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Direct Strength Method of Design for Shear of Cold-formed 
Channels based on a Shear Signature Curve  

 
Gregory J Hancock1 and Cao Hung Pham2 

 
Abstract 
 
Thin-walled sections in compression and/or bending may undergo one of the 
three modes of local, distortional or overall (Euler) buckling, or combinations of 
these. The Semi-Analytical Finite Strip Method (SAFSM) developed by YK 
Cheung has been widely used in computer software (THIN-WALL, CUFSM) to 
develop the signature curve of the buckling stress versus buckling half-
wavelength for a thin-walled section under compression or bending to allow 
identification of these modes. The minimum points on the signature curve are 
now used in the Direct Strength Method (DSM) of design of cold-formed 
sections in the American Specification and Australian/New Zealand Standard 
for cold-formed steel structures. 
 
Plank and Wittrick (1974) included shear in the SAFSM theory for calculating 
the stiffness and stability matrices by using complex mathematics. The complex 
mathematics is needed to allow for the phase shifts in the buckling modes 
(eigenvectors) for sections under shear. 
 
This paper briefly summarises the theory then applies it to the buckling of 
channel sections in pure shear. Signature curves for shear are developed for 
channel sections and compared with classical solutions, and those produced by 
the Spline Finite Strip Method (SFSM) previously published by the authors. A 
proposed Direct Strength Method (DSM) of design for shear is explained in the 
paper. 
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Introduction 
 
Folded plate and finite strip theories for the buckling analysis of thin-walled 
sections and stiffened panels in compression have been developed since the mid-
1960s. Two basic approaches were adopted. These are the exact solutions of 
Wittrick (1968), and Williams and Wittrick (1969), and the approximate 
solutions of Przemieniecki (1972) and Plank and Wittrick (1974) based on the 
finite strip method of analysis developed by YK Cheung (1976). The exact 
methods only apply to uniform stress such as uniform compression and not 
bending. The first paper of Wittrick (1968) shows three distinct buckling modes 
for a stiffened panel in pure compression being called overall, torsional and 
local. A paper by Williams (1974) using the exact method calls the three distinct 
modes of a lipped channel strut as local, flange and flexural/flexural-torsional. 
Hancock (1978) applied the finite strip method developed by Plank and Wittrick 
(now called the Semi-Analytical Finite Strip Method (SAFSM)) to beams and 
identified local, distortional and lateral-torsional modes. The SAFSM has the 
advantage that it includes strips in bending and so could study beams as well as 
compression members. The paper by Hancock (1978) clearly identified the 
signature curve for a beam being the buckling stress versus the buckle half-
wavelength for a single half-wavelength. Recent developments have included 
the Constrained Finite Strip Method (cFSM) (Adany and Schafer, 2006) which 
has allowed the buckling mode decomposition into pure local, distortional and 
overall modes. In the earlier papers, the modes tended to be a combination of the 
basic modes although normally dominated by one at a particular half-
wavelength. 
 
The case of sections in pure shear has not been studied using the SAFSM 
although the methodology was available in the Plank and Wittrick (1974) paper. 
Recently the Spline Finite Strip Method (SFSM) of buckling analysis developed 
by Lau and Hancock (1986) was used to study the elastic buckling of thin-
walled channel sections in pure shear (Pham and Hancock, 2009). However, the 
SFSM does not allow the signature curve for shear to be isolated because it 
computes the minimum buckling stress irrespective of the number of half-waves 
over the length. In the Plank and Wittrick paper, a complex finite strip method 
was developed to allow for the case of shear as well as compression and 
bending. The buckling modes require the deformations to be described with 
complex terms to allow for the phase shifts along the member. 
 
The Direct Strength Method (DSM) of design of cold-formed sections (Schafer 
and Peköz, 1998) and recently incorporated in the North American Specification 
(AISI, 2007) and Australian New/Zealand Standard AS/NZS 4600:2005 
(Standards Australia, 2005) for cold-formed steel structures provides design for 
compression and bending based on the signature curves for compression and 
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bending. Proposals for shear by Pham and Hancock (2012) require the shear 
local buckling load Vcr. In the Pham and Hancock paper, the SFSM values have 
been used. However, it is suggested that the values from the signature curve in 
pure shear will provide a simpler and more reliable method of determining Vcr. 
 
Plate Buckling Deformations 
 
The plate flexural deformations (w) of a strip can be described by:  

 .  (1) 

where the x-axis is in the longitudinal direction in the plane of the strip, the y-
axis is in the transverse direction in the plane of the strip, and w is in the z-
direction perpendicular to the strip as shown in Fig. 1. The term Re denotes the 
real part of the complex function. 
 
