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Abstract 
 

Thin-walled cold-formed profiled steel decking is used extensively in 
the composite concrete slabs construction of modern buildings. Extensive 
research on cold-formed profiled steel decks has been carried out using 
experimental, analytical and numerical methods. In this paper, a review of the 
research carried out on cold-formed profiled steel decking is given with 
emphasis on experimental and analytical work. Experimental data has been 
collected and compiled in a comprehensive format listing parameters involved in 
the study. The review also includes research work that has been carried out to 
date accounting for the effects of different buckling modes and its behaviour, 
intermediate stiffeners, web crippling strength, embossments, ultimate moment 
capacity and load carrying capacity of the profiled decks 

 

1. Introduction  

 
Two types of thin-walled cold-formed profiled steel decks i.e 

trapezoidal and re-entrant (Fig.1.) are currently used in composite reinforced 
concrete slabs as load-carrying structural members in steel frame buildings. This 
type of decks has many varieties, such as high strength/weight ratio, ease of 
transportation & construction, faster installation, a good ceiling surface, 
convenient ducting for routing utility services, etc. In addition the same can be 
easily shaped and sized to meet the design requirement. Steel decks are  
------------------------------------------------ 
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supported by steel beams. For this the decks are attached to the steel beams 
through shear studs. If the beam spacing is about 3 to 4 m, then no temporary 
propping is necessary during concreting of the slab. In this case, the construction  
stage controls the design of the steel decking. Due to the short slab span, the 
stresses in the composite slab in the final state after the concrete has hardened 
are very low. For such floors, trapezoidal profiled steel decks with limited 
horizontal shear resistance and ductility are most often used. They have the 
lowest steel weight per square meter of floor area. 

 

 

 

 
Fig. 1. Profiled Steel Decks  

If the beam spacing goes up to 6 m, props are necessary to support the 
steel decking during concreting. Due to the longer slab span, the final composite 
slab is highly stressed. As a result this final state may govern the design. In this 
case the steel decking will require good horizontal shear bond resistance. Re-
entrant profiles are often used leading to greater steel weight per square meter of 
floor area. However, trapezoidal decking slabs are more popular than re-entrant 
because of availability of more cover width and also the relative ease of casting 
of concrete.  



309 
 

The profiled steel decking is designed to behave compositely with the 
in-situ concrete, by introducing mechanical interlocks in the form of 
embossments in both the flanges and webs of the deck profile, so as to improve 
the resistance of the composite slabs in longitudinal shear. The steel decks must 
perform three functions, each in different phases of the construction process. 
First, the steel deck, after being fastened in place, serves both as a form for the 
fresh concrete and working platform to support workmen. The second function 
of the steel deck is to act as permanent shuttering for the concrete slab. Finally, 
it acts as sagging reinforcement for the slab.  

Significant changes in the design of profiled steel decks have occurred 
during the past 38 years. A consequence of these changes is that the most 
popular structural steel for profiled steel deck construction which was ASTM 
A36, with a yield stress of 250 MPa, is now replaced by steel grade 345 MPa, 
ASTM A992 [ 2] in the United States and the higher strength steel which has a 
yield stress of 550 MPa is being used in Australia. The adoption of the new 
“North American Specification (NAS 2007) for the Design of Cold-Formed 
Steel Structural Members” and Direct Strength Method as an alternative to the 
current effective width approach may be considered as an important 
advancement for steel deck design when being compared to the older design 
procedure. 

This paper presents the state of the art knowledge on thin-walled cold-
formed profiled steel decking including experimental and analytical studies. The 
design methods and features of the specific codes for the design of steel decks 
are briefly described. A detailed discussion on ultimate moment capacity and 
load carrying capacity of the profiled decks are presented. For this the influence 
of; buckling modes, intermediate stiffeners, web crippling, embossments etc are 
considered. 
 
2. Behaviour of thin-walled profiled steel decking  
 
 Profiles steel decks are usually 38 to 200 mm high with trough spaced 
at 150 to 300 mm, thickness 0.6 to 1.5 mm, cover width 0.6 to 1.0 m and lengths 
up to 12.8 m [1, 2]. Decking is commonly fabricated from hot-dipped 
galvanized plate with a zinc coating of 275 g/m2 on both sides, which 
corresponds to a mean thickness of approximately 20 μm on each side, and is 
normally sufficient for internal floors in a nonaggressive environment. The steel 
used has a yield stress in the range of 280 to 550 N/mm2 [3]. V-shaped 
intermediate stiffener on the top side of flange tends to improve the load-
carrying capacity, as also the buckling behaviour of the decks.  

