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Constrained Shape Optimization of  

Cold-formed Steel Columns 

J. Leng
1
, Z. Li

2
, J.K. Guest

3
 and B.W. Schafer

4
  

Abstract  

The objective of this paper is to introduce appropriate constraints in the shape 

optimization of a cold-formed steel column such that the resulting optimized 

shapes retain the strength benefits of unconstrained optimal solutions combined 

with practical manufacturing and constructional needs. Unconstrained shape 

optimization of cold-formed steel columns, where the cross-section that 

maximizes axial capacity is found, has previously been performed. Here, 

practical manufacturing and construction constraints are introduced into the 

optimization algorithm. Members with three lengths: 2 ft, 4 ft, and 16 ft, are 

considered. Optimized sections from multiple runs show uniformity and bear a 

close resemblance to unconstrained results. A point-symmetric ‘S’-shaped 

section has maximum capacity for long columns and a singly-symmetric ‘’-

shaped section with complex lips performs best for shorter columns. The 

observed strength loss from the unconstrained optimal design, to the constrained 

optimal design, is within ten percent. A simultaneous perturbation stochastic 

approximation algorithm, with the idea of injecting randomness in the gradient 

approximation to save computational cost, is adopted as the local optimizer. A 

systematic survey on a family of lipped channel cross-sections using the same 

amount of material was carried out. Comparison reveals that the optimized 

shapes have much larger capacities and exhibit the potential to seed a new 

generation of commercial products.  
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1. Introduction 

Cold-formed steel (CFS) members have been extensively used in low and 

midrise buildings as both load bearing and non-load bearing members due to its 

high strength-to-weight ratio and low cost of material and manufacture. Typical 

thickness is about 0.04 in. (1 mm) and the web depth ranges from approximately 

3 to 12 in. (75 to 300 mm). A cross-section is fabricated by rolling/bending a 

given sheet (coil) of steel at a number of discrete positions across the sheet 

width. Ideally, a given sheet can be bent to nearly any open cross-section. 

However, currently available North American commercial sections (e.g. AISI 

cold-formed steel design manual, 2008) are still largely limited to the common 

C- and Z-sections, leaving a large design space of other shapes still to be 

explored.  

Due to the low thickness and high slenderness of cold-formed steel members, a 

major design concern is buckling; including local plate buckling, distortional 

buckling, and global (Euler) buckling (Schafer, 2008). Consequently, an 

effective way to optimize CFS columns is to maximize the axial capacity of a 

column with a given length, coil width (i.e., cross-section perimeter), and sheet 

thickness.  

In general, two groups of algorithms have been formulated to tackle this 

problem. The first type is based on formal mathematical programming, which 

can find a local minimum but largely relies on the exact or approximate form of 

partial derivatives of the objective function with respect to design variables, i.e. 

the gradient or Hessian matrix. On the other hand, a certain number of stochastic 

search algorithms, like simulated annealing (SA) and genetic algorithms (GA), 

use injected randomness to search the whole design space in order to find global 

optima without the requirement on the derivative information. The tradeoff is 

that the available convergence arguments about these algorithms, if available, 

are only probabilistic, and multiple runs with a number of function evaluations 

each time are needed to find a possible optimal design.  

The manner in which the objective function is expressed also has a great 

importance on the formulation of the problem. The classical effective-width 

method (AISI-S100-07) gets fairly cumbersome for complicated cross-sections. 

However, the Direct Strength Method (DSM, see Appendix 1 of AISI S100-07), 

instead, is capable of determining the nominal load Pn for arbitrary geometry 

columns given the critical load in local (Pcrl), distortional (Pcrd), and global 

buckling (Pcre), and the load at yield (Py). The authors used the finite strip 

method based on the open source software package CUFSM (Schafer et al., 

2006 and 2010) for finding Pcrl, Pcrd, and Pcre. 
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The combination of optimization algorithms with code-based strength evaluation 

criterion has lead to a number of research papers in the CFS optimization field. 

Lu (2003) combined CUFSM with GA to optimize Z-section dimensions 

according to the effective width design of Eurocode 3. Kolcu et al. (2010) 

maximized the critical load Pcr computed from Mindlin-Reissner finite strips by 

using sequential quadratic programming. Recently, Chamberlain Pravia and 

Kripka (2012) used SA to carry out the dimensional optimization of a C-section 

column following the effective width method in the AISI specification. Liu et al. 

