-of-variable procedure is required in order to obtain analytical expressions 
providing the "critical length" value (Lcr), i.e., the member length associated to a minimum 
bifurcation stress. Incorporating such change-of-variable, defined by y= 7lXIL, in (6) leads to 

} ¢"2dy }~~dy 
f.lo =-~-- f.l __ 0 __ _ 

c - " . (7) 

J ~;dy J ~;dy 
o o 

It is still worth noticing that, if more than two deformation modes are considered and the steps 
just described are followed, one is led to the solution of an eigenvalue problem analogous to (5) 
but of an higher dimension2. Since, in general, such problems cannot be solved analytically, it is 
not possible to derive formulae to estima~e bifurcation stresses and critical bifurcation lengths and 
one must resort to numerical solutions. Finally, it is important to realize that the parameters f.lB 

and f.lc do not depend on the particular combination of deformation modes chosen to participate in 
the buckling mode. In fact, these two parameter values are only influenced by the amplitud,e 
function ¢(y) characteristics, i.e., the member end support conditions half-wave number (n). 

I Naturally, ~(x) must satisfy all the boundary conditions concerning modes 17 and ~ (assumed here to be identical). 
2 The decision concerning how many and which deformation modes to consider depends on an a priori knowledge 

of their relevance and depends on several factors, namely on the member cross-section shape and dimensions. 
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3.1 Buckling Involving a Single Deformation Mode 

Let us consider a situation in which the member buckling mode shape coincides with a GBT 
deformation mode, generally designated as "mode rf'. Then, solving the eigenvalue problem 
defined by the system (5) simply consists of annulling its first diagonal component, which leads to 

, (8) 

a general expression providing, in terms of the member length L, the stress resultant value 
associated to bijitrcation in mode 1]. In order to obtain the critical length value Lcr, yielding the 
minimum bifurcation stress value (Wh.min), one just needs to find the relevant root of dWbldL=O, 
which is given by the formula 

(9) 

and corresponds to 

2~ECqBq~f.iCf.iB +GDq W. = --'---'---..:.-'----...:... b.min X 
q 

. (10) 

The above expressions can be readily applied to obtain Lcr and Wh.min estimates concerning the 
distortional buckling of columns, which stems from the fact that, as mentioned earlier, this 
buckling mode coincides with the SD deformation mode (see figure 2(a». In fact, it suffices to 
determine the C,." B,." D,., and X,., values for I]=SD. 

On the other hand, expressions (9) and (10) do not apply to the distortional stability of beams, as 
the buckling mode combines the SD and AD deformation modes (see figures l(b2) and 2(b ». 

3.2 Buckling Involving Two Deformation Modes 

When the member buckling mode shape can be obtained by combining two GBT deformation 
modes (say modes I] and ,g), it is still possible to solve analytically the eigenvalue problem 
defined by (5). Then, the stress resultant value associated to bifurcation in a combination o/modes 
I] and <% can be estimated, again in terms of the member length L, by means of 

KqX~ +K~Xq -~(KqX~ -K~Xq/ +4KqK~X~~ 
Wb = 2 

2( XqX~ -Xq~) 
. (11) 

In general, a highly non linear relation exists between Wb and L, which makes it impossible to 
find the relevant root of dWJdL=O analytically. Obviously, this fact precludes the derivation of 
general expressions to estimate Ler and Wh.min. However, for the specific buckling phenomenon 
dealt with in this work (beam distortional buckling), it is still possible to obtain reasonably simple 
and accurate formulae to determine the above quantities. Such task is performed next. 
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After assuming 17~D and ,;=04D (see figure 2(b», one realizes that the geometric stiffness matrix 
is notfull (XSD=O, XAD=O and XSD.AD7"f), i.e., null diagonal components), a feature which makes 
the analytical determination of Ler and Wb.min feasible. In fact, for this particular case, expression 
(11) can be considerably simplified, to read 

, (12) 

and the condition dWbldL=O corresponds to the fourth order polynomial (Z=L2/,() 

2BSDBADP~Z4 + GPB( BSDDAD + BADDsD)Z' - EGPc(CSDDAD + C ADDSD)Z - 2E2CSDCADP~ =0 , (13) 

the relevant root of which (Zdis,) yields the distortional critical length value LdisF n'liZdis,. However, 
after a successful attempt to keep the procedure fully analytical, it was found that the expression 

. (14) 

estimates Ldis, quite accurately (the errors never exceed 1 %). Then, taking into account that 

. (15) 

and introducing the (exact or approximate) value of Ldis, in (12), one is led to an expression which 
provides the beam minimum distortional bifurcation stress resultant (bending moment). 

