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. RESPONSE OF THIN-WALLED
By Charles G. Culver{'

BEAMS TO IMPACT LOADING

Edward A. Zanoni% au_'xd

Arthur H. Ougood:f Assoc, Members, ASCE

INTRODUCTION

The influence ;f local buckling on the response of thin-walled cold-
formed beams subJectgd to impact loading was considered in a previous paper
(10)1‘. A mathematical model which accounted for the nonlinearity introduced
into the response due to the dependence of beam stiffness on applied load
was developed and compared with a series of impact tests. The purpose of
this paper is to compare results obtained from this mathematical model with
results from a linear elastic analysis of simply supported beams in which
the effects of local buckling are neglected. Such a comparison is of interest
to evaluate how much effect local buckling of portions of the beam cross section
has on the overall dynamic response. Note that no attempt will be made herein
to establish design recommendations for the case of impact loading of thin-
walled cold-formed beams. The writers believe, however, that these results

may be used for this purpose,

DYNAMIC RESPONSE

Typical response curves showing the variation of the internal moment
as o function of time obtained from a linear elastic analysis and from the
mathematical model developed previously (10) are shown in Fig. 1 for various
values of the time duration of a triangular load pulse (2). These curves
are for a simply supported thin-walled beam with a hat-shaped cross section
subjected to a uniform load. The maximum value of the load with time is
equal to four times the static load required to produce local buckling of
the section. The time duration of the load has been nondimensionalized with
respect to the fundamental period of vibration of the beam calculated by
neglecting local buckling, B = td/to . The time axis has been nondimension-
alized with respect to the time duration of the load pulse, T = t/td , and
the moment with respect to the local buckling moment of the cross section.
Note that the results obtained from both methods agree quite well,

Since design criteria for impact loading are usually based on maximum
response, maximum stress or maximum deflection, it is usually not necessary for
design purposes to consider the complete dynamic response of the specimen
as & function of time., In order to simplify the design procedure, therefore,
responsc spectra are usually developed (1, 3). These spectra are presented
in a graphical form and show for a particular dynamic system and excitation
the maximum values of some significant response (deflection, stress, velocity,
etc ). A response spec’tra plot for the maximum edge stress in the top flange
obtained for the same beam as in Fig. 1 is shown in Fig. 2, For the linear
analysis the influence of local buckling was neglected in both the dynemic
analysis for determining the internal moments and in the stress calculation
using these moments. For a low value of load, a = 1 , very little local
buckling occurs and the two methods of analysis give almost identical results,

As the load magnitude increases, however, a = L, 6, the stresses obtained from
-2 - " o T

lAssoc. Prof., Dept. of Civil Engrg., Carnegie-Mellon University, Pittsburgh,
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FIG. 1 - Beam Response-Moment (Triangular Pulse - a = 4.0)

the linear analysis differ appreciably from those obtained taking local buckling
into account.

The results in Figs. 1, 2 indicate that local buckling does not signi-
ficantly influence the internal moments produced by impact loading but obviously
must be considered in determining the stress produced by these moments. Results
presented in Fig. 3 illustrate this trend. Spectra for both the maximum top
flange and bottom flange stress are presented in Fig. 3. Note that the top
flange stress obtained from the linear analysis is considerably less than
that obtained from the nonlinear analysis, If however, the linear analysis
is only used to determine the internal moments and then the stress computed
using the concept of effective width (L), the results agree very closely with
the nonlinear analysis. Since the maximum bottom flange stress is not influ.—
enced by local buckling to the same degree as the top flange stress, results
obtained from the three methods of analysis agree more closely.

In dealing with nonlinear structures of the type considered above, it
is generally not possible to develop response spectra which are applicable to
& broad class of problems as is the case with linear structures (7). Since
the degree of nonlinearity in the beam response is influenced by the geometric

proportions of the cross section, it would be necessary to use a nonlinear

dynamic analysis (10) or to develop response spectra similar to those in Figs.
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could be used to obtain the internal forces.

' 2, 3 for the wide variety of cold-formed sections which may be manufactured (9).

l'.l'he advantages of using a linear analysis to determine the internal forces

Existing linear response spectra or simple impact factor formulas
Using these forces, the stresses

could be calculated in the same manner as for static loading (9). The numerical

accuracy of such a procedure is evaluated in this paper.

PROBLEM STATEMENT

The dynamic response of thin-walled beams is influenced by the following

uniform, concentrated; load magnitude; time

parameters: type of loading -

variation of applied load; and the degree of nonlinearity of the specimen.

In practical problems of impact the magnitude and time variation of the load
are not well defined. Simplifying assumptions regarding these quantities are

usually required. The dynamic loading used for this study is shown in Fig. "%

The degree of nonlinearity in a thin-walled beam is a function of the length
of the beam over which the internal moments exceed the local buckling moment.