The complex function f1(y) is the transverse variation given by: 

 	 . . .  (2) 

where the 4 polynomial coefficients αiF each consist of a real part αiFR and a 
complex part αiFI.  There are therefore 8 unknown coefficients in Eq. 2. The term 
b is the width of the strip. 
 
The complex function X1(x) is the longitudinal variation given by: 

 	  (3) 

where L is the length of the strip and m is the number of buckle half-waves 
along the length of the strip. 
 
The problem essentially has double the number of freedoms of a normal SAFSM 
analysis as a result of the real and complex components of the polynomial 
coefficients although the matrices involved remain the same size and have real 
and complex parts. 
 
The plate membrane deformations (u, v) in the (x,y) directions respectively can 
be described by: 

 .  (4) 

 . .  (5) 
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Figure 1. Strip Axes and Nodal Line Deformations 

The complex functions fu(y) and fv(y) are the transverse variations given by: 

 	 .  (6) 

 	 .  (7) 

where the 4 polynomial coefficients αiM each consist of a real part αiMR and a 
complex part αiMI.  There are therefore 8 unknown coefficients in Eqs. 6 and 7. 
 
The nodal line flexural deformations {δF} = (w1, θx1, w2, θx2)

T in Fig. 1 have real 
and complex components and can be related to the polynomial coefficients in (2) 
above by: 

 	                                               (8) 

where   {αF} = (α1F       α2F    α3F    α4F )T 
 
Similarly, the nodal line membrane deformations {δM} = (u1, v1, u2, v2)

T in Fig. 
1 have real and complex components and can be related to the polynomial 
coefficients in (6) and (7) above by: 

 	  (9) 

where   {αM} = (α1M      α2M    α3M    α4M )T 
 
The matrices [CF] and [CM] are real. Their inverses [CF]-1, [CM]-1, which are 
required to compute the strip stiffness and stability matrices, are given in 
Appendices 1 and 2 of Hancock and Pham (2011) respectively. 
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Strain energy and potential energy 
 
In order to compute the stiffness and stability matrices of the strip according to 
conventional finite strip theory (Cheung, 1976), it is necessary to define the 
strain energy in the strip under deformation and the potential energy of the 
membrane forces. 
 
The flexural strain energy UF is given by: 

 	 2 	 	  (10) 

where Mx, My, and Mxy are the bending moments per unit length in the x, y 
directions and Mxy is the twisting moment per unit length. 
 
The membrane strain energy UM is given by: 

 	 	 	  (11) 

where σx, σy, and xy are the membrane normal stresses in the x, y directions, xy 
is the membrane shear stress, εx, εy, are the membrane normal strains per unit 
length in the x, y directions and xy is the membrane shear strain. 
 
The flexural potential energy of the membrane forces VF is given by: 

 	 2 	 	  (12) 

where   σx, σy, and xy are the membrane normal and shear stresses with the signs 
given in Fig. 2, and t is the plate thickness. 

 

Figure 2. Membrane Stresses 
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The membrane potential energy of the membrane forces VM is given by: 

 	 	 	  (13) 

As stated in Plank and Wittrick (1974), it is believed that there are no membrane 
instabilities associated with transverse stress (σT) and shear stress () so that 
there are no terms in Eq. 13 associated with these. 
 
Plate theory 
 
The plate flexural and membrane theory is that used by Cheung (1976) and is 
summarized in Hancock and Pham (2011). 
 
Stiffness and stability matrices 
 
For equilibrium, the theorem of minimum total potential for the flexural energy 
is: 

 0 (14) 

Substitution for UF from (10) and VF from (12) using deformations w from (1) 
and using plate theory results in: 

 	 	 0 (15) 

The flexural stiffness matrix [kF] is real and the flexural stability matrix [gF] is 
real if the shear stress τ is zero. However, the stability matrix [gF] is complex 
Hermitian if the shear stress is non-zero.  The term λF is the load factor. The 
solution to (15) is an eigenvalue problem which requires eigenvalue routines for 
Hermitian matrices if the shear stress is non-zero. The eigenvalues λF of a 
Hermitian matrix corresponding to the buckling load factors are real. The 
corresponding eigenvectors {δF} which are the buckling modes are complex if 
the shear stress is non-zero. The matrices [kF] and [gF ] are given in Appendix 1 
of Hancock and Pham (2011). 
 