The steel decks are usually thin having the width-to-thickness ratios 
quite large. The thin elements may buckle locally at stress levels less than the 
yield point of steel when they are subject to compression in flexural bending, as 
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also, axial compression. Consequently, they are subject to more complex forms 
of buckling than hot-rolled section. The three basic modes of buckling [3] of 
steel deck members are shown in Fig. 2.  

A local buckling is a mode involving plate flexure alone without 
transverse deformation of the line or lines of intersection of adjoining plates, 
distortional buckling is a mode of buckling involving change in cross-sectional 
shape excluding local buckling, and flexural-torsional buckling is a mode in 
which compression members can bend and twist simultaneously, without change 
of cross-sectional shape. This is because the sections are relatively thin and the 
shear center lie outside the web. 

 

      
 

Fig. 2. Buckling modes of Profiled Steel Decks 
 

For calculating the load carrying capacity of the decks, the bending 
moment using the ultimate limit state, loads arising from the weight of fresh 
concrete and steel deck, construction loads (i.e the weight of the operatives and 
concreting plant and take into account any impact or vibration that may occur 
during construction), ‘Ponding’ effect (increase depth of concrete due to 
deflection of the decking), storage loads, etc should be considered. According to 
Eurocode 4, in any area of 3m by 3m, in addition to the weight of fresh concrete, 
the characteristic construction load and weight of surplus concrete (ponding 
effect) should together be taken as uniform load of 1.5 KN/m2. Over the 
remaining area, a characteristic loading of 0.75 KN/m2 should be added to the 
weight of concrete [4]. After hardening of the concrete, the steel deck cooperates 
with the concrete in order to undertake the additional loading on the composite 
slab. 
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3. State-of-the art during 1975-2008 
 

The studies on profiled steel decks were carried out extensively 
throughout the world, and were followed over the years by more experimental, 
analytical, and theoretical works by research workers. Experiments were 
conducted to obtain the information to serve as an aid to develop modeling or to 
formulate new design criteria. Because structural behaviour involves the 
interaction of steel decks with concrete, resulting into a situation, that is difficult 
to analyse satisfactorily; a wide range of analytical methods are formulated, to 
examine the suitability of decks under various loading conditions. The state-of-
the art presented herein constitutes summary of various studies on profiled steel 
decks used in composite slabs, with specific reference to the aspects of local and 
distortional buckling, flexural strength, web crippling, etc. The source of 
information being leading international journals on steel structures.  
 
3.1 Buckling behavior 
 

Phenomenon local buckling of thin-walled steel decks has been known 
for many years, and the same been well researched. The design methods 
proposed in the design standards, to account for local buckling of thin-walled 
members in compression and bending, are based on the effective width method 
for stiffened and unstiffened elements. The basic concept of “effective width” is 
illustrated in Fig.3. In this method, it is assumed that as a consequence of top 
flange buckling due to high compressive stresses, the stress distribution in the 
top flange changes. The resulting non-uniform stress distribution over  the entire 
width of flange is replaced by a uniform stress distribution over a width called 
the effective width. When the stress in the effective width reaches the yield 
stress; it is assumed that the decking has reached the ultimate bending moment. 
The effective width method is an elemental method, since it looks at the 
elements forming a cross-section in isolation. It was originally proposed by Von 
Karman (1932), and calibrated for cold-formed members by Winter (1946) [5]. 
Local and flexural-torsional modes of the deck members are largely covered in 
the design codes BS 5950: Part 6 [6], Eurocode:3 Part 1.3 [7] and AISI 
specifications [8]. Recently, it was observed that the distortional buckling plays 
an increasing role, with the use of thinner sections, made with high strength 
steels, in the behaviour of decking sections, and now it has been extended to 
stiffened elements with an intermediate stiffener of the AISI Specification 
(2007) [9]. It accounts for post-buckling behaviour, by using effective plate 
width at the design stress. 
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The paper by Erik Bernard, Russell Bridge and G.J.Hancock [10,11] 
investigated the effectiveness of size and position of single intermediate V-
stiffener, flat-hat stiffener, and without stiffener in compression flange of the 
trapezoidal profiled steel deck section (see Fig.3.). In the first paper, a series of 
30 specimens with and without V-stiffeners were tested under pure bending by 
applying two point loads using a plastic collapse mechanism. The intermediate 
stiffeners were in the middle of the compression flange and their height 
increased from 2 to 10 mm. The total width of the folded section was 785 mm, 
length of 2000 mm, and total thickness of steel 0.63 mm. Minimum yield 
strength was of the order 550 MPa. The experimental buckling stresses and 
ultimate moment for both local and distortional buckling were found to agree 
very well with a finite-strip elastic buckling analysis. The existing design 
procedure for local buckling as per AS1538-1988 (now redesignated as AS/NZS 
4600:2005) [21] was conservative. It proposed a simplified design procedure for 
distortional buckling based on Winter formula to determine an estimate of the 
ultimate load-carrying capacity of deck in compression flange.  

