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GENERALIZED GEOMETRIC PROGRAMMING TN
COLD FORMED BTREL DFSIGN

by
8. Ramamurthy* and R. Ii. Gallagher**

SUMMARY
Relationships governing the minimum weight desiqn of two cold formed
stesl cross-sections, the hat and the channcl, are constructed. The gen-
oralized geomatric programming (GGP) algorithm, which is especially sulited
to this class of problem, is described and applied to it. Numecrical
results arc presented for problems involving the action of pusitive or

negative moments and transvorsc shoar,
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1. INTRODUCTION

Cold-formed steel structures represent an attractive potential for the
application of optimum structural design procedures. The key dimensions of
structural forms of this manner of construction are open for selection by
the design analyst who can use this latitude to achieve the cbjective of
structural integrity at low cost or weight. Optimum structural design pro—
cedures represent organized, programmable approachas to the achievement of
such goals.

The overall problem of optimal structural design has attracted con-
siderable attention in the past fifteen years. An account of much of this
work can be found in Ref. 9. A large share of this activity has involved
the amalgamation of methods of computerized structural analysis and mathe-
matical programming, particularly feasible direction and gradient methods.
Other efforts have been devoted to the adaptation of classical minimization
procedures to various structural dosign probloms. Still other activities
have sought "optimality criteria™ procedures, which explolt some Fundamental
property of an optimal solution, e.g., fully-stressed design.

Seaburg and Salmon (15) have treated the problem of minimum weight
cold-formed steel design, employing a mathematical prograsming approach.
Although this type of approach is workable for the subject class of problem,
it does not take advantage of any special characteristic of this class of
problem. The high computational cost of mathematical programming makes it
highly desirable to soek officiencies via mothods which do exploit such
npv:lal charocvteristics.

One mothod which is appealing in this regard is geometric programming.
Devised originally by Petarson, Duttin and Zoncer (6) the method appliecs

to conditions under which the quantity to be minimized and the constraints
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on the problem can all be written as the sum of polynomials with positive
coafficients. If thia and certain othaer conditions can bes met thon a trans-
formation can be applied which yields a problem that is much simpler to
solve. Templeman (16, 17), Morris (11, 12), and others have adapted these
“standard" geosetric programming concepts to numerous optimum structural
design problems.

Unfortunately, many significant engineering optimization problems --
including cold formed steel design — do not conform to all of the restric-
tions of standard geometric programming. Such non-standard problems have
been cast into the format of standard geometric programming by Tespleman (16),
and Morris (11), who employed the approaches at Avriel and Williams (4).
More recently, a new class of less restrictive gecsetric prograsming
algorithms, known as “generalized gecmetric programming", symbolized here
as GGP, have been developed by Avriel and his associates (Refs. -2, 3),
Dawkins et al (Ref. 5), and Ecker and Zoracki (Ref. 7).

The advantages of GGP, of the form developed by Avriel, Dembo and
Passy (3) are brought to bear upon the cold formed stoel design problem
in this paper. Two specific problems are chosen to describe the procedure,
these bring the design of a hat section and a channel section, respectively,
undar the action of applied moments and a shear force. The details of
these problems are given in the next section. Then, the pertinent concepts
of GGP, including the strategy for troatment of equality constraints, aro
outlined. Finally, the reosults of numorical coptimization studics of the

uubject problems are presented.

2. DESCRIPTION OF PROBLEM

2.1. BSectlion Geometry and Loading
The geometry of the hat section and the channel section are shown in
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in the top flange. Fp and ?b are the distances from the controfdal
{1=1) axis and the top center lines of the top and bottom flanges,
respectively. !. is the momant of inertia of the effective cross-scction.
For the hat section problem, the effective width of the top flange,
b » which is used in the calculation of I, is obtained from the effective

width equation (Bg. 2.3.1.1 Ref. 1),

2280583, (3)
4 /F (e /% ) VE

BEquation 3 is wvalid only when
2%, > VNUVE )

otherwise, b = x,.
b. Stress Constraints Due to tive Moment M :

The condition that the direct stresses in the flanges duc to the applied
positive bending moment are less than the allowables can be written as

.#1 0.6!'? (top flange) (5)

!ﬁ-‘_ 2 F_ = Allowsble Cospressive Stress )
1

where, ;-umauummmmummmmurlm.
i
and I is the moment of inertia of the entire section.