For equilibrium, the theorem of minimum total potential for the membrane 
energy is: 

 0 (16) 

Substitution for UM from (11) and VM from (13) using deformations u from (5), 
deformations v from (4) and including the membrane theory results in: 

 	 	 	 0 (17) 
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The membrane stiffness matrix [kM] is real and the membrane stability matrix 
[gM] is real. The term λM is the load factor. The solution to (17) is an eigenvalue 
problem. The corresponding eigenvectors {δM} are the buckling modes. The 
matrices [kM] and [gM ] are given in Appendix 2 of Hancock and Pham (2011). 
 
For folded plate assemblies including thin-walled sections such as channels, (15) 
and (17) must be transformed to a global co-ordinate system to assemble the 
stiffness [K] and stability [G] matrices of the folded plate assembly or section. 
Since the flexural displacements w given by (1) and the membrane 
displacements v given by (4) use the same longitudinal displacement function 
X1(x),  they are conformable resulting in convergence to classical solutions for 
thin-walled sections. 
 
The stiffness equations for a folded plate system are given by: 

 	 	 	 0  (18) 

where λE is the load factor for the whole system. The system stability matrix [G] 
is Hermitian if the shear stress is non-zero. Hence eigenvalue routines for 
Hermitian matrices are required to solve (18). 
 
Eigenvalue routines for Hermitian matrices 
 
Sturm sequence property 
 
From the theory of equations (Turnbull, 1946), the leading principal minors of 
[C] - λ[I] (where [I] is a unit matrix) form a Sturm sequence. The leading 
principal minor of order r is given by det([Cr] – λ[Ir]) where [Cr] is the leading 
principal sub-matrix of order r of [C]. The first term of the Sturm sequence is the 
leading principal minor of order r = 0 and is defined to be unity. 
The number of eigenvalues greater than λ is equal to the number of agreements 
in sign between consecutive members of the Sturm sequence from r = 0 to r = n 
where n is the dimension of the matrix [C]. This property is very useful in 
isolating the range of λ in which a particular eigenvalue is located. The 
eigenvalue corresponding to a particular mode number can be isolated by 
bisection between values of λ which bound the eigenvalue. 
 
Direct computation of sign count of ([A] - λ[B]) 
 
Peters and Wilkinson (1969) have shown that the sign of det([Ar] – λ[Br]) is the 
same as that of det([Cr] – λ[Ir]). Consequently, it is possible to apply the Sturm 
sequence directly to ([A] - λ[B]) without the need to transform to the standard 
eigenvalue problem det([C]-λ[I]) = 0. 
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For the finite strip buckling analysis given by (18), [G] is chosen as [A] and [K] 
is chosen as [B] so that the computed eigenvalues λ of ([A] - λ[B]) are the 
reciprocals of the load factors λE. Now the determinant of a Hermitian matrix is 
real so the Sturm sequence count is not affected by [G] being Hermitian. This 
allows the Sturm sequence property to be used to compute the eigenvalues of 
(18). 
 
Eigenvector calculation 
 
Wilkinson (1958) has produced a method for computing the eigenvector {δ} of 
(18) by solving the equations at the value of λE for a unit right hand side vector 
{1} replacing {0} in (18). The components of {1} are given in Eq. (19). The 
process is usually repeated once to purify the eigenvector with the unit vector 
{1} replaced by {δ} from the first iteration. This method has been used in the 
calculations in this paper. It is to be noted that since [G] is complex Hermitian, 
{δ} is complex reflecting the phase shifts in the eigenmode along the member. 
An interesting discovery is that the phase position of the mode along the 
member can be shifted by adjusting the real and imaginary components of the 
unit vector {1}. This is perfectly valid since the eigenvector position along the 
member is not predetermined. 
 
Computer program bfinst7.cpp    
 
A computer program bfinst7.cpp has been written in Visual Studio C++ to 
assemble the stiffness and stability matrices (15), (17) and (18) and to solve for 
the eigenvalues using the Sturm sequence property described above, and to 
compute the corresponding eigenvectors. The program stores the real [K] matrix 
and the real [G] and complex [GI] components of the stability matrices in order 
to extract the eigenvalues and eigenvectors. In the calculation of the 
eigenvectors the unit vector {1} is represented for all terms by: 

 1 	 	 f	 	 1 f i  (19) 

where f gives the fraction of the real and complex components in the unit vector. 
 
