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Abstract: - In this paper, a functional k-potent matrix satisfies the equation k rA I Aα β= + , where k and r are 

positive integers, α and β are real numbers.  This class of matrices includes idempotent, Nilpotent, 

and involutary matrices, and more.  It turns out that the matrices in this group are best distinguished 
by their associated eigen-structures.  The spectral properties of the matrices are exploited to construct 
integral k-potent matrices, which have special roles in digital image encryption.   
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1   Introduction 

    Let n nA C ×∈  be an n by n complex matrix and it is 

said to be idempotent if 2A A= .  This definition can be 

generalized to a higher power on A, if kA A=  for some 
positive integer 2k ≥ .  With the same condition on A, 

if 0kA = , a zero matrix, for some positive integer k, the 
matrix is called a nilpotent matrix.  Another important 

class of matrices is called involutary, i.e. 2A I= , the 
identity matrix.  We define the unipotent matrix as a 
natural extension of the involutary matrix as follows: a 

matrix A is unipotent if it satisfies kA I= , for some 
positive integer k. A skew-periodic matrix 

satisfies kA A= − , while a skew unipotent matrix is 

defined as kA I= − .  All the above mentioned special 
matrices can be unified by a single equation: 

                     kA I Aα β= + ,                       (1)                                         

where { }0, , 1,0,1 , and 2.kαβ α β= ∈ − ≥   A matrix A is 

said to be k-potent if it satisfies (1).  Consequently, we 
introduce the class of k-potent matrices, 
 

{ }{ }, | , 0, , 1,0,1 ,  2kA A I A kα β α β αβ α β< >Ω = = + = ∈ − ≥ (2) 

 
With (2), the relation between the subset of periodic 
matrices and unipotent matrices are readily seen, so are 
the skew-periodic and skew-unipotent matrices. It is not 
difficult to verify that 1,0 0,1< > < >Ω ⊂Ω  and 

1,0 0, 1<− > < − >Ω ⊂Ω .  The results can be made stronger if 

we impose that the matrices in 0, 1< ± >Ω be invertible. In 

that case, those subsets are identical, i.e. 

1,0 0,1< > < >Ω =Ω  and 1,0 0, 1<− > < − >Ω =Ω .  Next, we 

introduce an index number for a matrix in ,α β< >Ω .  It 

turns out that such an index number is closely related to 
the eigen-structure of the matrix.  The index number of 
a k-potent matrix, ,I α β< > , is defined as 

 

                      ,

2

min
kA I A
k

I kα β
α β

< >
= +

≥

=                                (3) 

 
which is understood as the smallest positive integer that 

satisfies kA I Aα β= + . 

   Some of the k-potent matrices, for instance, the 
nilpotent matrix, are mentioned occasionally in linear 
algebra textbooks, such as [1] and [2], in the context of 
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eigenvalue problems of a matrix.  However, they are 
not studied in details in those books.  It is also hard to 
find relevant discussions over such matrices, let alone 
the more generalized the k-potent matrices defined in 
(1), in those more research-oriented handbooks in 
matrix theory, such as [3], [4], and [5].  The eigen-
structures of rational functions of tridiagonal matrices 
with closed form expressions were obtained in [6], 
where the tridiagonal matrix is raised to a positive 
integral power. Steinberg, et. al. [7] studied the 
solvability of differential algebraic equations with a 
nilpotent matrix as the descriptor.  Bakasalary, et. al. 
published a series of papers [8-11] on the idempotency 
of linear combinations of idempotent and tripotent 
matrices.  However, a thorough discussion on the eigen-
structures of the various matrices of interest is missing 
from the literature. The purpose of this paper is to 
characterize these k-potent matrices via the canonical 
forms associated with the matrices. The result turns out 
to be useful for systematic construction of such 
matrices via a similarity transformation over the integer 
field. The proposed algorithm could be favored by 
instructors who teach linear algebra or numerical 
analysis at time they want to come up with their own 
special matrices for their examinations or projects.  The 
results of this paper can be appealing to the 
cryptography community because k-potent matrices are 
useful in digital signal encryption, which will also be 
explored in this paper.   
    In the past decade or so, image encryption techniques 
were developed to keep up with the pace of the growth 
of internet and multimedia communications.  There are 
hard encryption and soft encryption approaches.  Most 
digital images are scrambled with soft encryption, 
which is also the choice of encryption as a component 
of the proposed UAS.  Most image encryption methods 
can be classified as the DCT-based techniques, DWT-
based (Discrete Wavelet Transform) techniques, 
transformations, and chaotic maps.  Both DCT and 
DWT-based techniques are known as compression 
oriented schemes.  The well-received MPEG encryption 
was first proposed by Tang [12] and is called “zig-zag 
permutation algorithm”.  The idea is to substitute the 
fixed zig-zag quantized DCT coefficient scan pattern by 
a random permutation list.  A number of improvements 
on MPEG encryption were developed thereafter [13-
14].  The DWT-based method, [15-16], takes advantage 
of the efficient image compression capability of 
wavelet networks through multi-resolution analysis 
integrated with block cipher data encryption.  Some 
public key cryptographic systems uses Jacobian group 
of Cab curves, which is defined by a multi-variable 
polynomial function to perform the encoder and space 
time operations [17]. The chaos-based encryption of 
images employs the principle of applying chaotic maps 