(2004) investigated the use of Bayesian classification trees together with DSM 

and CUFSM in the maximization of Pn. The authors’ previous work (Leng et al., 

2011) compared the performance of SA, GA and gradient based steepest descent 

method in unconstrained shape optimization of CFS columns, and developed 

several novel cross-sections with significant increase in capacity, Pn. 

A natural initiative to create more practical cross-sections from optimization 

makes it necessary to introduce construction and manufacturing constraints into 

the search process. Constraints in dimensional optimization with the effective 

width method are normally formulated as inequalities with elementary functions. 

The constraints developed herein include both shape and dimension constraints, 

which are not readily expressed explicitly. In this case penalty functions are 

often employed. However, in the work herein a simple rejection method is 

employed. If cross-sections violate constraints, as generated from the simulated 

annealing algorithm, the section is rejected before function evaluation, and a 

new section is created. Simultaneous perturbation stochastic approximation 

(SPSA) is adopted as a local optimizer in place of the computational costly 

steepest decent method with finite difference approximation. Optimization of 

members with three different physical lengths is performed and the results show 

only small capacity reductions from the unconstrained optimal shapes. The 

optimal shapes are also compared with an artificially generated family of lipped 

channel C-sections using the same coil width and thickness to show the benefit 

of adopting the optimized sections. 

2. Manufacturability constraints in simulated annealing algorithm 

As detailed previously (Leng et al., 2011) the selected strategy is to consider the 

thin sheet of steel comprising a column as being discretized into narrow strips of 

equal width along the longitudinal direction. At the boundary of these narrow 

strips the sheet may be bent. Thus, the design vector is formed by the relative 

turn-angles between strips. Figure 1 (a) illustrates the design variables for a 

lipped channel C-section. Note, the design vector includes forty-two turn-angles, 

in the case of the C-section only 1, 3, 9, 35, and 41 are non-zero. The forty-

two turn angles provide an immense freedom to form different shapes. 

61



The C-section of Figure 1 (a) is the initial design for the simulated annealing 

algorithm; the dimensions are shown in Figure 1 (b). The perimeter of the 

section is 11 in., t=0.04 in., E=30458 ksi, and Fy=33 ksi. The kernel step of SA 

is the objective function comparison of a randomly perturbed new design with 

the current elite design. The geometrically reducing temperature of SA gives rise 

to the so-called ‘hill-climbing’ property, allowing SA to accept inferior designs 

as elite ones more likely at the beginning stage to expand the search space and 

making it more possible to find a global optimal design ultimately. Details of 

implementation and theoretical discussion about SA are available in 

monographs of Arora (2004) and Spall (2003). The improvement presented in 

this paper from Leng et al. (2011) is the addition of constraints.  

The first constraint applied is a symmetry or anti-symmetry condition. A 

randomly generated tag is used to dictate whether the section will be symmetric. 

Only half of the forty-two turn-angles is independent, the other half will be 

determined following the assigned geometric conditions.  

The second constraint is the dimension requirement on lips, flanges and the web. 

In our study, lips and flanges should be no shorter than 0.5 in. and 1.0 in. 

respectively. This can be done easily using two inequalities for dimensional size 

optimization, but in shape optimization first the lips and flanges must 

themselves be identified. The required lengths are divided by element length to 

calculate the minimum numbers of elements needed for the lip and the flange. 

Then, two positive integers n1 and n2 are generated to make sure the lip and the 

flange are longer than the minimum values. The nodes on the lip are node 1 to 

node n1+1, and node n1+1 to node n1+ n2+1 are on the flange. Note, the 

algorithm also enforces turn-angles of elements on the flange so that the flange 

is always flat and parallel with x axis. Finally, symmetry/anti-symmetry 

condition allows the whole cross-section to be defined. Elements connecting two 

flanges form the web. The web depth is defined as the distance between two 

flanges, and must range from 3.625 to 9 in. in this problem. 

The third constraint is related to the allowance of the passage of utilities. 