Solutions to plates and sections in shear 
 
Plate simply supported on both longitudinal edges 
 
The solution for a plate simply supported along both longitudinal edges is 
compared with the classical solution of Timoshenko and Gere (1961) Item 9.7 
Buckling of rectangular plates under the action of shearing stresses.  This 
comparison has also been performed by Plank and Wittrick (1974) to validate 
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the accuracy of the method. The equation for the elastic buckling of a 
rectangular plate is given (Timoshenko and Gere, 1961) as: 

 	 	

	
 (20) 

where D is the plate flexural rigidity, b is the width of the plate which may 
consist of multiple strips and kv is the plate buckling coefficient in shear. 
 
The analysis must be carried out for a range of half-wavelengths (L/m in Eq. 3) 
to find the minimum value of buckling stress and corresponding buckle half-
wavelength. Timoshenko and Gere give this latter value as 1.50.5b = 1.225b and 
Plank and Wittrick have arrived at the value corresponding to the minimum 
point of 1.252b, slightly higher than Timoskenko and Gere. The minimum kv at 
1.252b from bfinst7.cpp using 8 strips is 5.3385 which is exactly the same as the 
Plank and Wittrick paper value as would be expected. The minimum value of kv 
in Timoshenko and Gere is 5.35. 
 
Lipped channel section in pure shear 
 
In order to extend the study to lipped channel sections, a 200mm deep lipped 
channel with flange width 80mm, lip length 20mm and thickness 2mm as 
studied by Pham and Hancock (2009) has been used. These dimensions are all 
centreline and not overall. In Pham and Hancock (2009), three different shear 
stress distributions have been investigated. These are uniform shear in the web 
alone (called Cases A/B), uniform shear in the web and flanges (called Case C), 
and a shear stress equivalent to a shear flow as occurs in a channel section under 
a shear force parallel with the web through the shear centre (Case D as shown in 
Fig. 3). 

 

Figure 3. Shear Flow Distribution Assumed (Case D) 
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In this paper, only Case D is studied as it is the most representative of practice. 
The shear flow distribution is not in equilibrium longitudinally as this can only 
be achieved by way of a moment gradient in the section. However, it has been 
used in these studies to isolate the shear from the bending for the purpose of 
identifying pure shear buckling loads and modes. The finite strip buckling 
analysis allows the uniform shear stresses in each strip, as shown in Fig. 2, to be 
used to assemble the stability matrix [kg] of each strip then the system stability 
matrix [G]. Fig. 3 demonstrates that the shear flow in each strip is assumed 
uniform. In the studies in this paper, the web is divided into eight equal width 
strips, the flanges into four each and the lips into one each making 18 strips and 
19 nodal line with a total of 76 degrees of freedom each having real and 
complex components. 

 

Figure 4. SAFSM and SFSM Curves of Buckling Stress versus Half 
Wavelength/Length for Plain Lipped Channel 

 
The SAFSM graph (symbolically squares) of buckling stress versus buckle half-
wavelength (signature curve) is shown for the lipped channel for a range of 
buckle half-wavelengths from 30mm to 10000mm in Fig. 4 (also in Table A3-1 
in Appendix 3 of Pham and Hancock (2011)). The graph reaches a minimum at 
approximately 200mm half-wavelength then rises and starts to drop at about 
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800mm. The rise in the curve is nowhere near as marked as for equivalent 
compression or bending curves for the same section (Hancock, 2007). The mode 
at 200mm, which is the width of the web, is shear local with local buckling also 
in the flanges as shown in Fig. 5.  The buckling coefficient kv corresponding to 
the minimum point is 6.583 based on the average stress in the web (av = V/Aw) 
computed from the shear load V on the section divided by the area of the web 
Aw. The average stress in the web is 0.8723 times the maximum stress at the 
centre of the web where 0.8723 is a constant related to the cross-section 
geometry.. The buckling coefficient kv is significantly greater than 5.34 for a 
plate simply supported on its longitudinal edges due to the restraint from the 
flanges on the web. 
 
The SFSM graph (symbolically circles) of buckling stress versus length (as 
opposed to half-wavelength for the SAFSM) was computed as in Pham and 
Hancock (2009). The SFSM analysis assumes no cross-section distortion at both 
ends of the section under analysis (Z = 0, L) and so this restraint increases the 
buckling stress above that of the SAFSM which is free to distort at the ends. For 
a section of length 200mm, the SFSM analysis gives a buckling coefficient kv of 
9.927 for the web which is very much higher than the SAFSM value of 6.583 
above and greater than that for a simply supported square panel in shear at 9.34 
due to the flange restraint. The SFSM values asymptote to a value very close to 
the minimum on the SAFSM curve at lengths between 1000mm and 1500mm. 
At these lengths, the end restraint effects become very small and so local 
buckling in multiple half-wavelengths in the SFSM matches closely with the 
SAFSM at 200mm as shown in Fig. 5. 
 