In the second paper, a series of 27 specimens with single V-stiffener, 
flat-hat stiffener, and without stiffener in compression flange of the steel deck 
section were tested to exhibit both local and distortional buckling under pure 
bending. The size and position of the V-stiffener and the section geometry of the 
profiled steel deck were similar to earlier paper. The size and position of the 
flat-hat stiffener were different while keeping the same section geometry of the 
V-stiffener. The experimental ultimate moment results were compared with 
design codes AISI 1991[8], Eurocode 3: Part 1.3 [7] and AS 1538-1988. The 
method of Eurocode 3: Part 1.3 proved to give the most consistent results. All 
the codes were however conservative by 20%. The prediction of the AISI 1991 
Cold-formed Steel Structures Specification, and the Australian Standard AS 
1538-1988 were closer to the test results, but with less consistency than 
Eurocode 3: Part 1.3. Proposed Modified Winter Formula method for 
distortional buckling that is experienced prior to ultimate failure, were however, 
unconservative for local buckling. The same is the case with the proposed 
Modified Effective Section method which accounts for the interaction of local 
and distortional buckling modes. 

The behaviour and design of cold-formed steel deck hat sections with 
single and multiple intermediate stiffeners in the compression flange was 
investigated by B.W.Schafer and T.Pekoz [12]. Existing experimental data were 
used to evaluate critically the AISI specification (1991) [8], and Eurocode 3: 
Part 1.3 [7]. In the first experimental work, 25 sections with one and two 
intermediate stiffeners including the parameters such as the ratio w/t = 180 & 
460 and h/t = 60 & 90, were loaded by four-point bending test. In the second 
experimental work, 20 sections with multiple intermediate stiffeners including 
three material thicknesses, one to four stiffeners and w/t = 90 to 400, and h/t = 
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40 to 90, were loaded uniformly by vacuum test. In the last experimental work, 
22 sections with one intermediate stiffeners, by considering variety of 
parameters, such as the stiffener size, the slenderness of the subelement plates, 
the ratio w/t = 100 to 300 and h/t = 70 to 95 were loaded by two-point bending 
test. While comparing the results of the different procedures, the existing 
experimental data shows the AISI specification is quite unconservative and 
Eurocode 3: Part 1.3 often yields overly conservative results. A finite element 
model was developed for the parametric study using program ABAQUS for both 
the material and geometric nonlinearities of the specimen. Comparisons to  
       

 
Section without intermediate stiffeners 

           

 
Section with intermediate stiffeners 

Fig.3.   Effective cross section of trapezoidal profiled decks 
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 experimental data could authentic the finite element model. An extensive 
parametric study was completed, which shows the importance of distortional 
buckling for these sections. Author’s investigated two approaches, viz; 
Equivalent Effective Width (EQEW) and Modified Winter Equation as 
alternatives to the current procedures. 

  
3.2 Flexural bending 
 

Allan Bergfelt and Bo Edlund [13] have studied the behaviour of plain 
trapezoidal profiled steel decks under pure bending to find the load carrying 
capacity. 21 tests were carried out using a beam simply supported along its 
longitudinal edges, subjected to two line load, with the web slenderness ratio d/t 
= 110 to 125. The author’s investigated the effect of web slenderness of the 
decks on web buckling stress. It was found that, after the flange has buckled the 
theoretical critical stress of the web decreased due to the shift of the neutral axis. 
The results indicate that the method of the AISI (1968) web buckling stress 
ought to be modified for decks with slender webs. 