with strong perplexing characteristics, such as non-
periodic, non-convergent, randomness, and ergodic to 
the visual data.  The most common nonlinear chaotic 
maps inherit properties as discrete cryptographic 
systems.  Such systems are hybrids between 
permutation and substitution ciphers with specific 
properties.  Scharinger [18] was the first to apply a 
class of nonlinear maps known as Kolmogorov flows 
for the digital encryption purpose.  More papers on 
chaotic encryption followed, such as the chaotic key-
based algorithms [19], chaotic systems for permutation 
transformation in images [20], and high-dimensional 
Arnold and Fibonacci-Q maps [21].  However, some 
chaotic cryptosystems have been identified susceptible 
to cryptanalysis due to the design disfigurement of their 
part-linear characters.  Some attack algorithms have 
been developed in [22-23].  A common concern of the 
aforementioned encryption methods arises from the 
decryption site, where the data is unscrambled.  In 
many occasions, the perfect decryption is impossible 
due to slight disparity of the encryption/decryption keys 
or simply roundoff errors in and out of the 
transformation domain.  In many applications, such as 
medical, military operations, and satellite image 
processing [24], the quality of the images transmitted to 
the receiver station is crucial during the decision 
making process.  Therefore, perfect reconstruction of 
the original image from the encrypted data is imperative 
when selecting various encryption methods, in addition 
to robustness to various attacks. 
     Images are stored in two-dimensional arrays, which 
make matrices the natural candidates for the kernels of 
encrypting operators.  Moreover, matrix multiplication 
is analogous to convolution/deconvolution between 
filters and signals.  The matrix kernel leaves signatures 
onto the image pixels and grey levels strictly over the 
integer field.  There will be no roundoff errors in the 
decrypted images; hence, perfect reconstruction of the 
original image is achieved.  The matrix considered in 
this paper is called k-potent integral matrix.  It is a 
generalization of nilpotent, idempotent, and involutary 
matrices. 

 

2   Eigen-structure of functional k-potent 

matrix and integral form 
    As discussed in the previous section, we are looking 
for integral matrices that satisfy (1).  Some of these 
matrices can be adopted in image encryption as the 
encryption keys.  One of the requirements for a robust 
cryptosystem is that the key space is infinite 
dimensional.  Well, how many integral matrices are 
there that satisfy (1)?  The answer is infinitely many.  
The following study will reveal a systematic approach 
for constructing such matrices, which turns out be 

WSEAS TRANSACTIONS on MATHEMATICS Yan Wu, Daniel F. Linder

ISSN: 1109-2769 245 Issue 4, Volume 9, April 2010



closely related to the eigen-structure of the k-potent 
matrix.  We will go through the case studies of some 
well-known matrices, and, more importantly, extend the 
results to higher k-values as in (1). 
    We first investigate the spectral decomposition of 
nilpotent matrices.  A square matrix A is such that 

0kA = , the zero matrix, for some positive integer k 
known as the index number of Nilpotency if the integer 

is the smallest positive integer so that 1 0kA − ≠ .  
Nilpotent matrices are useful in the design of digital FIR 
filter banks with unequal filter length. The eigen-
structure of a nilpotent matrix is revealed in what 
follows.  Note that most of the proofs are omitted due to 
limited space.  
   
Proposition 2.1 The eigenvalues of a nilpotent matrix 
are all zeros. 
 
Proof: Letλ be an eigenvalue and v the corresponding 

eigenvector of a nilpotent matrix A  satisfying kA =0, 

with 2k ≥ .Then, Av vλ= ,which yields 0 k kA v vλ= = .  
Therefore, 0.λ =  
 
Proposition 2.2 Suppose the square matrix A  is a 
nonzero nilpotent matrix, then A  is not diagonalizable. 
 
Proof:  Assume A is diagonalizable, then the spectral 

decomposition of the matrix is given by 1A P P−= Λ .  
According to proposition 2.1.1, 0A = , a zeros matrix, 
contradicting that A  is a nonzero matrix. 
 
Proposition 2.2 implies that the eigen-space associated 
with the zero eigenvalues is degenerate.  Such a matrix 
has a generalized spectral decomposition with Jordan 
canonical forms.  In other words, there are decoupled 
Jordan blocks inΛ .  In order to further explore the 
eigen-structure of a nilpotent matrix, we introduce a 
special nilpotent matrix called nilpotent Jordan block. 
 
Definition 2.1 The elements of a nilpotent Jordan block J 
satisfy 1ijJ = , if 1j i= + , and 0ijJ = , if  1j i≠ + . 

 

The following proposition will be used to link the index 
number of nilpotency for a nilpotent matrix to the size of 
the largest nilpotent Jordan block associated with the 
matrix. 
 