is the distance between the centroid and the bottom center line,

Morecver, in Bg. 6, the allowable bending stress in compression, Pcc
is a function dependent on the ratio, xlfa‘ (Egqn. 3.2.b Ref 1). For the



46 FOURTH SPECIALTY CONFERENCE

presant problem xlls. must not exceed ud’r_v. and the corresponding
expression for rn is

z.“
r Ew 707 - 0 (‘::-) ') o

¢. Stress Limitations Due to Shear, V

nl.-l.:l.u-to!c. the allowable stress for shear, !v. is a function of
the web depth-to thickness ratio, M‘.uhmﬂt!‘rn
dependent upon the rangs of values of ssls‘ = k, given by BEq. 3.4.1 a and
b Raf 1. The chosen range of k for the hat section is

t:sn;-'T, (&)
Por the ranges considered in Bg. 8, rvummuuatm

P, = 83,200 (9)

lx,/:ﬁ ,:

2.3. Behavior Constraint Conditions - Channel Section

a. Constraints due to Positive Bending u_\t!!

The constraints representing the condition that the direct stresses
in the flanges due to the application of M are less than the allowables
are the same as those for the hat section and are therefore given by
Egs. (1) and (2). No constraints for nogative bending moment m'i are
considered for the channel section,
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b. Stress limitations dus to shear
wiiaio‘lu%ain"iaéh-'

have from Bg. 3.4.1a and 3.4.1b of Ref. 1
k < 547 .‘14 {10)
Also, for the chosen range of k, the average shsar streas, nc. in
uhlpi“s!nv!ﬂci.

r, =152 \qﬂl\win:-lir.lon o.4r ()

e. MWeb-crippling constraint

Assmaming bearing lemgth is equal to the web-depth, Bq. 3.5.2 of Ref. 1
requires that

R, < x,% [305 + Laowx) - .0000vx)?) = [1.22 - 0.22 r/33] /33 Q2)

where h is the distance between the inaside of the flanges.
‘D

The minisum depth of the 1lip stiffemer of the hat section should not be
less than either

2
2.8 x, :_.ul. - I_.aoo-_ /2 (35 )]
= | 3
4 y
or
248 x,

@. Cosbined Bending and Shear Stresses in Webs
The webs subjected to combined bending and shear should satisfy the
following equation:

T LT ¥ S P (11a)

l—..-..an-.l_.. notual bonding mtrons In tho wob and

traints Due to Artificial Variables:

In addition to the above, four artificial variables, oo Ber Xy and
%, are introduced to sisplify the algebraic manipulation of the design
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eoquations that are expressed in a form asenable for GGP format. Thasa

equations are

x, 2 X2.2 _ 4000

8=~ {==) (14)
X P’
% 3 0.5 X2 4 X%, 4 XX (1s)
6 - 3 273 173
3 2 2 3 2
x, 2 . 6667 X b E X, b XX, ¢ 0333 x; - X)X, (16)
and x, > x, - e an

In tho above, X relates the oxpressions within the squaro root sign of
Eq. ls,usm-nmﬂnﬂxumto!ﬂnmtmmmw
center line of the cross section, and X, is restricted to be less than the
momont of incrtia of the entire section about the axis passing through the
top centor line. Lautly, xg bounds above the distance between the inside
of the flanges parallel to tho wobs.

2.4 Bounding Constraints on Design Varisble Magnitude
In additlon to the above behavior constraints, bound constraints, which can

sct limits on the smallest and largest scceptable values of xy'®, can be introduced.
These bound constraints, which are inequalicties, can be parc of the GGP procedure,
and thesc hounds may be due to manufacturing limitations. In the present GGP
procedure, bound constraints, however, are introduced as an artifice to incorporate
the equallty constralnts which are not a part of the GGP procedures published
hertofore.  This procedure will be discussed subscquently.