4. DISTORTIONAL BUCKLING FORMULAE 

Since the application of the distortional buckling formulae developed in the previous section 
depends on the knowledge of (i) the GBT cross-section modal mechanical (C~, B~ and D~) and 
geometrical (X~) properties and (ii) the member end support conditions (f.iB and JIc), it is now 
necessary to provide expressions which yield the values of such quantities, in terms of the cross­
section dimensions (bw, bl , b" e and t) and steel elastic constants (E and v). The expressions 
presented next were derived by means of the symbolic manipulation program MAPLE (WMS, 
2001) and enable the use of distortional buckling formulae related to the following problems: 

(i) Column distortional buckling (Wdis,=P dis,). 
(ii) Beam distortional buckling (Wdis,=Mdis,)' 

4.1 End Support Conditions 

As mentioned earlier, members with two different end support conditions are considered in this 
work, namely members with (i) pinned and free-to-warp and (ii) fixed and warping-free end 
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sections. In the first case, the amplitude functions adopted are ¢ (y ) = sin( ny ), which constitute 
exact solutions of equations (1) and lead to (see (7)) 

. (16) 

In the second case, the amplitude functions adopted are ¢ (y ) = sin( ny ) sin( y ), which satisfy all 
the member end support conditions and were successful used by Bradford & Azhari (1995), in the 
context of plate linear stability finite strip analyses. Such functions constitute approximate 
solutions of equations (1) and their introduction in (7) yields 

3 (if n = 1) or 2 (if n ~ 2) 
fI -

B - (n-1/ +(n+1/ 

4.2 Cross-Section Modal Properties 

(n-1/ +(n+1/ 
fie = 

. (n-1/ +(n+1/ 
. (17) 

The derivation of the formulae providing the cross-section modal properties requires a sequential 
procedure, which will be described here for the general case of channels with arbitrarily inclined 
sloping edge stiffeners (see figure lea)). Moreover, two particular sets offormulae, applicable to 
the commonly used (i) channels with orthogonal lips (()= 90') and (ii) hat-sections (()= -90 '), are 
included in an annex, presented at the end of the paper. Let us now turn our attention to the above 
mentioned sequential procedure, which involves the following steps and expressions: 

(1) Determination of geometrical and mechanical parameters (ai, a2, fJI, fJ2, K, A and 1) 

b 
a -....l... 1-

b" 

(II) Determination of nodal warpingfunction values (UI and U2) 

(II. 1) SD mode (columns and beams) 

UI.SD =-.!!..L[fJpI + fJ2(2al +a2)J 
YO.SD 

(II.2) AD mode (beams) 

U2.SD = --.!!..L[fJJ2al +3)+ 2fJJ a l + 1)J 
YO.SD 

u lAD = ~(fJI[3al +4fJ2(5al + 3a2)J +3fJJ2a, +a2)} 
YO.AD 

U2.AD =-~{fJ,[3(2a, +l)+4fJ2(4a, + 1)J + 2fJ2(3a, +1)} 
YO.AD 
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(III)Determination of nodal transverse bending moments (m) and wall element chord rotations 
(CPo, CPl and CP2,) and displacements (wo, Wl and W2) - SD and AD modes 

Mode Yl Y2 Y3 Y4 Y5 Y6 
SD 3 0 0 0 1 15 
AD 1 2fJ2(U,-2u/) 2fJ2U/ 1 0 1 

(lV)Determination of cross-section modal mechanical properties (C'7' B'7 and D'7): 
CSD, BSD and DSD (columns) and CSD-CAD, BSD-BAD and DSD-DAD (beams) 

B=m2bJ2al + yl ) 
3K 

(V) Determination of cross-section modal geometrical properties (X'7) 

(V.I) XSD (columns) 

x _~[~+ X2b~ ] 
SD - A ap2bw 7560K 2 

Xl = 2alu2 -1/ +2a2(u2 -ul / +ap2b;(2a2w~ +2alwi +w~) 

X 2 = m2b;(32a; + 63) + 42mcplKbwa1 + 1260K[m(wo + aiwl ) + K( a;cp~ +aicpi)] 

(V.2) XSD.AD (beams) 