Usually, the web of a commercial product is punched, leaving spaces for 

bridging or piping. Thus, there should be enough space between the lips, and 

any horizontal line in this area cannot intersect with the wall of the cross-section 

twice to eliminate interference problems. Two terms, the clearance and the back-

fold, are helpful to explain the idea. The clearance is defined as the shortest 

vertical distance between any two points on the two lips. A back-fold is a node 

on the web which has a smaller vertical coordinate than the previous node. Then, 

the idea related to this type of constraint is formulated as: the clearance area on 

the web should be longer than 1.0 in., and there should be no back-folds.  
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The last constraint is inherited naturally from our previous paper which says the 

elements of the cross-section cannot overlap in order to make the section 

feasible. Figure 1 (c) shows a conceived symmetric cross-section as an 

illustration of the constraints implemented. The procedure of adding these 

constraints into the new design generation process is given in Figure 2. Finally, 

our objective function is still directly related to the axial strength of the CFS 

column determined using DSM, with Θ denoting the feasible domain of the 

design vector of turn-angles θ, i.e. 

 min{ , , }n nl nd neP P P P  (1) 

      min min nf P
 

 
θ Θ θ Θ

θ θ  (2) 

where Θ is determined from the above constraints and is difficult to formulate 

explicitly.  

     
 (a) (b) (c) 

Figure 1 Illustrations of design variables, initial design and constraints 

3. Simultaneous perturbation stochastic approximation algorithm 

In our previous work (Leng et al., 2011) finite difference is used to approximate 

the gradient for the steepest descent method. The major drawback of this 

approach it is that at least one objective function evaluation is needed to 

compute one partial derivative. This is fairly costly and hinders use in high 

dimensional problems. As an alternative, a simultaneous perturbation stochastic 

approximation (SPSA) algorithm is used. SPSA only uses two function 

evaluations to approximate the gradient vector. Like steepest descent, SPSA 

updates the design vector iteratively using a form of the ‘gradient’, gk(θk). 
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Note that (4) has a form that resembles the central difference method, but the 

inherent distinction is that the p-dimensional perturbation vector of this 

algorithm, Δki = [Δk1, Δk2,···, Δkp]
T
, is random and has zero mean. A Bernoulli ±1 

distribution is used to generate Δki, which has the same probability to be positive 

or negative one. The sequence {ak} serves as step-lengths, and {ck} contains 

magnitudes of the perturbation in the partial derivative calculation. According to 

Spall (2003), it is advised to use decaying sequences of {ak, ck} taking the 

following forms 

 
( 1 )

k

a
a

k A 


 
 and 

( 1)
k

c
c

k 



 (5) 

where a, A, α, c, and γ are positive parameters to be tuned. In this work α = 1, γ 

= 1/6, A = 50, a = 0.5, and c = 0.1 was used.  

4. Column optimization result 

To incorporate the possible impact of the controlling buckling mode (i.e., local, 

distortional, or global) on the optimization results, columns with three distinct 

physical lengths: 2, 4 and 16 ft were investigated. The major change in the 

simulated annealing parameters is the increase of the maximum number of 

cooling iterations mmax, which is 25, 35, and 100 for 2, 4, and 16 ft columns, 

respectively. This implies that the algorithm is allowed a greater number of 

iterations when searching for a global optimum in the longer columns. All other 

SA parameters remain the same. The number of trial designs within one 

temperature iteration is kmax = 200, and the temperature cooling rate is r = 0.5. 

The computation cost for the constrained optimization is significantly higher 

than the previously conducted unconstrained optimization. 
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Figure 2 Flow chart of implementation of constraints in simulated annealing 
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4.1. Short length (2 ft) column 

Starting from the C-section of Figure 1 (b), SA optimization is run ten times for 

2 ft long columns. The best two results are depicted in Figure 3. Both sections 

are symmetric, have relatively long complex lips at the free ends, and 

corrugations in the web. The results are similar to what is commonly referred to 

as a sigma, i.e., -section. Since these members are fairly short, the role played 

by global buckling is trivial. Corrugations in the web reduce the unstiffened 

plate width greatly and provide significant resistance to local buckling. As 

discussed by Schafer et al. (2006), complex stiffeners are able to provide 

improved ultimate strength performance over simple stiffeners. For local 

buckling, they have shown inward angled stiffeners can: ‘(1) sustain higher 

buckling loads, as the stiffener provides positive rotational restraint to the 

attached plate, and (2) demonstrate less sensitivity over a wide range of plate 

(flange) widths’. The inward angled stiffener also renders an efficient solution 

for elastic distortional buckling by moving the shear center of the 

stiffener/flange assembly away from the flange/lip juncture and further away 

from the flange/web juncture. 