Proposition 2.3  Let mJ  be an m by m nilpotent Jordan 

block, and let 
k
ijJ be an element of the matrix k

mJ , 

2,3,...k = ,  then,   
 

   
1 if 

, 1,2,..., ,  2,3,...
0 otherwise

k
ij

j i k
J i j m k

= +
= = =


      (4)             

 
Proof:  Use mathematical induction. For the case 2k = , 
from the matrix product formula,  
 

2 1 1
1 1 2

1 1

1
m m

ij is sj is sj i i i i
s s

J J J J J J J+ + +
= =

= = = =∑ ∑  

which implies that 
2 1 if 2

0 otherwiseij

j i
J

= +
= 


, satisfying (4).  

Now, assume (4), we obtain 
1k

ijJ
+

, 

 
1 1

1
1 1

1
m m

k k k k
ij is sj is sj i k i ki i k

s s

J J J J J J J
+

+ + ++
= =

= = = =∑ ∑  

 

which establishes 1 1 if 1

0 otherwise

k
ij

j i k
J

+ = + +
= 


.  Therefore, 

formula (4) for an element of the matrix k
mJ  is valid. 

 
Proposition 2.3 reveals that the 1s’ on the off-diagonal of 
a nilpotent Jordan block mJ  are pushed over to the 

upper right corner as the power k increases.  

Consequently, it is easy to verify that k
mJ  becomes a 

zero matrix if k is greater than or equal to the size of the 

matrix mJ , i.e. 0(zero matrix)k
mJ =  if k m≥ . 

    Introduce the Jordan canonical form Λ  with nilpotent 
Jordan blocks along its main diagonal, and the off-
diagonal blocks are zero matrices, i.e. 
 
 

            

1

2

p

n

m

m

m

m

J

J

J

J

 
 
 Ο 
 
 
 Λ=
 Ο
 
 
 
 
  

⋱

⋱

                (5) 

 
where the dimension of the Jordan block 

im
J is 

 by , 1,2,..., .i im m i n=   We have the following result. 
 

Proposition 2.4 Let Λ  be the Jordan Canonical form (5) 
with nilpotent Jordan blocks along its main diagonal.   If 

{ }1 2max , ,...,p nm m m m= ,  then 
1

0pm −Λ ≠  and 

0.pmΛ =  
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Proof:  It is easy to verify that 
 

       

1

2

p

n

q
m

q
m

q

q
m

q
m

J

J

J

J

 
 
 
 
 
 
 
 Λ =
 
 
 
 
 
 
  

⋱

⋱

                  (6) 

 
Therefore, according to Proposition 2.3, the block matrix 

1p

p

m

m
J

−
in 

1pm −Λ  is a nonzero matrix because one 

element in 
1p

p

m

m
J

−
is nonzero, i.e. ( )1

1,
1p

p
p

m

m
m

J
−

= .  On 

the other hand, let pq m= , from Proposition 2.3, each 

block matrix on the main diagonal of pmΛ is a zero 
matrix because the power pm either exceeds or equals the 

size of any block matrix 
im

J  because 

{ }1 2max , ,...,p nm m m m= .  Hence, 0.pmΛ =  

 
Proposition 2.4 implies that the Jordan matrix Λ  is a 
nilpotent matrix, and the index number of the Nilpotency 
for Λ  equals the dimension of the largest nilpotent 
Jordan block in Λ . 
    The following result links the index number of a 
nilpotent matrix to the size of the largest nilpotent 
Jordan block associated with the matrix, which also 
plays an important role in the symbolic construction of 
nilpotent matrices to be discussed later. 

 

Proposition 2.5 The index number of a nilpotent matrix 
equals the size of the largest nilpotent Jordan block 
associated with the matrix. 
 
Proof: Let A be a nilpotent matrix.  Then, there exists a 
nonsingular matrix P such that a Jordan decomposition 

of the matrix exists, i.e. 1A P P−= Λ , where Λ is given 

by (5).  From 1 1( )k k kA P P P P− −= Λ = Λ , one can see 

that 0kA =  if and only if 0.kΛ =   According to 
Proposition 2.4, the smallest positive integer k satisfying 

0kΛ =  equals the size of the largest nilpotent Jordan 
block in .Λ   Therefore, the index number of a nilpotent 
matrix, 0,0I< > , equals the size of the largest nilpotent 

Jordan block associated with the matrix. 
 

    Our next group of matrices is in the category of 

periodic matrices.  A square matrix A such that  kA A=  
for k to be a positive integer is called a periodic matrix.  
If k is the least such integer, then the matrix is said to 
have period k-1. The well-known idempotent matrix 

i.e. 2A A= , is obviously a special case of the periodic 
matrix to be studied here.  Periodic matrices are useful in 
digital signal encryption such as image coding. We 
begin with exploring the spectral properties of a periodic 
matrix. 
 
Proposition 2.6 Let A be a periodic matrix with index 
number k and letλ be an eigenvalue of A, then 

{ } { }2 /( 1)0 , 0,1,..., 2i m ke m kπλ −∈ ∪ = − . 

 
Proof: Let  and vλ be the eigenvalue and corresponding 
eigenvector of A  respectively.  From Av vλ= , one has 

1k k kA v A v vλ λ−= = .  Hence, kv vλ λ= , which implies 

0kλ λ− = .  The solution set of this equation is 

{ } { }
22 /( 1)

1
0,1

k
i m k

m
e π

−
−

=
∪ . 