A design of continuous decking using European Recommendation [22] 
is decided by considering the interaction between hogging bending moment and 
reaction force at an internal support. J.M.Davies and C.Jiang [14] have studied 
the accuracy of the European Specifications equation and compared the 
predicted failure conditions, where span is chosen to give the same ratio of 
bending moment and reaction as at the internal support in a two-span test. 
However, the results show a huge scatter with very poor correlation between the 
test results and the formula, and it requires either testing or quasi-elastic design 
based on the calculated moment of resistance at the internal support. This 
situation was improved by the author’s, through investigations of a new design 
procedure, which is based on the formation of a pseudo-plastic collapse 
mechanism, which utilizes the redistribution of bending moment, following 
initial yielding or buckling, and to predict the moment-rotation relationship at 
the internal support. The two design methods combined together to produce a 
mathematical model for the pseudo-plastic design of continuous decking. The 
results of this new procedure compared well with those obtained from double 
span test. Author’s also concluded that the influence of the web dimples was to 
decrease the bending strength by less than 10%, and suggested that dimples in 
the compression flange may affect the bending strength of composite decking 
and should be considered in the design for the fresh concrete stage. 
 Leopold Sokol [15] carried out the non-linear behaviour of continuous 
decking under uniformly distributed, progressively increasing loading. After the 
elastic-linear phase, and elastic non-linear phase, the plastic stresses and 
deformations appeared in the sections at and near the internal support, due to the 
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combined effect of bending moment and internal reaction. A plastic hinge 
appears over the support, and specimen enters the plastic phase (non-linear). The 
author studied the plastic analysis of specimens for ultimate state using the 
Eurocode 3: Part 1.3. The calculations are quite tedious and proposed some 
simplifying assumptions. 
 In practice sheeting fails under concentrated loads and large bending 
moments. The current design rules are not based on as to how sheeting fails 
under combined action of concentrated load and bending moment. Only global 
interaction between these two phenomena is described and not the real physical 
behaviour of the sheeting during interaction. H.Hofmeyer and J.G.M. Kerstens 
[16] presents a new analytical model to predict the ultimate load of sheeting 
under practical loading conditions. These practical conditions are defined by the 
ratios between bending moment and concentrated load as occurring in practice 
and compared with the existing Eurocode 3 design rules. For experimental 
works, hat-sections instead of trapezoidal sheeting have been tested because 
they were easier to manufacture with varying dimensions. 72 experiments were 
carried out for hat sections, with varying cross-sectional geometry, span length 
and yield stress, and tested under set-up specially made by Hofmeyar’s. The 
first-generation sheeting failed mainly through yield arc and yield eye 
mechanism. The yield arc mechanism occurs for a high concentrated load, 
because the cross-section’s of the web deforms first. For the yield arc 
mechanism, field lines are fixed in the web.  The yield eye mechanism occurs 
for a high bending moment, because the top flange cripples first. In the 
analytical model, some part of hat-section’s top flange has been considered by 
placing load bearing plate on that part. Due to certain load on the load bearing 
plate, a part of the top flange will deform, and using a bisection iteration 
method, the specific load at the load bearing plate, needed to reach the yield 
stress can be found. The deformation is modeled using predicted ultimate load 
of the section. In this way, a new model has been developed to predict the 
failure of first-generation sheeting. Without any correction, this new model 
functions with nearly the same quality as the Eurocode 3 interaction rule which 
uses three different concepts. The new model provides more insight in the 
structural behaviour of sheeting, subject to concentrated load and bending 
moment. Since the new model is based on the structural behaviour of the 
sheeting no interaction rules are needed. One rule is sufficient to describe two 
mechanisms for practically used sheeting: the yield arc; and yield eye 
mechanisms. The new model describes directly the relationship between the 
concentrated load and bending moment. 
 A recent paper by Euripides Mistakidis and Kyriakos Dimitriadis [17] 
studied the behaviour of thin-walled trapezoidal steel sheeting profile with four 
different embossment depth (0.5 mm, 1.0 mm, 1.5 mm and 2.5 mm) into the 
web, and different thicknesses of the sheeting (0.75 mm, 1.00 mm and 1.25 mm) 
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to determine the contribution of the embossed areas of the steel sheeting to the 
total strength in pure tension and in pure bending. According to Eurocode 4-Part 
1-1 [4], the resistance of the composite slab in bending should be based on an 
effective area of the steel sheeting in which the width of embossments in the 
sheet is neglected, unless it is shown that a larger area is effective. The analysis 
is based on three-dimensional finite element (MARC Code) models of the steel 
sheeting, which takes into account accurately the geometry of the specific 
profile, where the nonlinear effects play a minor role. A parametric analysis is 
performed using four-point bending by applying two equal forces on the 2.0 m 
span in order to study the effect of the depth of the embossments to the strength 
and the stiffness of the steel sheeting. The study concludes that there is a strong 
relation between the area of the embossment region that can be considered as 
active, and the ratio between the depth of the embossment and the thickness of 
the profile. 
 