Numerical comparison is given in Table 1 below. Critical buckling loads and 

nominal strengths of the three modes of the C-section in Figure 1 (b) and the 

sections in Figure 3 are all listed. It may be observed that the optimized shape 

increases Pn by 126% from the original C-section. This extent of increased 

capacity is roughly the same of that arrived at in previous unconstrained 

optimization. This not only shows the desirable performance of the optimized 

designs, but also demonstrates the usefulness of SA with constraints. The data 

also reveals that the optimized shapes have Pnd = 14.32 kips which equals the 

squash load Py, implying that distortional buckling is not detrimental for these 

shapes. Figure 4 is the convergence curve of the cross-section in Figure 3 (a). 

The fluctuation of Pn at the beginning suggest acceptance of some inferior 

designs as the elite one, while the final optimal strength Pn is 95.5% of Py. 

   
 (a) Pn = 13.68 kips (b) Pn = 13.66 kips 

Figure 3 Optimal cross-sections found by SA for 2 ft column   
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Figure 4 Convergence curve of Pnelite for cross-section in Figure 3 (a) 

4.2. Intermediate length (4 ft) column 

The same analysis procedure is repeated for 4 ft long columns. The two best 

cross-sections in Figure 5 resemble the optimal -shapes from the 2 ft columns. 

The distance between the two ends of the section in Figure 5 (b) is close to 1.0 

in., suggesting the algorithm searches at the boundaries of the constraints even 

with the rather heuristic approach adopted in the constraint enforcement. The 

values in Table 1 indicate that the controlling mode is also the same as the 2 ft 

columns. An increased capacity of 135% from the C-section is achieved.  

In comparison with previous work (Leng et al., 2011), the constrained optimal 

shapes are competitive, representing only a 3.8% strength drop from the ‘Bobby 

pin’ sections previously identified. However, these shapes are much more 

practical than the irregular looking unconstrained optima. 

   
 (a) Pn = 12.25 kips (b) Pn = 12.20 kips 

Figure 5 Optimal cross-sections found by SA for 4 ft column   
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Table 1 Critical and nominal loads of C- and “”sections 

Member 

length 

(ft.) 

Figure 
Pcrl 

(kips) 

Pcrd 

(kips) 

Pcre 

(kips) 

Pnl 

(kips) 

Pnd 

(kips) 

Pne 

(kips) 

Pn 

(kips) 

2 1b 2.32 5.12 68.64 6.07 6.69 13.12 6.07 

2 3a 38.77 45.27 131.45 13.68 14.32 13.68 13.68 

2 3b 52.67 39.22 127.17 13.66 14.22 13.66 13.66 

4 1b 2.32 5.12 18.36 5.22 6.69 10.33 5.22 

4 5a 43.19 49.61 38.33 12.25 14.32 12.25 12.25 

4 5b 54.01 26.22 37.29 12.20 13.19 12.20 12.20 

4.3. Long length (16 ft) column 

SA runs of the 16 ft columns yield different optimal shapes from the short and 

intermediate length columns due to global buckling. Eight of the ten final SA 

optimized shapes are anti-symmetric.  However, the squashed ‘S’ cross-sections 

in Figure 6 closely match unconstrained optima (Leng et al., 2011), incurring 

only a 7.2 percent drop of strength due to the constraints. Note, these S-sections 

bear 187% more strength than the 16 ft long C-seciton of Figure 1 (b). The 

cross-section properties are compared in Table 2 and the features associated 

with flexural-torsional buckling of the squashed ‘S’ sections in the previous 

unconstrained optimization work is also provided. 

The optimal global section includes a number of key features. First, the final 

sections are point-symmetric so the shear center and centroid coincide naturally. 

Second, constrained optimization fails to make the principal moments of inertia 

I11 and I22 equal, as was advantageously accomplished in the unconstrained 

optimization. The significance of this is real - even with higher I11 and warping 

coefficient Cw, the constrained optimization section of Figure 6 (b) still performs 

a bit worse than the previous unconstrained optimization. Finally, the optimal 

sections in Figure 6 both have lips of only two elements, indicating the 

minimum value allowed by lip length constraints is active in this case. 