Xl = al1- fJ2)(U2.SD -1)(u2.AD -1) + a 2(u2.SD -Ul.SD)(U2.AD -Ul.AD )+ 

+ ap2b,~[alwl.SD WI .AD + a 2 W2.SD W2.AD (1- fJ2)] 
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X 2 = mSD mADb;(32a; +3J+1260K2bw[a;rpISDrpl.AD +a;rp2.SDrplAD(l- fJ2J} 

X3 =21Kb~[ -3mSD rpO.AD +a1(mSD rpl.AD + mADrpl.SDJ} + 

+ 42Kbw[mADwO.SD + 15a;(mSDwl.AD + mADwl.SDJ} 

X., = 1260K2 [ - WO.SDrpO.AD + 2a;fJ2(W2AD rp2.SD + W2.SD.rp2.AD)} 

5. ILLUSTRATION AND VALIDATION 

In order to illustrate the application and validate the proposed distortional buckling formulae, the 
following numerical results are presented next: 

(i) First, for a specific cross-section geometry, the steps involved in the use of all the formulae 
derived here are reported in great detail. In particular, (il) the results presented concern 
the four kinds of members dealt with in this work (pinned and fixed columns and beams) 
and (iz) all the numerical values involved in the application of each formula are provided. 

(ii) Then, for columns and beams displaying several combinations of cross-section geometry 
and end support conditions, the critical bifurcation stresses are evaluated and compared 
with (iiI) exact numerical GBT results, yielded by analyses accounting for all deformation 
modes, and, when possible, also with (iiz) values provided by the formulae developed by 
Lau & Hancock, Hancock and Schafer (only applicable to pinnedlfree-to-warp members). 

Finally, some differences between the nature of the distortional bifurcation stress values presented 
for pinned/free-to-warp and fixed/warping-free columns and beams should be pointed out: 

(i) All the values concerning pinned/free-to-warp members are minimum values, i.e., they (il) 
are associated to the member critical length Ldist, yielded by expression (9) (columns) or 
(14) (beams), and (iz) correspond to a single-wave critical buckling mode (n=l). 

(ii) In fixed/warping-free members, since the critical buckling mode often exhibits more than 
one half-wave, it makes no sense to talk about "the minimum bifurcation stress value". In 
fact, there exists one such value per half-wave number and, moreover, it may happen that 
neither of them is associated with the critical stress of any specific member. Therefore, it 
is only meaningful to estimate distortional bifurcation stresses for (iiI) a member with a 
given length (L) and (iiz) a buckling mode exhibiting a given half-wave number (n)l. 

5.1 Illustrative Example 

The cross-section geometry selected to illustrate the application of the derived formulae is defined 
by bw=120 mm, bj60 mm, bs=15 mm, t=1.5 mm and 0=45 °and the cold-formed steel properties 
adopted are E=200 GPa and lFO.3. First of all, it is necessary to compute the cross-section 
modal properties, using the expressions presented in section 4.2. Their values are: 

(I) Geometrical and mechanical parameters: 

a 2 =0.125 fJ2 = 0.0884 

I The half-wave number leading to the minimum bifurcation stress value varies with the member geometry. 
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K=61813 Nmm A=405 mm2 1= 999050 mm 4 

(II) Nodal warping values, transverse moments and chord rotations/displacements 

SDmode 

UI .SD = 0.0490 mm U2.SD = -0.3176 mm mSD = 1.6784 Nmmlmm 2 

({JO.SD = 0 ({JJ.SD = 0.00217 radlmm ({J2.SD = 0.00244 radlmm 

WO.SD = 0.0061 mmlmm WI .SD = -0.0652 mmlmm W2.SD = -0.1148 mmlmm 

AD mode 

U!.AD = 0.1484 mm U2.AD = -0.3788 mm mAD = 3.8645 Nmmlmm 2 

({JO.AD = -0.00015 radlmm ({J!.AD = 0.00235 radlmm ({J2.AD = 0.00298 radlmm 

WO.AD =0 WI .AD = -0.0682 mmlmm W2.AD = -0.1267 mmlmm 

(III) Cross-section mechanical and geometrical properties (SD and AD modes) 

CSD = 17.443 mm4 CAD = 19.3505 mm 4 BSD = 0.00729 Nlmm 2 

BAD = 0.01933 Nlmm2 

DAD =0.00114 mm2 

D~~ = 0.00084 mm2 

X SD = 0.005416 

D;;r= 0.00097 mm2 

X SD.AD = 0.000115 mm-I 

Moreover, the expressions presented in section 4.1 yield the values of the parameters related to 
the member end support conditions. For instance, ifn=l, they read: 