7.5 Mhjeetive Function

The obJective function can be elther welght or cost. Due to lack of
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b. Stress limitations due to shear
In&motmehmlmmmabmmo!h{z‘. wa
have from Eq. 3.4.1la and 3.4.1b of Ref. 1

k < 547 lr,_ (10)
Also, for the chosan range of X, the average shear stress, f ., is
limited to be less than l" where,
F, = 152 q/k with a maximom of 0.4r, (11)
¢. Web-cr ) § constraint

Assuming bearing length is equal to the web-depth, Bg. 3.5.2 of Ref. 1
requires that

2 2
lt. =x, [305 + I..BW:‘) - .M(l\/x‘) 1 = [1.22 - 0.22 !‘/31] 7/33 2)

where h is the distance between the inside of ths flanges.
d. Oonstraint Rela to the Effectiveness of the ffener

The minimm depth of the lip stiffener of the hat section should not be
less than either

x 2 4000

2.8 x, [l;q-) - ¥, 1] 12 (13)
or

=z 4.8 L
€. Combined Bending and Shesar Stresses in Webs

The webs subjected to combined bending and shear should satisfy the
following equation:

E /P’ ¢ g r)? <1 (11a)

whore £ = actual bending stress in the web and

bw
7. = 520,000/k> with a maximum of 0.6,

bw
f. Constraints Due to Artificial Variables:

In addition to the above, four artificial variables, Xgr Xor Xy and
xg are introduced to simplify the algebraic manipulation of the design
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accurate cost data, and due to the judgement that cost and weight approxi-
mately correlates in this problem, the weight per unit length is chosen as
the objective function, This weight is obtained by multiplying the area

of the cross section by the unit weight of the steel. Thus, for tha hat

section

W= 6.8 %, + 3.4 L + 6.8 XX, (18)
and, for the channel section

W= 6.8 XX, + 3.4 "3’4 + 6.8 x X, 19)

3. SOLUTION ALGORITHM

In the standard form of gecmmtric programming the objective function
and the constraints must sach be of the same form in the n design
variables E =Xy ==X It is customary to designate the objective
function as 'o(f" while the p constraints are designated as ql@}... a
q‘,l{n. The required form is, for a constraint %G consisting of 9y terms

ql. 4 n Ijk
g %) = L ooy W (%) <1 (4= 1,...p) (20)
i=1 k=1

;‘mtunhbamiun. (The < 1 condition does

where the multipliers c
not, of course apply to g , the cbjective function) The exponents l“
need not be positive.

Connider, for example, tho constraint reprosented by BEq. (4). This

can be rearranged to read
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i< (21)

Mow, mlmmmamlcwdmotfm!. each term on
the left is of the form C, u“"' ®jk. The sign of C,, however, is negative,
which violates the requirement given above.

When the above requirement is met the constraints (and the objective
function) are in the form of a posynomial, a designation coined to describe
a sum of polynomial terms ecach of which has a positive multiplier. When some
of the terms have negative multipliers the expression is called a signomial.
The cbjective of Generalized Geometric Programming is to transform a prob-
lem given in terms of signomial constraints and objective function into a
posynomial suitable for treatment by standard geometric programming. This
cannot be accomplished in an exact manner and the solution process is there-
fore iterative.

To develop this scheme we first identify a typical individual term of
a posynomial as a monomial, u (fl.

a
L lf} = cr: {at’ rk {22)
so that the corresponding posynomial is of the form
(x, ) ek (23)

A signomial constraint qllx) can be arrangod as the difference

beatween two posynomials, say Uy and a’., where

- a
o = u-.zc ("n’“‘ (24)
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and r + 8 = q- Thus,

9y(x) =0, -U, =1 (25}

With the above designations at hand, the generalized geometric program—
ming (GGP) problem, applicable to minimum weight cold formed stecel doesign,
can be expressed symbolically as

Minimize g, (X) = U_(X) = U_(X) (26)
Subject to
giX) =0, (X -0, () €1 (=1, —=p) (27

and side constraints

;" o= (28)

Here, the subscripts LB and UB stand for specified lower and upper
bounds, respectively.

To explain the details of tho solution process beyond this point, we
observe that tho constraint conditions (Bq. 27) can be written in the

Ml lowing alternative form

g = ——- < (29)

i %



via approximate procedures. Although such procedures represent a critical
stop in this approach their development is beyond the scope of this paper;
the interested readar is referred to Refs. (3, 14).

The GGP problem is solved via a sequence of G&" (m=1,2,...,8)

(1.0., @™ 1) jeeration. Here, the starting point, m_o. must be feasible
(meet all comstraints).