 
Proposition 2.6 tells us that the eigenvalues of a periodic 
matrix are distributed around the unit circle or possibly 
at the origin.  The next proposition addresses the 
diagonalizability of periodic matrices. 
 
Proposition 2.7 Periodic matrices are diagonalizable. 
 
Proof:  Let A  be a periodic matrix.  Assume A  is not 
diagonalizable.  Then, the matrix has a Jordan 

decomposition 1A P P−= Λ , where Λ  is similar to (5).  
Since A is not diagonalizable, there exists a Jordan block 
in (5) such that it has the following form: 
 

                 

1 0 ... 0

  1 ... 0

        

  

1

s

s

s

m

s

s

J

λ

λ

λ

λ

 
 
 
 
 
 =  
 
 
 
 
  

⋱ ⋱
                (7) 

 

As discussed earlier, 1k kA P P−= Λ , where kΛ has a 

similar expression to (6).  We will show that 
s s

k
m mJ J≠ , 

which leads to the contradiction to A being periodic.  To 
this end, we rewrite 

sm s sJ N=Λ + , where sΛ is a 

diagonal matrix with sλ on the main diagonal, and sN is 

a nilpotent Jordan block (see definition 2.1).  Use 
binomial expansion to obtain the following 
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( )
{ }min ,

0 0

1 11 1 2 2

2 21 1 2 2

2 2

...

...

       

s

s

s s

s s

k mk
kk n k n n n k n n

m s s k s s k s s
n n

m k mk k k
s k s k s sk

m k mk k k
s k s k s sk

k
k s

k
s

J N C N C N

C C C

C C C

C

λ λ λ λ

λ λ λ λ

λ

λ

− −

= =

− − +− −

− − +− −

−

= Λ + = Λ = Λ

 
 
 
 
 
 =
 
 
 
 
  

∑ ∑

⋱

⋱

  (8) 

 
     
In deriving (8), we used Proposition 2.3.  It is easy to see 

that 
s s

k
m mJ J≠ from (8).  Hence, a periodic matrix must 

be diagonalizable. 
 

    Unlike nilpotent matrices, the eigen-space of a periodic 
matrix is non-degenerate.  A periodic matrix is similar to 
a diagonal matrix via a similarity transformation.  This 
result is useful for numerical formation of periodic 
matrices. 
    The index number of a periodic matrix obviously 
relates to the periodicity of the matrix as seen from the 
definition of a periodic matrix.  We would like to point it 
out that the eigenvalue (except zero) of a periodic matrix 
with period ν must satisfy the following equation: 

                                                             

                 1 0νλ − = .                                      (9)                       
 

Condition (9) gives another criterion for identifying a 
periodic matrix with certain periodicity. 
    In what follows we look into the case of unipotent 
matrices.  A unipotent matrix extends the involutary 
matrix to a higher-order power matrix.  To be exact, a 

unipotent matrix satisfies , 2.kA I k= ≥   It is easily seen 

from the definitions that a unipotent matrix must also be a 
periodic matrix, but not the other way around unless the 
periodic matrix is also invertible.  Again, we are 
interested in exploring the spectral properties of unipotent 
matrices. 
 
Proposition 2.8 Let A be a unipotent matrix with index 
number k and let λ  be an eigenvalue of A, then 

{ }2 / , 0,1,2,..., 1i m ke m kπλ∈ = −  

 
Proof: Let  and vλ be the eigenvalue and corresponding 
eigenvector of A  respectively.  From Av vλ= , one has 
k kA v vλ= .  Hence, kv vλ= , which implies 1kλ = .The 

solution set of this equation is { } { }
12 /

1
1 .

k
i m k

m
e π

−

=
∪  

 
Proposition 2.8 further reveals the connection between a 
unipotent matrix and a periodic matrix from the circular 
distribution of their eigenvalues. 
 
Proposition 2.9 Unipotent matrices are diagonalizable 
 
The proof of this proposition is almost identical to the 
proof of Proposition 2.7 due to the comparable structure 
between these two matrices. Similar to (9), the eigenvalue 
of a unipotent matrix with index number k must satisfy 
the following equation: 

 

                        1 0kλ − = .                                  (10)                                                     
 
    Since the treatment for the skewed k-potent matrix is 
exactly the same as that for the previously discussed k-
potent matrices, we summarize the results as follows on 
the skewed k-potent matrix. 
    A skew-periodic matrix A satisfies the constraint with 

index 2k ≥ , kA A=− .  We have the following results 
for the spectral properties of skew-periodic matrices. 
 
Proposition 2.10 Let A be a skew-periodic matrix with 
index number k and letλ be an eigenvalue of A, then 

{ }(2 1) /( 1){0} , 0,1,..., 2i m ke m kπλ + −∈ ∪ = − .   

 
The eigenvalues (except zero) of a skew-periodic matrix 
are solutions of the following equation 

                                                             

                    1 1 0kλ − + = .                             (11)                                                   
 
Proposition 2.11 Skew-periodic matrices are 
diagonalizable. 

 

    A skew-unipotent matrix A satisfies the 

constraint kA I=− . We have the following results for 
the spectral properties of skew-unipotent matrices. 