Since this length is related to moment gradient the four loading conditions

in Fig. ba were selected. The time variation of the applied loads in Fig. Ub

correspond to those used in previous studies of dynamic response.
The degree of nonlinearity of a thin-walled beam is influenced by the

type of cross section. Although a wide variety of cold-formed sections are

available only the cross sections shown in Fig. 5 were considered. The non-

linearity for these sections may be characterized by the relationship between

the applied moment and the beam stiffness or moment of inertia. Relationships

of this type are shown in Fig. 6 (10), These results are presented in nondi-

mensional form by relating the stiffness to the original moment of inertia prior

to local buckling, Io and the internal moment to the moment required to pro-

duce local buckling, MLB .

The curve for section A in Fig. 6 is linear for negative values of the

FIG. 2 - Response Spectra for Stress
moment and nonlinear for positive moment. The curve for section B is nonlinear
for both positive and negative bending and is symmetric due to the symmetry
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of the cross section about the axis of bending. The curve for Saction C is
also nonlinear for positive and negative bending but is not symmetric since
the buckling behavior of the top and bottom flanges is different. The three
types of stiffness curves shown, therefore, cover the entire range of possibil-~
ities which could occur for any cold-formed béam regardless of the shape of
the cross section.

Although the curves in Fig. 6 cover all the possible forms of stiffness
variation, the amount of nonlineerity 18.inf1uenced by the actual dimensions

of the cross section. In order to determine this influence, I/Io vs, M/MLB
" curves were developed for a wide range of cross sectional dimensions (5), The cross

sectional dimensions expressed in terms of the width to thickness ratios of the
various elements for the three sections in Fig., S considered in these calcula-

tions were: Bection A=50 < w/h < 250, 30 < a/h < 150; Section B-30 < w/n < 60,

30 € 4/h € 150; Bection C-50 < v/h < 200, 90 < d/h € 150, £/h = 40, These curves

TYPICAL 1/Io VS. M/M_y CURVES
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FIG. 6 - Typioal I/T, va. M/M.y Plot
vere based on the 1962 edition of the AISI Design Specification (L) since the
major portion of this study was completed prior to the release of the latest
edition of this specification (6). The influence of the.new specification on
the results obtained will be discussed in a later section., All the curves for a

particular cross section followed the same trend, The primary influence of the
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occurred.

cross-sectional dimensions vas the value of M/MLB at which yielding of the lection‘ | of analysis. The maximum increase in the moment based on the nonlinear anal-

The curves were terminated at this point since initial yield is con-

sidered failure for cold-formed beams (L), For each cross section in Fig., 5 the
I/I° curve with the greatest nonlinearity or the largest reduction in .-tirrneu

t;r a particular moment was used in the study. The results presented in the

next section, therefore, represent the maximum differences between a linear and

nonlinear dynamic analysis for the ranges of cross sectional dimensions conlideredu

NUMERICAL RESULTS

Comparisons were made between the two methods of analysis for a wide
range of the parameters mentioned above. Only & limited number of these re-
sults are included herein. All the results are, however, available else-

vhere (5).

Internal Moment

The influence :;r the various parameters on ‘the intern;i moments is shown
in Figs. T-10. The ratio of the maximum moments calculated from the linear and
nonlinear analyses are plotted as a function of the nondimensional load duration
B8 . Presented in this form, the percentage difference between the two moments

can be readily obtained from these curves.

The influence of pulse shape is shown in Fig. 7. Note that the largest

deviation between the two analyses occurs for the rectangular pulse for B =
0.33. The magnitude of this deviation decreases for the other pulse shapes,
In most cases the moment calculated from a linear analysis is greater than the
moment from the nonlinear analysis, HNL/M.L <1,

Fig. 8 shows the influence of load location on the internal moments.
The meximum deviation between the two methods occurs for quarter-point loading.
This is to be expected since the length of the beam over which local buckling
has occurred is greatest for quarter-point loading. The greatest increase in
moment for the nonlinear analysis over the linear analysis is less than 5%.

Fig. 9 illustrates the effect of increasing load magnitude on the non-

linearity of the problem. As the load magnitude increases local buckling

also increases resulting in an increasing difference between the two methods
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ysis is less than 10¥ for this case.

The influence of the dimensions of the cross section on the method of
analysis is shown in Fig. 10 for Section C. For this cross section, local
buckling or the degree of nonlinearity is directly related to the width-to-
thickness ratio,

w/h , of the top flange. As this ratio increases the dif-

ference between the two methods of analysis also increases, Note that the

maximum increase in the moment based on the nonlinear analysis over the linear
anslysis is only upproximtely. 2% for w/h = 250 .