3.3 Web crippling 
 
 Web crippling is also one of the failure modes of steel decks. Web 
crippling often occurs in steel decks because they may get loaded eccentrically 
from the web centerline, due to the rounded corners of the sections. Also 
because the webs are often slender and unstiffened. 
 Results of an experimental work on web crippling strength of deck 
profiles subjected to end one flange loading are presented by Samuel Easterling 
and Onur Avci [18]. A total of 78 multiweb deck specimens were tested and the 
results were compared with AISI (1996) [8] & NAS (2001) [23] strength 
prediction methods. Thirty-nine of the specimens were fastened by self-drilling 
screws through the tension flange to the support locations while the remaining 
39 were unfastened with different support conditions. The parametric study 
included plain decks, embossed decks and steel sheet thickness. Test specimens 
laying inside and outside of certain geometric limitations were tested with both 
unrestrained and restrained end conditions. Fastened specimens resulted in 
higher web crippling strength than unfastened specimens. There were no failures 
of the screws connecting the decks to the supports. In the analytical study, the 
effect of embossments on the webs of composite decks was not taken into 
consideration with either method. Calculation procedure (AISI 1996 & NAS 
2001) were found to be conservative for web crippling strength of deck section 
under EOE loading when compared with the test results. AISI (1996) values 
were found out to be more conservative than (NAS 2001) values for most of the 
specimens. New web crippling coefficients were proposed for fastened and 
unfastened cases based on the results.  

Profiled decking of high strength low-ductility steel of grade G550 MPa 
of Australian Standard AS 1397 (Grade E of ASTM A611) is a relatively new 
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development in Australian building construction. None of the current 
international design practices include detail provisions for this kind of steel. This 
type of decking shows high sensitivity to distortional as well as local buckling 
effect. Strength of such decking under combined flexural and web crippling as 
well as moment-rotation capacity are of principal concern if such decking is to 
be design as a continuous structure to achieve better economy. A.M.Akhand and 
H.D.Wright [19] describes an experimental study of the behaviour of re-entrant 
decking of low-ductility steel under combined web crippling and flexure. There 
are few attempts in which analytical methods have been applied to compute 
combined web crippling and flexural strength of profiled steel decking, with 
different shapes and moderate ductility. Hofmeyer et al. [16] have presented a 
more complex analytical model to predict the combined strength of sheeting. 
Analytical provisions of various international design codes, e.g. AISI 
Specification [8], BS 5950: Part 6 [6] or European Recommendation [22]  for 
estimating the inelastic moment resistances over an internal support are also 
known to be inadequate and overly conservative [14]. For the study, 15 
specimens of re-entrant decking with 600 mm cover width 1 mm thickness and 
spans from 1 m to 4 m under uniformly distributed loading were tested. Because 
when designed as a continuous spans, the profiles have a larger scope for 
significant increase in strength resulting from redistribution of moments at 
ultimate load. Based on the experimental study, a three dimensional general 
second order nonlinear finite element model has been proposed for the 
orthotropic geometric configuration of the sheeting and for its geometric and 
material nonlinearities at the ultimate load range. A general purpose finite 
element package, LUSAS was used on the basis of the Kirchoff’s theory for the 
study. It was found that the buckling behaviour of the sheeting is predominantly 
governed by distortional buckling mode in contrast to the local buckling 
behavior of an ordinary sheeting of medium ductility. A nonlinear finite element 
model has been presented which can predict the combined flexural and web 
crippling strength as well as the moment-rotation capacity of the sheeting with 
sufficient accuracy. The model can be used advantageously to derive the 
parameters required for the design of sheeting as continuous structures.   
 Ibrahim Guzelbey & Abdulkadir Cevik [20] studied the use of Neural 
Network using Matlab toolbox to predict the web crippling strength of 
trapezoidal steel decks. A closed form solution was proposed for steel decks 
acted upon by ultimate concentrated load. The required parameters were derived 
through experiments. The studies of complex web crippling behaviour of 
sheeting were categorized through experimental, FE modeling and mechanical 
models; but current design codes in this field still remain inaccurate. The 
experimental work on web crippling strength using different combination of 
concentrated load and bending moment were studied by J.M.Davies and C.Jiang 
[14], H.Hofmeyer and J.G.M. Kerstens [16], Samuel Easterling and Onur Avci 
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[18]. The proposed ANN model accurately predicts the relationship between the 
ultimate concentrated load and its geometric and mechanical properties. It 
consumes less solution time compared to that of FE modeling as well as 
mechanical modeling. This makes it practically more useful. The NN results are 
compared with the experimental results and design codes (NAS 2001) [23] and 
found to be considerably more accurate. 
 