  

Figure 5. Comparison of Local Buckling Modes from SAFSM and SFSM 

At lengths greater than approximately 1500mm, the SFSM curve falls and the 
mode switches to a type of flange-distortional mode where the buckling in the 
two opposite flanges is out of phase as shown in Fig. 6 at 2000 mm for the 
SFSM and 1600mm for the SAFSM. The web buckling stresses result in 
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buckling coefficients at these lengths which are approximately equal at 5.509 
and 5 265 for the SFSM and SAFSM respectively (see Table A3-1 in Appendix 
3 of Hancock and Pham (2011)). 

 

Figure 6. Shear Distortional Buckling Modes from SAFSM and SFSM Analyses 
 

At long lengths such as 5000mm, the flexural-torsional mode occurs where the 
cross-section remains undistorted.  This mode is somewhat artificial as it is 
difficult to see how mainly pure shear could occur at such lengths. 
 
 
Direct Strength Method (DSM) design rules for pure shear 
 
Proposed DSM design rules have recently been approved for the 2012 Edition of 
NAS S100 as follows: 
 
Proposed DSM design rules in shear without Tension Field Action (TFA) 
 
The equations in Section C3.2.1 of the North American Specification (AISI, 
2007) which are expressed in terms of a nominal shear stress Fv have been 
changed to DSM format by replacing stresses by loads as follows: 
 

 For 815.0v  : yv VV   (21) 

 For  : 227.1815.0  v  : ycrv VVV 815.0  (22) 

 For  : 227.1v  : crv VV   (23) 

 ywy fAV 6.0  (24) 
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where yV = yield load of web based on an average shear yield stress of 0.6fy.  

crV = elastic shear buckling force of the section derived by integration of the 

shear stress distribution in Fig. 3 at buckling over the whole section for the 
minimum point in Fig. 4, cryv VV / . 

 
Proposed DSM design rules in shear with Tension Field Action (TFA) 
 
The DSM nominal shear capacity (Vv) including Tension Field Action (TFA) is 
proposed based on the local buckling (Msl) equation (Standards Australia, 2005) 
where Msl, Mol and My are replaced by Vv, Vcr and Vy respectively as in Eq. 25.  
The choice of this equation as a good fit to the test results implies the post-
buckling strength in shear is similar to local buckling in bending and/or 
compression implicit in the DSM equations. 
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  (25) 

where yV is yield load of web given by Eq. 24, crV is the elastic shear buckling 

force of the section based on the SFSM where end restraint is included.  
Although Eq. 25 is empirical, it has proven successful for a range of section 
shapes for local buckling in compression and bending and it is most likely the 
case for shear.  Further investigation for validation for different shapes is part of 
ongoing research. 
 
Experimental justification for Equations 21-25 is given in Pham and Hancock 
(2012). 
 
Conclusions 
 
The Semi-Analytical Finite Strip Buckling Analysis (SAFSM) of thin-flat-
walled structures under combined loading using a complex finite strip method, 
and developed by Plank and Wittrick, has been programmed in Visual Studio 
C++. The method includes the extraction of the eigenvalues and eigenvectors 
from the Hermitian matrices produced when thin-walled sections are subjected 
to shear in addition to compression and bending. The signature curve for a plain 
lipped channel in pure shear has been produced using the SAFSM. The curve 
shows a single minimum at local buckling mainly in the web at a half-
wavelength approximately equal to the web depth. At longer lengths equal to 
about 8 times the web depth, a flange distortional mode occurs with the buckling 
in the flanges out-of-phase. At very long lengths, a flexural-torsional mode 
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occurs. The signature curve has been compared with the spline finite strip 
buckling analysis (SFSM) where the ends are fixed against distortion. The 
SFSM asymptotes to the minimum buckling stress of the SAFSM at 
approximately 5 times the depth of the web. Reducing the size of the lip does 
not materially change the shape of the SAFSM curve. The proposed DSM 
design rules for shear both with and without Tension Field Action use the shear 
buckling load crV of the section.  In the case without TFA, the minimum on the 

shear signature curve can be used.  For the case with TFA where end restraints 
occur, the SFSM analysis at the appropriate length can be used. 
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