 

Proposition 2.12 Let A be a skew-unipotent matrix with 
index number k and let λ  be an eigenvalue of A, then 

{ }
1(2 1) /

0

k
i m k

m
e πλ

−
+

=
∈ .   

 

The eigenvalues of a skew-unipotent matrix with index 
number k satisfy the following equation: 

                                                               

                1 0kλ + = .                                  (12)                                            
 

Proposition 2.13 Skew-unipotent matrices are 
diagonalizable. 
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Finally, we examine the spectral properties of the 
functional k-potent matrix as follows, 

 

                , 0, 1k rA I A k rα β αβ= + ≠ > ≥             (13) 

 
It can be verified that the eigenvalues of a functional k-
potent matrix (13) are solutions of the following 
equation 

                              0k rλ βλ α− − =                        (14) 

 

Since 0α≠ , all the eigenvalues are nonzero.  Therefore, 
the matrix is nonsingular. 
 
Proposition 2.14 Functional k-potent matrices (13) are 
diagonalizable. 
 
Proof: Assume the matrix is not diagonalizable.  With 

the spectral decomposition of A, 1A P P−= Λ , where 
Λ is given by (5).  The Jordan block in Λ is given by (7).  
Therefore, this Jordan block must satisfy (13).  Given 
that 0sλ ≠  because the eigenvalues are nonzero.  One 

has, according to (8), 
 

( )
{ }min ,

0 0

1 11 1 2 2

2 21 1 2 2

2 2

...

...

s

s

s s

s s

k mk
kk n k n n n k n n

m s s k s s k s s
n n

m k mk k k
s k s k s sk

m k mk k k
s k s k s sk

k
k s

k
s

J N C N C N

C C C

C C C

C

λ λ λ λ

λ λ λ λ

λ

λ

− −

= =

− − +− −

− − +− −

−

= Λ + = Λ = Λ

 
 
 
 
 
 =
 
 
 
 
  

∑ ∑

⋱

⋱

  

 

and  
 

( )

{ }
0

min ,

0

1 11 1 2 2

2 21 1 2 2

2 2

...

...

s

s s

s s

r
rr n r n n

s s r s s
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 +
 =  
 
 
 + 

∑

∑

⋱

⋱

 
  Comparing the two matrices, the off-diagonal entries 
are mismatched because k r> . Therefore, the functional 
k-potent matrices (13) are diagonalizable. 
 

    In summary, we categorize four groups of k-potent 
matrices: (i) nilpotent matrices, (ii) periodic and 
unipotent matrices, (iii) skew-periodic and skew-
unipotent matrices, and (iv) the functional k-potent 
matrices. The classification is based on the 
characteristics of the eigenvalue/eigen-space of the 
matrices.  The results presented above will be used to 
manufacture such matrices symbolically, i.e. all k-potent 
matrices are constructed over the integer field. 
    Our objective in this work is to develop an algorithm 
for constructing integral k-potent matrices. In particular, 
(skew-) periodic and (skew-) unipotent matrices are 
useful in digital signal encryption.  Instructors who teach 
Linear Algebra and Numerical Analysis may find the 
proposed algorithm useful as they may want to come up 
with a number of such k-potent matrices for students to 
practice with the related concepts in matrix theory. 
    The idea is simple.  A power-induced matrix can be 
easily constructed via the spectral decomposition 
formula, i.e. 

                    1A P P−= Λ                              (15)                                                                                          
 

where P is an invertible matrix and Λ  is either a 
diagonal matrix or a block diagonal matrix in Jordan 
form.  It is easy to see that, as long as Λ  is k-potent, the 
matrix A is k-potent of the same type.  In what follows, 
we introduce different ways for constructing the Λ -
matrix so that it is a power-induced matrix satisfying a 
predetermined index number. 
 
    Case (i): Nilpotent matrices 

 
According to Proposition 2.4, the Λ -matrix in 
(15) is guaranteed nilpotent with certain index 
number if Λ consists of nilpotent Jordan blocks, 
and the size of the largest nilpotent Jordan block 
equals the index number.  The following matrix, 
for example, is a nilpotent matrix with index 4, 

i.e. 4 0Λ = . 
                                                   

        

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0
 .

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

 
 
 
 
 
 Λ=  
 
 
 
 
  

                  (16)                

 
  Case (ii): Periodic matrices 

 
   Proposition 2.7 and equation (9) are the keys 
for constructing periodic Λ -matrix.  For the sake 
of argument, let ν  be the period of Λ and let 
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{ } { }2 /0 , 0,1,..., 1i me mπ ν
ν νΓ = ∪ = −  be the set 

of eigenvalues of the periodic matrix.  It is 
sufficient that  
 

          1 2diag( , ,..., )sλ λ λΛ= ,                (17)                             

 
where , 1,2,..., ,i i sνλ ∈Γ =  which guarantees 

that the Λ -matrix (12) is a periodic matrix with 
period ν .  The Λ -matrix can also be written as 
a block diagonal matrix as follows 
 