4. Design codes 
 
 Based on the research efforts, inclusive of the experimental and 
analytical studies; various countries have proposed the codes for the design of 
steel decks.  
 
4.1 Code of practice for use of cold-formed light gauge steel structural members  
      in general building construction (Indian Standard IS 801- 1975) 

In this code, only the calculation of stresses on the compression flange 
of the stiffened elements based on modified Winter’s effective width approach, 
and the design using allowable design stress method is given. The calculation of 
the effects of distortional buckling, web crippling behaviour, bending moment & 
the internal reaction at the mid span support of the profiles, zinc coating and 
different types of loading conditions are not specified. Hence code is not of 
much use for steel deck design purpose. Revision of the code is thus warranted.  
 
4.2 Design of steel structures, Rules for cold formed thin gauge members and  
      sheeting (Eurocode 3 : Part 1.3 :2001) 

This code uses ultimate limit state concepts to achieve the aims of 
serviceability and safety by applying partial safety factor to loads and material 
properties. The bending moment is calculated by elastic & partial plastic 
analysis with effects of local buckling, through the effective width of 
compression element and effective depth of web.  The effective width of 
compression element is estimated by using reduction factor on the basis of the 
effective cross-section. Interaction between the flexural buckling of intermediate 
flange stiffeners and the web stiffeners is allowed for calculating elastic critical 
stress. 
 
4.3 Cold-Formed Steel Structures (AS/NZS 4600 : 2005) 

 In most of the codes worldwide, the effects of plate buckling are 
accounted for by the concept of effective width, where the gross section is 
reduced to an effective section. An interaction between the elements also occurs; 
consequently consideration of the elements in isolation is less accurate. To 
overcome these problems a new method has been developed by Schafer and 
Pekoz called the ‘Direct Strength Method’ as an alternative to the current 
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effective width approach and the same is sufficiently accurate to predict the 
capacity of cross-sections correctly. It proposes a design procedure based on 
elastic buckling solutions for the complete cross-section rather than the 
individual elements. The high yield stress G550 (550 MPa) of steel sheet is 
proposed for design.  
 
4.4 North American Specification for the Design of Cold-Formed Steel  
      Structural Members (NAS 2007)  

This specification supersedes the 2001 edition of the North American 
Cold-Formed Steel specification, and the previous edition of the Specification 
for the Design of Cold-Formed Steel Structural Members published by the 
American Iron and Steel Institute. The specification was developed by a joint 
effort of the American Iron and Steel Institute’s and the Canadian Standards 
Association Committee on Cold-Formed Steel Structural Members. Since the 
specification is intended for use in Canada, Mexico, and the United States. This 
specification provides an integrated treatment of Allowable Strength Design 
(ASD), Load & Resistant Factor Design (LFRD), and Limit State Design (LSD). 
This is accomplished by including the appropriate factors (Φ) for use with 
LRFD and LSD, and the appropriate factors of safety (Ω) for use with ASD. The 
provisions for determining the effective width of uniformly compressed 
elements with one intermediate stiffener (previous section AISI 1989) have been 
replaced by the provisions provided in this new AISI 2007. Provisions for 
distortional buckling and effect of combined bending and torsional loading have 
been introduced. The equations for members subjected to combined bending and 
web crippling have been recalibrated.  
 