The computer algorithm (Ref. 14) used in this paper to solve the GF"
problem is done by a process of lineariszation as used by Avrisl et al
(Ref. 3). The constraints, approximated as monomials as stated above, are
linearised by using a logarithmic transformation. If the soluticn obtained
is feasible the iteration will terminate. The cptimal solution of the
resulting linear prograsming program, however, may not be a feasible solution
to the parent GP problem. The infeasibility for the parent GP problem will
necessitate the introduction of additional linsarized constraint, to be
appended to tha previcus LP problem, which is obtained by approximating the
most viclated posynomial constraint of the parent GP problem. This process
of linearization and the addition of lineariszed constraints is continued
until the optimal point of the LP problem is feasible to the GP problem.

A flow chart as shown in Fig. 3 illustrates the above discussed
vomputer algorithm for the GaP.

1t should be noted that the GGP algorithm does not take into account
equal ity constraints, as ruprowented by Eq. (28). The msans of dealing
with this condition in the present application is described in the pext

section.
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4. NERICAL ExMwLES AWD mEsuLTS
4.1 Hat Sectiom

The design conditions chosen for the case of the hat sectiom are
adapted from a problem Gescribed by Yu (18) where a positive moment
Mp =135 in. K. (1.54 x 10%um) is specified. We add to this a specified
negative moment M = 65. in. X (7.4 x 10%mm) and a shear forcs V = 20.3 X
9.0 x 10%0). r,ua.nsm' we' 40 X/ia.2. Yu's design was x, = 2.35°
(59.7 mm), %, = 14.5" (368 mm), ¥, = 9.5" (241 mm) and x, = 0.105°
(2.65 mm), giving a weight of W = 13.637 Ib. (61.0M). The calculated M
in this case was 138.4 in. K (1.58 x 10%mm).

The expression of the objective functiom is given by Bg. (18). Giving
this a GGP designation we have:

Minimize W = L l.ﬁlu‘ + 3.0!,3‘ + C.I:,:‘ (8)

The spplicable constraints lql....',l weore defined in Section 2.3,

Bgs. (1) - (9) and, after numerical evaluation based on the above data,

they have the form given in Table 2.
nhWh“Mht&mMgl.gzﬂq.m

coefficients of some terms are sultiplied by b, b is a function cbtainable

from the following implicit equation: (Ref. 1).

ada
4
bh = 253 ——
1/2
I - m (xy 0-2:1::' —,—l
b lh’ + 6x, x,7) + (:’ ou‘s:j

55.3
v (30)

= - 5
®g ﬂl (li +* ulﬁ] 2
I xg ! b(ax,” +

Gxyxy ) + "‘:‘ ¢ ""1'3”
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This equation is applicable only if (by combination of Bqs. 3 and 4)

2 3 L] 3 /2
.’3. > Ivie 1/2 b (631:! + z:l." )+ b‘: + 4:183 )
N 4 an (x: + 2x,%,)
otherwine, b = X, P

Although it is possible to solve Bg. (30) algebraically, the substi-

3)

tution of the resulting equation in constraints 9, and 9, would produce

a very involved expression. Instead, satisfaction of the condition repre-
sented by Eq. (30) was accomplished by a process wherein the independent
variables were limited by upper and lowear bounds within a certain percen-
tage of the current values (105% and 80%) at sach iteration and at the
sama time recalculating the valua b. The calculation of the b was
accomplished by appending a subroutine which is called by the main program
GGP. The structure of the computer program and the algorithm itself is
such that this is possible only before calling the subroutines which form and
solve the GF' problem. Bafore calling these subroutines the lower and
upper bounds are also changed and coefficient matrix of GGP which is
required to solve a GP" problem is alsc modified. This solution approach
is presented in the form of a flow chart in Pigure 4.

Taking a convergence tolerance of .00l on the value of cbjective
function, the final weight converges to 8.511 lb/ft in ten iterations.
Pigures 5 and 6a show, in normalized form, the optimum valuss of the inde-
pendent variables x; and x, and objective function at every GP" iteration.

mmzuotmmum-wmtmwlm:3ma‘mm
change after the first iteration. Also, the values of b in suucessive
iterations changed only slowly. 1In the 7th through 10th lteration the
value of b remained practically constant and it could be assumod that the

algorithm had converged to a local minimum. Prom Fiqure 5, it should bo
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clear that x," (value of x, at the optimum point) cach time reaches its

1 1
lower bound until the Eifth G" iteration iw reached. From the last iteratlion
it can be obsorved that the total top flange width is effective. The
execution time taken to obtain the above results using a WATPIV/compiler
of ITBM 370/168 was 1.3 seconds.