              1 2diag( , ,..., )mB B BΛ=                  (18)                                

 
as long as the eigenvalues of each block 

, 1,2,..., ,iB i m=  belong to νΓ .   This setting 

gives us some flexibility for constructing 
periodic matrices. One can also mix the 
eigenvalues of the Λ -matrix in (17) or (18) to 
construct periodic matrices with a higher index 
number.  To this end, let the eigenvalues of Λ  
be chosen from the following set 
 

          
1 2

...
tν ν νΓ=Γ ∪Γ ∪ ∪Γ ,            (19)                                      

 
and let 
 

               1 2LCM( , ,..., )tν ν ν ν∗ = ,             (20) 

 
where LCM stands for least common multiple, 
then, it can be verified that the period of Λ  is 

ν∗ .  For example, the following matrix is a 
periodic matrix with period 12, 
 

                   

1 3 0 0

1 2 0 0

0 0 0 1

0 0 1 0

 
 
 − −
 Λ=  
 
 − 

               (21) 

 
because the eigenvalues of the first block are 

1 3

2 2
i− ± , which are solutions of (9) with 

3ν = , and the eigenvalues of the second block 
in (21) are solutions of (9) with 4.ν =  
 

    The treatment for constructing the other Λ -matrices, 
i.e. unipotent, skew-periodic, and skew-unipotent 
matrices, is essentially the same as that for periodic 
matrices because the eigen-structures among those 
matrices are similar.  When constructing such matrices, 
one should realize that the equations (9), (10), and (11) 

must be satisfied for the corresponding matrices. 
    For mathematics instructors, it is preferred to work 
with integral matrices, i.e. the elements of a matrix are 
all integers, mainly because the arithmetic is symbolic as 
far as additions and multiplications are concerned, which 
also implies that there are no roundoff errors. We are 
able to achieve this when constructing the Λ -matrix, see 
(21), for instance.  
    Instead of constructing the Λ -matrix, one can take 
advantage of the companion matrix for the characteristic 
polynomial [3]. In general, the companion matrix of an 
nth degree characteristic polynomial 
 

1
1 1 0( ) ...n n

nP a a aλ λ λ λ−
−= + + + +  

 
is given by 
 

                  

0

1

2

1

0 0 ... 0

1 0 ... 0

0 1 ... 0

0 0 1

p

n

a

a

a

a −

 −
 
 −
 
 −Λ =  
 
 
 −  

⋮

⋯

                  (22) 

 
The characteristic polynomials of various kinds of k-
potent matrices are given by equations (9)-(12) and (14).  
Formula (15) can be used if one wants to construct a 

dense integral k-potent matrix, where both P  and 1P−  
in (15) have to be integral matrices.  In what follows, let 
n nZ × represent the set of n by n integral matrices.  The 

following proposition gives the necessary and sufficient 

condition for 1 n nA Z− ×∈  if n nA Z ×∈ . 
 

Proposition 2.15 Suppose n nA Z ×∈ and A is a 

nonsingular matrix, then 1 n nA Z− ×∈   if and only if 
1)det( ±=A . 

 
Proposition 2.15 gives us a guideline for constructing 
such an integral P-matrix.  We can simply use the 
following formula for P, 

 
                         P UL= ,                              (23) 

  
where U is an upper triangular integral matrix with 1’s 
on the main diagonal and L is a lower triangular integral 
matrix with 1’s on the main diagonal.  It is obvious 

that 1P = , according to Proposition 2.15, 1P−  is an 

integral matrix.  With an integral P-matrix from (23), we 
obtain a dense integral nilpotent matrix calculate from 
(16), 
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22 44 114 183 2 317

13 26 68 110 4 188

20 40 104 167 2 289

9 18 48 77 3 133

14 28 74 118 2 206

12 24 63 101 2 175

A

 −
 
 − − − − −
 
 − =  − 
 − − − − − 
 

−  
. 

It is verified in MatLab that 4 0,A = which has the same 
index of nilpotency as that of (11).  A more sophisticated 
algorithm for constructing integral similarity 
transformation matrices can be found in [25]. 
    We also constructed an integral periodic matrix from 
(21) as follows 
 

8 1 2 4

22 4 5 12

42 8 9 21

11 3 2 6

A

 − −
 
 − −
 =  − − 
 − − 

. 

 
It is hard to tell that the matrix above is a periodic matrix 
with period 12 unless one literally calculates the power 

matrix 13A  without peeking at the eigenvalues of A. 
    For more general k-potent matrices, the eigenvalues 
are usually non-integers.  However, it is always feasible 
to make use of the companion matrix (22) for the 
characteristic polynomials of the k-potent matrices, such 
as (9)-(12) and (14), combined with the integral 
similarity transformation matrix P in (23). The following 

matrix satisfies matrix equation 4 23A I A= − , 
 

9 16 7 24

7 12 6 17

2 3 1 5

1 2 2 2

A

 − − −
 
 −
 =  − − − 
 − 

. 