5. Roll of finite element analysis in the development of the profile steel  
    concrete composite deck. 
 
5.1 Introduction 

The analytical approach comprising the application of finite element 
technique has already been established as the instrument of the dependable 
solution process. So much so that, unless there is a major departure from the 
conventional structural system, the finite element technique could be utilized for 
the process of the rational design of the composite deck. 
 
5.2 Element Library 

 For simulating various components of the composite deck system, all 
the available element types, in the element library of commercial software’s, 
such as ANSYS, ABAQUS & LUSAS etc., could be employed. In general 
following element types have useful application. 
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a) Two nodded and three nodded line elements for representing the steel 
reinforcement rods, shear studs, etc. 

b) Shell elements with triangular domain and quadrilateral domain, for 
representing the steel profile segments of the composite deck system. 
First order or second order element could be employed as per the 
requirement of the situation.  

c) Solid elements for representing the concrete segment of the composite 
deck. Triangular prismatic and hexahedral elements could be 
employed. The first order or second order elements could be utilized 
depending upon the requirement of the situation. 

d) One dimensional and two dimensional interface elements for 
simulating the junction between the steel components and concrete 
component of the composite deck. 

  
5.3 List of problems to be tackled 

The conventional design for the composite deck could be undertaken 
through the finite element method. The structural response derived through the 
linear deformation analysis, in conjunction with the code recommendations 
would yield the required design. For deriving the ultimate response, however, 
non linear analysis is essential. In this connection two phase development is 
desirable. 

Phase 1: It deals exclusively with the analysis of the ultimate behavior 
of the steel deck. The finite element analysis involves the considerations to both 
the geometric and material non linearities. The geometric non linearity arises 
due to the manifestation of the distortion of the component of the steel profile 
deck. The aspects, such as local buckling, curling, warping of the plate 
components would significantly alter the geometrical constitution of the steel 
profile. Both the displacements as also the strains might be of small order, but in 
view of the fact the geometrical changes are initiated at a level much below the 
yield stress of the steel, suggests that the distortions would be in conjunction 
with the plastic deformations. This in turn involves material non linearity. The 
combined influence of the geometric non linearity and the material non linearity 
could be analysed through a step wise elasto-plastic deformation analysis. The 
methods of carrying out such analysis, is well documented in the relevant 
literature. 

Phase 2: In phase 1, the concrete segment of the composite deck 
provided only the loads on the steel deck, without the contribution to the 
stiffness of the system. In phase 2, the composite action of the steel profile and 
the concrete segment becomes active. For the analysis of the ultimate behavior, 
however, once again the phenomenon of the geometric non linearity, coupled 
with the material non linearity gets manifested. The geometric non linearity may 
involve features such as large displacements, global buckling, interface sliding 
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and or debonding between the concrete surface and steel profile. The material 
non linearity would arise from the phenomenon of cracking in the concrete 
segment due to tensile stresses and the phenomenon of softening of the concrete 
segment due to the compressive stresses. The constitutive laws governing this 
kind of behavior are sufficiently complex, and their true character would 
demand extensive laboratory tests over the representative samples. In phase 2 
the most complex situation could arise from the thermal strains developing 
during the onset of fire or the dynamic loads arising from the agencies such as 
the blasts, earthquake shocks etc. 

Many of the above mentioned aspects of non linear analysis could be 
undertaken with the established finite element procedures. However entire 
process of non linear analysis involves iterative solution technique consuming 
great amount of computer time. Keeping this in view the attempts are on the 
way to coin the special purpose finite elements, which provides the reasonable 
results from the analysis. 
                                                                                                                                                                                            
6. Conclusions 

Considerable progress has been made during the last three decades in 
the investigation pertaining to design of thin-walled cold-formed profiled steel 
decking as a permanent formwork, used in composite concrete slab 
construction. Details of the investigations on experimental, analytical and 
design code works is summarized in this paper. Intensive research is required 
on bending moment and, reaction at the internal support for continuous span, 
by considering its combined effects of local & distortional buckling on steel 
deck element, effect of embossment, etc. In this connection finite element 
solution technique holds bright promise. The North American Specification 
(NAS 2007) for the Design of Cold-Formed Steel Structural Member and 
Direct Strength Method as an alternative to the current effective width 
approach for steel deck design appears to be more rational.  
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