,utx = 0.75 

Finally, introducing the above results in the expressions presented in sections 3.1 and 3.2, one 
obtains estimates for the (i) critical lengths and bifurcation stress resultants (pinnedlfree-to-warp 
column and beam) and (ii) bifurcation stress resultants for given member length and number of 
buckling mode half-waves (L= 1000 mm and n= 1-3, in this particular case). Such estimates are 
presented next, together with the exact GBT values (indicated between square brackets): 

(i) Pinnedlfree-to-warp column: LdisF465 mm [460] and Pdis'= 70.8kN [71. 7]. 
(ii) Pinned/free-to-warp beam: LdisF417mm [420] and MdisF4351 kNmm [4369]. 
(iii) Fixed/warping-free column: Pdis'= 141 (n= 1); 93 (n=2); 114kN (n=3) [91 - n=2]. 
(iv) Fixedlwarping-free beam: MdisF9945 (n=I); 5494 (n=2); 6114kNmm (n=3) [5435 - n=2]. 

5.2 Comparison with Other Available Formulae and Exact (GBT) Values 

Tables 1 and 2 show, respectively for pinned/free-to-warp columns and beams, the minimum 
flange! distortional bifurcation stress values (in MPa) concerning several cross-section geometries 
and for E= 200 GPa, IF 0.3, t= 1 mm. Such values were obtained from (i) the formulae proposed 
in this work and, for comparison and validation purposes, also from (ii) the formulae developed 
by Lau & Hancock (1987), Hancock (1997) and Schafer (1997) and (iii) exact GBT analyses. 

I Notice that, in the case of hat-section (8=-90') beams, the flange stress is not the maximum applied stress. 
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The observation of the results displayed in tables I and 2 leads to the following conclusions: 

(i) For the cross-section geometries dealt with, the GBT-based formulae consistently yield 
quite accurate estimates for both columns and beams. In fact, the average and standard 
deviation values of the ratio O'dis!O'd.ex read (i1) 1.01 and 0.040, for columns, and (h) 1.02 
and 0.033, for beams. Moreover, with a single exception, the error never exceeds 7%. 

(ii) Both for columns and beams, the GBT-based results always compare quite favourably 
with the values provided by the other formulae. However, it should be mentioned that, for 
members with predominantly slender webs (bwlbj > 2), the estimates yielded by the GBT­
based and Schafer formulae display a similar accuracy and both of them tend to be more 
precise than the ones due to Lau & Hancock or Hancock. 

(iii) For beams, while the formulae developed by Hancock and Schafer yield quite a significant 
number of rather unconservative estimates, the GBT -based estimates never overestimate 
O'disl by more than 7% and only four of them fall outside the 5% error range. 

(iv) Unlike the GBT-based formulae, the other formulae are not able to distinguish between 
channel and hat-section members with the same cross-section dimensions. This limitation 
becomes quite severe in the case of beams, as shown by the results displayed in table 2. 

Table 1. Minimum distortional bifurcation stresses for pinned/free-to-warp columns 

Exact Lau & Hancock Schafer GBT 
e bw br bs (J"d.ex (J"dist O'dis!O'd.ex G'dist O'dis!O'd.ex (J"dist O'dis! O'd.ex 

~ 156 163 1.05 153 0.98 164 1.05 

~ 5 81 81 1.00 82 1.02 79 0.98 I 

90 40 41 1.05 44 1.12 39 0.99 I 90° 
~ 243 284 1.17 270 1.11 269 1.10 

~ 10 145 141 0.98 152 1.05 146 1.01 I 

I-- 90 77 75 0.99 86 1.12 78 1.01 

J.L 118 3 0.02 109 0.93 116 0.98 

~ 125 133 1.06 118 0.94 124 1.00 

~ 
5 64 64 1.01 65 1.02 60 0.95 

45° 90 90 32 34 1.07 36 1.13 30 0.97 

~ 153 150 0.98 177 1.15 165 1.07 

~ 178 201 1.13 184 1.04 i84 1.03 

~ 
10 103 102 0.99 108 1.04 102 0.99 

I-- 90 55 56 1.01 62 1.12 56 1.00 i 
~ 170 163 0.96 153 0.90 181 1.06 I 

~ 5 82 81 0.99 82 1.01 80 0.98 
90 40 41 1.04 44 1.12 40 0.99 

_90° 
~ 316 284 0.90 270 0.85 339 1.07 

~ 10 151 141 0.94 152 1.01 151 1.01 
90 77 75 0.98 86 1.11 78 1.01 

Mean 1.02 Mean 1.04 Mean 1.01 
Sddev. 0.064 Sddev. 0.086 Sddev. 0.040 

I This value does not include the "meaningless" O'd,jO'd.,x=O.02 estimate, which stems from the very slender web 
(b.,.lbr5) - the web rotational stiflhess becomes negative and the tau & Hancock formulae should not be applied. 
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Table 2. Minimum (flange) distortional bifurcation stresses for pinned/free-to-warp beams 