 
 

3   Applications to image encryption  
    An image is formed from MN  samples arranged in a 
two-dimensional array of M rows and N columns such as 
a photo, an image formed of the temperature of a 
integrated circuit, x-ray emission from a distant galaxy, a 
satellite map from Google Earth. 
    In imaging terminology, each sample of the image is  
called a pixel. Each pixel is attributed a value called 
grayscale ranging from 0 to 255, where 0 is black, 255 is 
white, and the intermediate values are shades of gray.  
For the purpose of image encryption, we apply a series 
of encryption key matrices to mask an image via matrix 
multiplications.  This will alter the gray level of each 

pixel so that the original image is no longer 
recognizable.  This masking process is in essence a 
filtering process because each row (column) in the 
encryption key matrix is treated as a digital filter with 
finite impulse response.  Due to the randomness and 
magnitude of the filter coefficients, the original image is 
transformed into a rather different image by way of a 
filter banks. 
    We adopt the previously studied k-potent matrices for 
the encryption key matrix, particularly the unipotent or 
periodic matrices.  The nilpotent matrix can also be used 
for image encryption with some special treatment such 
as diagonal perturbation, but we will not elaborate here. 
     The cryptosystem proposed in this paper consists of 
associate keys and primary keys.  The function of the 
associate key 1T  is to divide the original image into sub-

images, not necessarily the same sizes, followed by 
another associate key 2T  to permute the pixels of the 

sub-image for pre-scrambling.  The permutation key is 
nothing but a product of elementary matrices.  The 
mathematical setting is given as following for the pre-
encryption stage:  
 

1 : , , , 1,2,...,

, .

i im nM N
i i i

i i

T Z Z m M n N i k

m M n N

×× → < < =

= =∑ ∑
 (24) 

 

            2

2 1 2

: , 1,2,..., .i i i im n m n
i

i i i is

T Z Z i k

T E E E

× ×→ =

= ⋅⋅⋅
               (25) 

 

where ijE is an elementary matrix that exchange the 

rows of a matrix if left-multiplied or columns of the 
matrix if right-multiplied. 
    The primary key can be formulated via a product of 
unipotent and/or skew-unipotent matrices as follows 
 

                           1 2
1 2

tk k k
M tT A A A= ⋅⋅⋅                       (26) 

 
Let iX be a sub-image from (24) to be scrambled, with 

matching dimensions to assure multiplicability between 
 and  M iT X  , the encrypted image is obtained as 

i M iY T X= .  The decryption key is given by 

 

         1 1 1 11
1 1( 1) t tt t n k n kn kp

M t tT A A A− −− −−−
−= − ⋅⋅⋅           (27) 

 

where in  is such that , 1,2,...,in
iA I i t=± =  and p 

represents the number of skew-unipotent matrices 
applied in (26).  With (27), the original image is 

recovered from iY  via 1
i M iX T Y−=  .  It is also ready to 

be seen that the decryption process only involves matrix 
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multiplication with additions and multiplications 
between integers.  Therefore, lossless image 
encryption/decryption is guaranteed, see Fig. 1 for an 
example.  The encryption key consists of three 5 by 5 
unipotent matrices.  
    Interestingly enough, functional k-potent matrix can 
add more complexity to the encryption scheme, 
proposed as follows. Consider the functional k-potent 
matrix, which is also an extension of (13),  
 

                          
1

m
k i

i
i

A I Aβ
=

= +∑                             (28) 

 

where 0 m k< < .  Let X be a sub-image as a result of 
the pre-encryption stage (24) and (25).  Let Y be the 
scrambled image encrypted by the functional k-potent 
matrix (28), i.e. Y AX= .  Now, the decryption process 
is carried out as follows: 
 

Step 1. Pre-multiply Y  by 1iA − , respectively, to get 
i

iZ A X= , 1,2,...,i m= , with 0A I= . 

 

Step 2. Pre-multiply mZ by k mA −  to get kW A X= . 

 

Step 3. 
1

m

i i
i

X W Zβ
=

= −∑  due to (28).  

Another image encryption with the above proposed 
method is shown in Fig.2.   
 

    In this paper, we studied the eigen-spaces of various 
k-potent matrices, including Nilpotent, periodic, 
involutary, and skew-periodic matrices.  Extensions are 
made to more general functional k-potent matrices.  An 
immediate application of the results is seen in digital 
image encryption. The methodology proposed in this 
paper can also be extended to other functional matrices 
satisfying special constraints, similar to the ones for the 
k-potent matrices, and such constraints have imprints on 
the eigen-space structures of the matrices. 

 
 
 
 

 
                                      (a) 
 

 
                                      (b) 
Figure 1. (a) original picture of mathematicians;  
(b) encrypted image of selected faces (courtesy of 
MatLab image processing toolbox) 

 
 

 
                                       (a) 
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                                       (b) 
 
Figure 2. (a) original fingerprint image; (b) scrambled 
image of selected areas of the fingerprint (courtesy of 
MatLab image processing toolbox) 
 
 
References: 