The results presented in Figs. 7-10 indicate that, in general, the
internal moment calculated using a linear elastic analysis is larger than the

linternal moment obtained from a nonlinear analysis. Using the linear analysis

ivould, therefore, be conservative, For those cases in which the nonlinear
]mozunt exceeds the linear value, the deviation is less than 10% in all cases
;conaidered. For the practical situations in which impact loading must be con-
sidered this deviation is usually less than the accuracy to which the externally’

applied impact loading is known,

Deflactions
In certain practical applications the value of the deflections produced

by the dynamic loads are also of interest. Using the nonlinear analysis,

values of the maximum deflections were calculated for the same conditions

of dynamic loading as discussed for the moment calculations. Since the deflec-

tions are directly related to the beam stiffness it is obvious that results
obtained from a linear analysis using the beam stiffness neglecting local

buckling would differ considerably from the nonlinear results, For the case

of static loading, deflection calculations using a uniform beam stiffness
based on the effective cross section after local buckling at the point of max-

imum moment were found to be reasonably accurate (8). Using the same reason-

ing for dynamic loading, the following procedure was used to calculate deflec-
tions., The maximum deflection using a linear dynamic analysis and the original

beam stiffness neglecting local buckling effects was first calculated, Using

the maximum dynamic moment obtained from the nonlinear analysis the reduced
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moment of inertia based on the effective width concept was calculated in accord-
ance with established procedures (4, 9). The deflection obtained from the

linear l.na.lysis was multiplied by the ratio of the original moment of inertia

to the value obtained from the nonlinear analysis, (Ioll)w' This step re-
placed the original moment of inertia in the linear analysis with the minimum

value which occurred under the dynamic loading.

Values of the ratio of the deflections obtained from the nonlinear

analysis to values using the above procedure are given in Figs. 11~1k for the
same range of dynamic loading parameters and section geometries considered
for moment. The influence of the various parameters on the ratio of these
deflections is similar to that observed for the ratio of internal moments.
In general, the deflections calculated using the modified linear analysis are
greater than those obtained from the nonlinear analysis. For those cases in
which the nonlinear deflection exceeds the modified linear value, the deviation
is less than 7%.

As mentioned previously, the above results were based on the 1962 edition;

of the AISI Specification. It is of interest, therefore, to consider the in-
fluence of the revised expressions for effective width in the 1968 edition
of this specification on these results.

Comparing the two editions of the specification, it will be noted that
the stress at which local buckling first occurs for a particular value of w/h
has been increased in the 1968 edition. Also the effective width for a given
stress level is greater according to the 1968 edition. Thus the beam stiffness
based on the latest specification is increased above the corresponding value
using the 1962 Specification. This increased stiffness tends to decrease the
nonlinearity of the dynamic response and therefore the differences between
the linear and nonlinear analyses considered previously should be less using
the new specification.

A comparison of the internal moments using the 1968 Specification for
the beam stiffness is given in Fig. 15.

These results may be campared with

those in Fig. 10 for the 1962 Specification. The value of a in Fig. 15

is based onthelocal buckling moment according to the new specification. Due
to the higher value of this moment in the new specification the absolute value
of the uniform load used to plot Fig. 15 corresponds to a load which is 83%
greater than the load used to plot Fig. 10. Despite this substantial increase
in load, values of the ratio of the internal moments inv Fig.15 are only
slightly different from these in Fig, 10. The general trends indicated in
Figs, 7-15and the accuracy of the linear analysis should therefore be similar
for cold-formed beums designed according to the 1968 Specification.

The results and conclusions presented above were based on the analysis
of simply supported beams subjected to well defined externally applied impact
loads. Practical structures usually consist of several interconnected beams
which act as a unitin resisting applied loads. A complete analysis of the in-
fluence of the parameters considered above on such structures is beyond the
scope of this investigation. Based on the results presented herein, however,
calculation of the internal moments, stresses and deflections using a lineer
elastic dynamic analysis modified in accordance with the procedures described
above should lead to sufficiently accurate results for design purposes. For
those ca;esb in which extreme ‘aceu.racy is required, it may be necessary to per-

form & nonlinear dynamic analysis which takes into account the variation with

time of the stiffness of the members due to local buckling.

ILLUSTRATIVE EXAMPLE

The case of a beam subjected to a falling weight is one example of an

impact loaiiing problem of practical interest. Consider a ten foot long simply

87

| properties, the moment of inertia, I

| frequency of the beam, w,

supported cold- formed beam with a het-shaped cross section. Referring to Fig. 5

i Section C, the dimensions of the cross section are given as

w=61in,,d =5, 4n,, £ =24 in., r = 0.06 in., h = 0,06 in.

and the depth of the bottom flange stiffening lip is 0.565 in.

» 18 T7.132 inh .

Using these

° The lowest natural

, is 156 radians/sec. and the fundamental natural

period, t is 0.06L1 sec.