Exact Hancock Schafer GBT 
(} bw bf bs ad.ex G'dist adis,! ad.ex adist (Ydis! (Jd.ex G'dist adis,!adex 

30 340 340 1.00 330 0.97 339 1.00 
60 5 103 115 1.12 113 1.10 105 1.02 

90° 
90 47 57 1.21 56 1.20 48 1.02 

~ 555 523 0.94 499 0.90 564 1.02 

~ 10 198 207 1.04 205 1.03 208 1.05 
90 95 107 1.13 108 1.14 101 1.07 -
18 460 453 0.99 445 0.97 437 0.95 
~ 257 256 1.00 257 1.00 249 0.97 
To 5 79 90 1.14 90 1.14 79 1.00 

45° 90 ~ 36 46 1.27 45 1.26 37 1.03 

~ 514 537 1.05 495 0.96 505 0.98 
30 355 354 1.00 337 0.95 353 0.99 

To 10 136 147 1.08 144 1.06 140 1.03 

r--- ~ 68 78 1.15 78 1.15 70 1.03 

~ 326 340 1.04 330 1.01 327 1.00 
60 5 98 115 1.18 113 1.16 100 1.02 

_90° 90 45 57 1.27 56 1.25 47 1.03 

~ 468 523 1.12 499 1.07 496 1.06 

~ 10 168 207 1.23 205 1.22 179 1.06 
90 83 107 1.29 108 1.30 89 1.07 

Mean 1.11 Mean 1.09 Mean 1.02 
Sd.dev. 0.105 Sd.dev. 0.117 Sd.dev. 0.033 

Next, tables 3 and 4 show results dealing with fixed/warping-free columns and beams, again for 
several cross-section geometries and E=200 GPa, \F0.3. As there are no distortional buckling 
formulae available for fixed/warping-free members, the GBT-based estimates are only compared 
with exact GBT values. However, for validation purposes, all the column dimensions considered 
here correspond to results reported by Lau (1988) and obtained by means of the spline finite strip 
method '. It is still worth mentioning that the estimates displayed in tables 3 and 4 correspond to 
the minimum value provided by the GBT-based formulae concerning n=l, 2, 3, .... The buckling 
mode half-wave numbers (n) leading to such minimum values ar~ indicated in the tables. 

The observation of the results displayed in tables 3 and 41eads to the following conclusions: 
(i) The GBT -based formulae continue to provide quite accurate estimates, both for columns 

and beams. The average and standard deviation values of adis,!adex read now (i,) 1.00 and 
0.054, for columns, and (h) 1.05 and 0.033, for beams. 

(ii) All the three "worst" predictions overestimate the exact values by 10-11 % and correspond 
to the occurrence of a single-wave buckling mode (n= 1). The results of the GBT exact 
analyses showed that this relative lack of accuracy stems from web or compressed flange 

1 The GBT exact and approximate results displayed were obtained after "replacing" the web-flange and flange­
stiffener corners by larger width values (corner radius values were added to the width values). Although Lau 
assumed "fictitious" 45°-inclined corner finite strips, the exact GBT and spline finite strip results virtually coincide. 
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flexural deformation (local-plate mode) effects, which are not fully accounted for by the 
formulae. Such effects are less relevant for two or more half-wave bucking modes (n;?2). 

(iii) Excluding the three cases discussed in the previous item, the estimates provided by the 
GBT-based formulae exhibit errors never exceeding 8%. Moreover, such estimates are 
mostly (iii1) conservative, for the columns, and (iih) unconservative, for the beams. 