4.2 channel Section

A minimum weight channel section is to be designed to carry a uniformly
distributed load of 180 1b/ft (2.65 x xo’uf-o over three spans of 25 ft.
7.6 m length each. The appropriate design loads, calculated using the
equations given in Reference 1 , are ltp = 136.755 kips, V= 2.7 kips, and
a support reaction of 5.4 kips. The yicld stress, !!. is assumed to be
45 ksi.

The objective function for this problem is given by Eguation 20.
The constraints, which were outlined in section 2, are given in their
detailed form in Table 3, oxcept for 9, and 9yqr which are too lengthy to
give hare and which can be Found in Ref. 14. The transformations from the
equations of the previous section to the ones presented subsequently
involve the introduction of expressions for I, ?p. and for artificial
wvariables e Xge X, and Xg: An expression similar to Bg. (31), which
rolates the b and other variables as in the case of hat section problem,
is cbtained for this problem also. The same logic presented in Fig. 3 is
used for this purpose.

As in the hat section problom, the equality relationships due to
the effective width oyuation is approximately preoswerved by constricting the
bounds. The procodure adoptod here to solve this numerical problom using
tha GGP is also very similar to the one used in the hat section problem.

The following are the dimensions of the initially acceptable design
saction: ‘1 = 1.128 in, (28.7 mm) x, = 5.5 in, (139.7 =m) Xy = 8.5 in,

(216 ==m) %4 = «119 in. (3,02 mm). The values of the remaining variablas
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of the chosen initial feasible point are x

5 = 2047.2, X = 92.46, x = 673.6,

Xg = B8.381.

The weight of the section, W (Eguation |9), from a starting value of

8.802 converges to €.156 in four GP" iterations. The results of thesa

calculations are presented in Pigures 5, 6a and 6b.
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5. CONCLUDING REMARKS

For the range of depth to thickness ratio and flange width to thickness ratio,
thickness of the section remained practically a constant. For these chosen ex-
amples, the GGP algorithm converges. Thus it was found possible to incorporata
equality constraints by use of an approximation and by constricting the ranges
of the independent variables.

It must be noted that for a given design only some design (especially
allowable stress) constraints are valid and these need to be chosen before
formulating the optimization problem. It is, however, possible to incorporate
all the constraints at once, and using scme subroutines to pick the nesded
constraints at any given time. These subroutines would be very valuable tools
to obtain an optimum cold formed steel cross section.
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Read in Data for GGP
and X°

Y

Calculate x_, ,"o
Initialize m=0

Form GP" Problem
By Condensing tl.ﬂ.lli

Functions at X = i"-l

Y

Initialize =0
S el
Form LP™ L problem by
Condensing GE"l Problem
at X = X"'°

Solwve

feasible for
GP" Problem

m, L

LP Problem

Condense the
Ith constraint at
L x-vx"‘" and append -1
the constraint to
the L™ " Problem

Say 1th Constraint of
o™ is most violated

FIGURE 3 Flow ¢hart for General ized Geometric Programming algorithm
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Feaad input data
Set initial feasible point
and bounds; m=l

T

Calculate x,

Change coefficient

matrix of GGP
problem

;

Reset the lower and
upper bounds of the
independent varisbles

Solve a GP™
problem

FIGURE 4 Flow chart for treatment of inequallty constrainte
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1 LCMM‘I section

iteration number

PIGURE 5 Convergence of objective functions
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ilnllﬂlllr-hb

(2 ]
TABLE 1 - DESI(N CONSTRAINTS
tConstraint
Condition Hat Sectiom Channel Section
Flange Bending Stresses Top Flange Bending and
(Poa. Bending
Moment) Bottom and Top Wedb Bending Stresses
"
{Meg. Bending PFlanga Bending Stress ~
Moment)
Bottom and Top
v
(shear) YES YRS
Vab
Crippling - YES
Lip stiffener - YES
Artificvial - YES
Variables
Limits on YES YES
Member sizes
! Combined Bending| - YES