[1] S. H. Friedberg, A. J. Insel, L.E. Spence, Linear 
Algebra, 4th Ed., Prentice Hall, Upper Saddle River, NJ, 
2002. 
[2] G. Strang, Introduction to Linear Algebra, 3rd Ed., 
Wellesley-Cambridge Press, MA, 2003. 
[3] G. H. Golub and C. F. Van Loan, Matrix 
Computations, 2nd Ed., The Johns Hopkins University 
Press, Baltimore, Maryland, 1989.  
[4] G. W. Stewart, Matrix Algorithms, Volume II: 
Eigensystems, SIAM, Philadelphia, PA, 2001. 
[5] J. H. Wilkinson, The Algebraic Eigenvalue Problem, 
Oxford Science Publications, NY, 1965. 
[6] J. Rimas, Computing of Positive Integer Powers for a 
Special Kind of Matrices, WSEAS Trans. Math., v. 6, 
no.2, 289-295, 2007. 
[7] S. L. Steinberg, J. P. Zingano, and P. R. Zingano, On 
nilpotent singular systems, J. Comput. Appl. Math. 137,  
97-107, 2001.  
[8] J. K. Baksalary and O. M. Baksalary, Idempotency of 
linear combinations of two idempotent matrices, Linear 
Algebra Appl. 321, 3-7, 2000. 
[9] J. K. Baksalary, O. M. Baksalary, and G. P. H. Styan, 
Idempotency of linear combinations of an idempotent 
matrix and a tripotent matrix, Linear Algebra Appl. 354, 
21-34, 2002. 
[10] O. M. Baksalary, Idempotency of linear 
combinations of three idempotent matrices, two of which 
are disjoint, Linear Algebra Appl. 388, 67-78, 2004. 
[11] J. K. Baksalary, O. M. Baksalary, and H. Özdemir, 
A note on linear combinations of commuting tripotent 
matrices, Linear Algebra Appl. 388, 45-51, 2004. 
[12] L. Tang, Methods for encrypting and decrypting 

MPEG video data efficiently, Proc. ACM Multimedia, 
219-229, 1996.  
[13] S. U. Shin, K.S. Kim, and K. H. Rhee, A secrete 
scheme for MPEG video data using the joint of 
compression and encryption, Proc. Inform. Security 
Workshop (ISW ’99), v. 1729 (lecture notes on 
computer science), 191-201, 1999. 
[14] Wenjun Zeng and Shawmin Lei, Efficient 
frequency domain selective scrambling of digital video, 
IEEE Trans. Multimedia, v. 5, no.1, 118-129, 2003. 
[15] P. P. Dang and P. M. Chau, Image encryption for 
secure internet multimedia applications, IEEE Trans. 
Consum. Electron., v. 46, no.3, 395-403, 2000.  
[16] R. P. Elias, O. V. Villegas, M. L. Sanchez, and V. 
G. C. Sanchez, Automatic Inspection Using Edge 
Preserving Wavelet Lossy Image Coding by Means of 
Modified SPIHT, WSEAS Trans. Signal Process., v. 2, 
no. 11, 1515-1522, 2006.  
[17] B. Ontiveros, I. Soto, and R. Carrasco, A New 
Cryptography Algorithm Using Cab Curves and LDPC 
for Wireless Communication Systems, WSEAS Trans. 
Math., v. 6, no.2, 422-424, 2007. 
[18] J. Scharinger, Fast encryption of image data using 
chaotic Kolmogorov flows, Journal of Electron. 
Imaging, v. 7, no. 2, 318-325, 1998.  
[19] J.C. Yen and J. I. Guo, A new chaotic key-based 
design for image encryption and decryption, Proc. IEEE 
Int. Conference Circuits and Systems, v.4, 49-52, 2000. 
[20] H. Zhang, X. F. Wang, Z. H. Li, D. H. Liu, and Y. 
C. Lin, A new image encryption algorithm based on 
chaos system, Proc. IEEE Intern. Conference Robotics, 
IS and Signal Process, 778-782, 2003. 
[21] J. Fridrich, Symmetric ciphers based on two-
dimensional chaotic maps, Int. Journal Bifurcation & 
Chaos, v. 8, no.6, 1259-1284, 1998. 
[22] G. Jakimoski and L. Kocarev, Analysis of some 
recently proposed chaos-based encryption algorithms, 
Physics Letters A, v. 291, no. 6, 381-384, 2001. 
[23] S. Li, X. Mou, Y. Cai, Z. Ji, and J. Zhang, On the 
security of a chaotic encryption scheme: problems with 
computerized chaos in finite computing precision, 
Computer Physics Communications, v. 153, no. 1, 52-
58, 2003. 
[24] A. Kulkarni and S. Mccaslin, Knowledge Discovery 
from Satellite Images, WSEAS Trans. Signal Process., v. 
2, no. 11, 1523-1530, 2006.  
[25] Y. Wu and A. C. Vosler, An Anti-Symmetric Key 
Algorithm for Signal Encryption, Proceedings of the 
WSEAS Inter. Conf. on Signal Process., pp 140-145, 
2007. 
 
 
 

WSEAS TRANSACTIONS on MATHEMATICS Yan Wu, Daniel F. Linder

ISSN: 1109-2769 253 Issue 4, Volume 9, April 2010


	Georgia Southern University
	Digital Commons@Georgia Southern
	1-2010

	On the Eigenstructures of Functional K-Potent Matrices and Their Integral Forms
	Yan Wu
	Daniel F. Linder
	Recommended Citation


	Microsoft Word - 89-413.doc