Table 3. Critical distortional bifurcation stresses for fixed/warping-free columns 

e bw bl b. t L ad.ex n G'dist G'di,fl ad.ex 

1640 300.3 3 315.5 1.05 
88.6 67.4 13.0 1.670 1900 294.6 4 308.3 1.05 

700 489.2 1 540.1 1.10 
1100 432.9 2 412.6 0.95 

90° 87.7 67.1 1.996 1370 414 3 386.4 0.93 
12.6 1900 389.4 4 363.5 0.93 

800 629.1 2 599.4 0.95 
85.6 63.0 2.394 1100 561.9 3 547.5 0.97 

1500 523.1 4 506.4 0.97 
1300 270.3 2 283.6 1.05 

12.9 1.666 1500 264.2 3 279.4 1.06 
_90° 89.2 77.2 800 425.8 1 442.5 1.04 

12.6 1.976 1300 350,4 2 336.8 0.96 
82.6 85.7 12.8 2.381 800 464.4 2 471.3 1.01 

Mean 1.00 
Sddev. 0.054 

Table 4. Critical (flange) distortional bifurcation stresses for fixed/warping-free beams (t=1 mm) 

e bw bl b. L ad.ex n ad/.t O'disl ad.a 

30 
700 690 2 703 1.02 
1000 624 3 647 1.04 

60 
1100 249 2 261 1.05 

90° 1500 224 3 239 1.07 
900 152 1 167 1.10 

90 1500 119 2 127 1.06 

>--- 90 10 2000 108 3 116 1.08 

30 
600 436 2 434 1.00 
800 398 3 401 1.01 

60 
1000 166 2 174 1.05 

45° 1300 153 3 159 1.04 
800 103 1 115 1.11 

90 1300 84 2 87 1.04 
1700 76 3 80 1.05 

Mean 1.05 
Sddev. 0.033 
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6. CONCLUSION 

After a brief overview of the Generalized Beam Theory (GBT) fundamentals and linear stability 
analysis procedure, the paper described and discussed the various steps involved in deriving fully 
analytical distortional buckling (approximate) formulae, in the context of cold-formed steel lipped 
channel members. An important feature of the proposed GBT -based formulae resides in the fact 
that they automatically incorporate folded-plate theory concepts and, therefore, directly (although 
partially) account for flexural deformation (local-plate mode) effects. 

Fully analytical GBT -based formulae were developed, which provide distortional critical lengths 
and bifurcation stress resultant estimates for channel columns and beams with arbitrarily inclined 
single-lip edge stiffeners and pinned/free-to-warp or fixed/warping-free end sections (simpler 
formulae for orthogonal-lip channels and hat-sections were also presented in annex). It is worth 
mentioning that using the above formulae involves the sequential calculation of quantities, by 
means of analytical expressions which can be readily programmed even in a hand calculator. 

The application of the proposed formulae was illustrated by means of a detailed analysis of a set 
of four identical columnslbeams with pinned/free-to-warp or fixed/warping-free end sections. In 
addition, the accuracy/validity of the GBT -based estimates were assessed through comparisons 
with (i) exact GBT numerical results and, for pinned/free-to-warp members only, also with (ii) 
values yielded by formulae developed by Lau & Hancock, Hancock and Schafer. Columns and 
beams with several cross-section shapes (orthogonal and sloping-lip channels and hat-sections) 
and dimensions were considered and the results obtained led to the following main conclusions: 

(i) The GBT -based formulae consistently yielded quite accurate estimates for pinnedlfree-to­
warp and fixed/warping-free columns and beams. In fact, the four sets of adis/adex values 
exhibited averages and standard deviations varying from 1.0 to 1.05 and 0.033 to 0.054, 
respectively. Moreover, a large number of estimates fell inside the 5% error range. 

(ii) For pinned/free-to-warp columns and beams, the GBT-based estimates always compared 
quite favourably with the values yielded by the formulae developed by Lau & Hancock, 
Hancock and Schafer. 

(iii) For beams, either pinnedlfree-to-warp or fixed/warping-free, the GBT-based estimates 
were found to have a tendency to slightly overestimate the exact bifurcation stress values, 
as indicated by the adis/ad.ex average values of 1.02 and 1.05. However, such values also 
exhibited a rather low scatter - the standard deviation value was 0.033 in both cases. 
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8. ANNEX: Formulae for Orthogonal-Lip Channel and Hat-Section Members 

In the case of orthogonal-lip channel ((} =+ 90") and hat-section (()= -90 ") members, some of the 
expressions presented in section 4.2 can be simplified. In fact, noticing that (i) fJr~oo and that (ii) 
the top (bottom) sign corresponds to orthogonal-lip channels (hat-sections), one has: 

1= b;t [1 +6aJ + 2a2 (3+6a2 +4a;)] 
12 
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