   
 (a) Pn = 2.96 kips (b) Pn = 2.90 kips 

Figure 6 Optimal cross-sections found by SA for 16 ft column  
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Table 2 Cross-section properties of squashed ‘S’ sections of 16 ft. member 

Section Figure 
I11 

(in
4
) 

I22 

(in
4
) 

Cw 

(in
6
) 

2 2
0 0x y  

(in) 

Pn 

(kips) 

squashed 

‘S’ 
6a 0.842 0.414 2.408 0 2.96 

squashed 

‘S’ 
6b 0.898 0.406 2.440 0 2.90 

 

4.4. Further refinement using SPSA 

To refine the stochastic search (SA) optimal sections SPSA is utilized on the 4 ft 

long columns. One thousand function evaluations are budgeted. According to 

Spall (2003), the parameter A in (5) is set as 0.1 1000 / 2 50A    . The flange 

elements (parallel to x axis) are fixed and not updated, and no other constraints 

above are introduced into SPSA. Since we use SPSA for local optimization, the 

step-length in each iteration is small. Thus, a gain sequence {ak, ck} with α = 1, 

and γ = 1/6 is chosen. After trial-and-error, a and c are set to 0.5 and 0.1 

respectively. 

Several trials are completed. The best two in terms of terminal Pn are presented 

in Figure 7. The common feature is that the stochastic approximated gradient 

tries to form a hump in the middle of the web and drive the lips together. As a 

result, the web and lips are smoothed, but both shapes violate the clearance 

length constraint. With the approximate gradient and predefined gain sequence, 

Pn is not guaranteed to increase in every iteration. Still, the terminal design can 

grow, here an increase of 0.4% over the SA optimal shape is realized. 

   
 (a) Pn = 12.30 kips (b) Pn = 12.27 kips 

Figure 7 SPSA refined cross-sections of Figure 5 (a) 
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5. Performance comparison with a C-section family  

The optimized members reported herein use a particular amount of material. The 

total perimeter width is 11 in. and the thickness is 0.04 in. Although the 

developed sections are shown to beat the initial C-section of Figure 1 (b) how 

much better is the optimal sections than the optimal C-section? To answer this 

question and show the potential for a new family of optimal shapes, the optimal 

shapes developed here are compared to all practical C-sections that could be 

created from the fixed initial amount of material. 

 

The full set of potential C-sections with a perimeter width of 11 in., t=0.04 in., 

E=30458 ksi, and Fy=33 ksi are created. The web height h is varied from 0.5 to 

10 inches, flange width b from 0.5 to 5 inches, and the lips d vary within the 

permissible formulation (total perimeter width = 11 in.) for the C-section. The 

resulting C-section is modeled as straight-line model with the recommended 

procedures given by Li and Schafer (2010).  Strength is determined by DSM. 

 

The axial and bending capacities of the C-sections are normalized by cross-

sectional area and plotted in Figure 8. In addition, the optimal sections at 2 ft, 4 

ft, and 16 ft are similarly normalized and included. Optimal beam cross-sections, 

following the same algorithm to that reported here for columns, have also been 

generated. These optimal sections are also added to Figure 8 for comparison. 

 

Figure 8 demonstrates the efficiency of the optimization algorithm. The 

optimized sections handily beat any possible C-section member while using the 

same amount of material. The optimal sections are better than the C-section for 

any combination of axial or bending moment. Optimal sections have the 

potential to increase the efficiency and applicability of CFS members. Further, 

aligned with LEED (2007) minimizing material may enhance the sustainability 

of the final building. Inspired by the performance of these optimized cross-

sections, a family of new CFS member shapes is being developed using formal 

optimization tools in the context of a U.S. National Science Foundation 

cooperative research grant between the authors and an Egyptian research team.  
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Figure 8 Material efficiency of folded channels and optimized shapes 

6. Conclusions 

Free-form shape optimization of cold-formed steel members utilizing a 

simulated annealing algorithm for the optimization and objective function 

evaluation driven by the finite strip method for stability analysis and the Direct 
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Strength Method for strength prediction is shown to produce optimal shapes 

with over 130% increase in axial strength compared with conventional C-

sections. Further, it is shown that practical constructional and manufacturing 

constraints: singly- or point-symmetric sections, parallel and flat flanges of 

minimum width, minimum web clear width for creating holes for services, 

minimum end lip length, etc., may all be successfully introduced into the 

optimization method. The resulting constrained optimization has only a modest 

decrease in capacity compared with unconstrained optimization and leads to 

practical optimal shapes: the singly-symmetric -section for short and 

intermediate columns, and the point-symmetric S-section for long unbraced 

columns. Comparison of the optimal shapes to the full family of conventional 

lipped channel C-sections with the same amount of material shows that the 

developed optimal shapes have increased capacity for a complete range of axial 

load and major-axis bending. Inspired by these results the authors are working 

on developing a complete family of optimal shapes for cold-formed steel. 
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