° *
The dynamic force applied by the weight which strikes the beam at the
centerline is assumed to be represented by the triangular pulse in Fig. L.

The magnitude and duration of the pulse are avbitrarily specified as 1.139 kips

HALF-SINE PULSE
TRIANGULAR PULSE
RAMP PULSE
RECTANGULAR
PULSE

J L

a=6.0

1.05

085

1 l 1 1
0758 :
Pig. li Influence of Pulse Shape on Response Spectra - Deflection
and 0,077 sec., respectively. In a practical problem, methods are available
for calculating this load magnitude and time duration using the weight and
height of drop. Using the above values, the dimensionless parameters associated
with the externally applied load are a = 4.0 and B = 1.2 .

Using a linear elastic dynamic analysis based on normal mode super-
position techniques (1), the maximum internal moment and the maximum deflec-
tion produced by this load are 36,21 kip-in. and 0,28 in. respectively. The
original moment of inerf,ia, Io , vas used to obtain these results,

Using the 1962 edition of the AISI Specification (L), the local buckling

stress for this beam is 2.663 ksi, and the local buckling moment, M based

LB *
on the original section modulus is 6.823 kip-in. The ratio of the maximum
dynamic moment to the local buckling moment therefore is M/MLB = 36.21/6.823

= 5.31. Using this value of M/MLB end w/h = 100 , a/h = 90, and f/h = kO,

a value of <1/t'!y = 0,61 1is obtained for the maximum edge stress in thev campres-
sion flange.

For °y = 33 ksi, the maximum compressive stress produced by

this impact load is therefore 20,0 ksi. Calculating the reduced moment of
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inertia using the effective width corresponding to this stress level (L) gives

N

I =5.95 in . The ratio of this velue to the original moment of inertia, I/Io‘

is 0.84. Multiplying the deflection obtained above by the inverse of this
value gives & final deflection of 0.336 in.

The exact value of the maximum stress and deflection for this problem,
obtained from the nonlinear mathematical modei (10) are 17.9 ksi and 0,309 in.,
respectively. Comparing tﬁese results with the approximate values given above
indicates that the approximate solution l;ued on the linear analysis overesti-
mates the maximum stress by il.'ﬂ u.mi overestimates the maximum deflection by
8.7%.

Design aids could be provided to facilitate the computations mentioned
above,

A typical example of such a design aid is illustrated in Fig. 16. This figure
was prepared for a hat eet;tion and relates the top flange stress to the local
buckling moment for a variety of cross séction dimensions, In order to deter-
mine the maximum top flange stress produced by a particular shock loading
using this figure, it is only necessary to determine the maximum moment. i.n

the structure using a linear dynamic analysis. Using this moment, the local
buckling moment calculated using >t>he loculi buckling stress and the ori.gincl
cross-sectional moment of inertia, the ratio of the maximum stress produced

by this moment to the yield stress can be read directly from Fig. 16. Note
that a design aid in this form eliminates the necessity of a trial and error
calculation of the section modulus using the effective width concept (9).
Similar design aids could also be prepared for other types of cross sections
as well as different values of the yield streaé. Simplifications could also
be made in performing the linear dynamic analysis., Existing response spectra
for linear systems (1) or impact factor formulas could be used to eliminate

the need for a complete dynamic analysis.
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BUMMARY AND CONCLUBIONS

!

APPENDIX II - NOTATION

The internal moments and deflections in thin-wvalled cold-formed beams iiThO following notation is used in this paper:

subjected to impact loading were obtained using & linear and nonlinear dynamic »

analysis., Comparisions of the two methods of analysis indicated that the

I
. I\
internal moments in these beams subjected to impsct losding could be determined
a

reasonably accurately using classical methods of linear vibration theory. These|

moments can then be used in connection with methods of static analysis which ) E
incorporate the effects of local buckling to obtain stresses and deflections.
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effective width of flange of beam;

gistance from the neutral axis for as bujlt cross gection tq‘-extreme
top flange fiber of beam; .

flat depth of beam -~ excludes fillets;

modulus of elasticity;

flat width of bottom flange of beam Section C;

effective width of bottom flange of ‘beun Section C;

thickness of beam element;

moment of inertia;

I computed from the original cross section properties;

span length of beam;

internal moment obtained from linear analysis;

local buckling moment;

internal moment obtained from nonlinear analysis;

magnitude of applied load;

redius to centerline of fillet;

time;

f.imo duration of load pulse;

fundamental natural periocd of he;n;

flat width of top flange of beanm;

maximun moment produced by external load divl::led by local buckling

moment ;
time duration of load pulse divided by natural pericd of beam;

deflection obtained fram linear anglysis;
deflection obtained from nonlinear analysis;
stress;

local buckling stress for beam;

yield stress;

nondimensjonal time; and

natural frequency of the lowest mode of beam,
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