TABLE 2 NU/ERICALLY CVALUATED CONSTRAINTS - HAT SECTION

Constraint Constraint Description
9
i
-1 1-1 -2 -1 -1 21 =31 %
by & X % e %%y e T T’ TG ) X
9, 3.5 16.875 -6 -2 -4 Top flange stress due
to n’ (Bq. (1))
Q
9, -6 -2 -4 16.87% 16.875 Bottom flange stress
dus to np (Bq. (2))
-3 -1 -2 =1 -1 -2 -1 -1 -2 -1 -2 -1 -1 a
"1‘33"4 R Ry X %%, X% i Rk ’z‘:z'cl*s &
9 - 195 -6 -2 -4 - 195 Bottom flange stress
dus to r& (3. (6))
9% 16.25 - -6 -2 -4 8.12% - Top flange stress dus
to W, (Bg. (5))
-1 - -3
%% X ‘3&4 3%
9% 0.02175 0.03295 - - - - - Limiting Comp. Stress
{Eg. (M)
'6 0.04392 - - - - - - Limiting range of
ll/x‘ ratio
9, - - 96.488 - - - - Limiting ratic of

X%, (Bg. (9))



9 - - - .0012135 - Constraint on allow. &
r, (Ba. (12))
-2_ 3 3.3 .2 2.3 2. .3 -1
R R e T e e I & e o T e
% a33.2 144.4 72.2 288.9 -2 Constraint Limiting

the usa of Eff. Width
£q

HONFNAANOD ALTVIOELS HLYNOL



TABLE 3 NUMERICALLY EVALUATED CONSTRAINTS - CHAMMEL SECTION

Constraint Coefficients a Constraint
9 description
al el ek sl w] -1 -1 -1 2.-1 -1
H%%T %9 ** n Xe*2 o Ty e
9 5.06 1 -2 =1 -1 - - Top flange stress dus
to Mp (Eg (1))
’2 - - - - - o.’ 2 kut“m milbl.
xg (2q (16))
Q
12 -1 2.2 = 1 2 =
By Tl *1* o T ¥ % %) % X §
9 1 1 ~0.6667 -1 -.3333 - - Related to Artificial a
variable x, (8q 17)) X
5 ” - ™ a L 2.64795x10"> - Permissible Shear
Stress (Bq (10))
o3 =) -1 -1 -1 2 -2 -1 -1 -
oy % 5 *3%a N B%S s g
=
q‘ .15 1.0 - - - - - Permissible Shear S
Stress (BEq (11))
%, - - L2507 - - - Linmiting ratioc of Web
depth to thickness(Eq 15)
g » - - 4.3 - - - Constraint on the depth
8 of tip stiffnar (Bg (15))
9 > - - - 1.0 -88,889 - Artificial Variable

xg (Eq (15))

L9



.1667 8-" -1 =1
s 1% *3%s *¥g
5. ] —2 - -
- - 1.0 =1.0

Minimum deith of the
Lip stiffner

Artificial Variable
xg (B3, (18))

Web Crippling
Stress (Bg. (13))

Lanndclal 4 Lesem! # a0te, + esenc Nl
333360 + L0833, e + 6667x,x,3, 5y

K g, + kg, + 23300 0 ag, - 193!
2.3384°107 5, P = 4.6768:107x] e n

1

R i o T
4.6768°10 :l"lzz‘ px <1

1.315-:0":;‘:2:;’:;‘:: + 2.630:10 ' 0 2

O . T F T
2.630+10 X X, XX, Xy Xy + X, XXy

4 -1-2-12 —f =2 =1 2
2.630-10"xx 'y x.’lx' - 1510740 e

Lats 1074 eyt e - 115107 1 i P

hl‘;l - ‘;l‘a s ’;l‘c £1
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NOTATION

Exponent of the independent variables xj
Effective width of the compresgasion flange
Coefficient of the monomial “k

Allowable bending compressive stress of the unstiffened
element

Average shear stress
Yield stress

Actual bending compressive stress considering the
effective width equation

Sigomial which is expressed as the difference between
two posynomials Ui. and Vi

Moment of inertia of the cross section

Momunt of inertia of the effective cross section
Web depth-to-thickness ration

Negative Bending Moment

Positive Bending Moment

Support Reaction

Posynomial

Monomial

Shear force

3*® indepondent variable and its upper bound and lower

bounds

Distance between the controld and the bottom flange of the
effective section.
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Distanos betwoen the centroid and the top flange of the
entire section,

Distance betwecn the centroid and the bottom flango of
the entire section,

Distance between the centroid and the top flange of the
effective cross scction,

Ratio of initlal value of design variable to the value
calculated in a particular GGP iteration.
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