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C- and Z-Sections Including Cross-Section Connectivity 
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Cristopher D. Moen2 
 
Abstract 
 
This paper presents an approximate solution for the critical elastic buckling 
stress of cold-formed steel C- and Z-section members including cross-section 
connectivity. The elastic buckling solution is developed to support the extension 
of the Direct Strength Method to the shear ultimate limit state, where the cross-
sectional critical elastic shear buckling stress (load) is employed to predict shear 
capacity. The shear buckling stress and buckled half-wavelength are calculated 
with a classical energy solution for a thin plate with edges rotationally 
restrained. Rotational stiffness expressions in the AISI S100-07 specification, 
originally derived for distortional buckling of C- and Z-sections, are used with 
the energy solution to calculate the rotational restraint provided to the web-
flange juncture by the flanges. The approach is validated with thin shell finite 
element eigen-buckling analysis. 
 
Introduction 
 
The American Iron and Steel Institute’s (AISI) North American Specification 
(AISI-S100 2007) calculates the shear strength of a thin-walled cold-formed 
steel member by treating the primary shear carrying cross-sectional element, for 
example the web of a C-section, as a simply-supported plate in shear (Figure 1). 
It is assumed that the flanges are unstressed by shear. The critical elastic 
buckling stress, τcr, is approximated with a plate buckling coefficient,  
 

 

τ cr = kv
π 2Et2

12(1−ν 2 )b2
, (1)

 

 

 
where E is the modulus of elasticity, ν is Poisson’s ratio, b is the plate width, 
and t is the plate thickness. For a cold-formed steel member with unreinforced 
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webs, kv=5.34, resulting from the elastic buckling solution for an infinitely long 
simply-supported plate in pure shear (Southwell and Skan 1924). The buckling 
stress is input into an empirically derived design expression (AISI-S100 2007, 
Section C3.2.1) to calculate the ultimate strength of the member in shear. The 
design approach is simple and convenient, however the beneficial contribution 
provided by adjacent connected cross-section elements, for example the flanges 
of a C-section (Figure 1), is neglected in the shear strength prediction.  

 
Figure 1. C-section web is treated as a simply-supported plate in design (SS=simply supported) 
 
Recent studies have demonstrated that τcr calculated for a cold-formed steel 
member including cross-section connectivity can be up to 40% higher than that 
predicted by the classical solution considering just the isolated web (Pham and 
Hancock 2009). Furthermore, the critical elastic shear buckling load of a 
member, Vcr, which can be calculated from τcr, has been confirmed to be a viable 
parameter for predicting the strength of cold-formed steel C-section members in 
shear and combined bending and shear with a Direct Strength approach (Pham 
and Hancock 2013). 
 
The goal of this research is to develop a simplified method for predicting the 
critical elastic buckling stress (load) of a cold-formed steel member with the 
web loaded in a state of pure shear, including cross-section connectivity. A 
classical energy solution (Bulson 1970) is employed that calculates the critical 
elastic shear buckling stress of an infinitely long plate loaded in pure shear and 
with transverse rotational restraint. The rotational restraint provided by the 
flanges to the web-flange juncture is calculated with existing equations in AISI-
S100-07 originally derived for predicting the critical elastic distortional buckling 
stress (Desmond et al. 1981; Schafer 2002).  Details of the classical shear 
buckling solution are provided in the next section. The solution is validated with 
thin-shell finite element eigen-buckling analyses considering industry standard 
cold-formed steel C-sections. 

Ycr
SS

SS

SS

SS

SS=simply-supported
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Classical shear buckling solution including rotational restraint 
 
The shear buckling coefficient, kv, including edge rotational restraint can be 
approximated as (Bulson 1970) 
 

 kv =
1
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where λ is the buckled half-wavelength (Figure 2), and φ
 
is the half-wave angle 

of inclination in radians 
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Figure 2. Shear buckling with rotationally restrained edges – loading, boundary conditions, 
and notation 

 
The coefficients C1, C2, C3, and C4 are   
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 C2 = 2
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 The coefficient of restraint, ε, is a normalized rotational stiffness parameter  
 

 
ε =

kφ feb
D

, (8) 

where fekφ  is the transverse rotational restraint (stiffness) per unit length, i.e., 
force⋅length/rad/length, along the edges of the plate. The plate flexural rigidity is 
D=Et3/[12(1-ν2)]. 
 
In Figure 3, kv calculated with Eq. (2) is plotted as a function of λ/b for several 
different coefficients of restraint. The buckling coefficient and half-wavelength 
for each value of ε are defined by the curve minima. The bottommost curve in 
Figure 3 represents a plate with simply-supported edges, while the uppermost 
curve is for a plate with rotational restraint converging to fixed-fixed edges. 
Each kv value making up the curves in Figure 3 is obtained with an iterative 
numerical solution because φ, λ, and kv are all functions of ε.  
 
The shear buckling coefficient kv and corresponding λ/b are provided in Table 1 
and in Figure 4 for a range of ε. When ε=0, kv=5.66 which is 5.9% higher than 
the exact solution of kv=5.34 from Southwell and Skan (1924).  As ε increases to 
5000, kv converges to 9.15, which is 1.9% higher than the exact solution for 
shear buckling of a plate with fixed-fixed edges of kv=8.98 (Bulson 1970). The 
ratio λ/b decreases with increasing ε  which means that the shear buckling half-
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wavelength (λ) decreases with increasing edge rotational restraint for a constant 
plate width (b).   
 

Table 1. Shear buckling coefficient kv for various magnitudes of rotational restraint ε 

 

 
Figure 3. Shear buckling garland curve (infinite number of half-waves) for different 
magnitudes of rotational restraint ε  
 

λ /b k v φ (rad) λ /b k v φ (rad)
0 1.225 5.657 0.615 14 0.924 7.710 0.649
0.5 1.176 5.854 0.621 16 0.915 7.817 0.650
1 1.140 6.024 0.625 20 0.903 7.989 0.651
2 1.088 6.304 0.631 25 0.892 8.150 0.651
3 1.052 6.530 0.635 30 0.884 8.272 0.652
4 1.026 6.718 0.638 40 0.873 8.443 0.653
5 1.005 6.879 0.641 60 0.862 8.642 0.653
6 0.989 7.018 0.642 80 0.856 8.754 0.653
8 0.965 7.249 0.645 100 0.852 8.825 0.653
10 0.947 7.433 0.647 200 0.845 8.980 0.653
12 0.934 7.584 0.648 ∞ 0.836 9.152 0.653
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Figure 4. The shear buckling coefficient kv versus rotational restraint ε  

 
Calculating edge rotational restraint for C- and Z-Sections  
 
The coefficient of restraint, ε, in Eq. (4) is defined for C- and Z-sections by the 
amount of rotational stiffness, fekφ , the lip-stiffened flanges provide to the web-
flange junction, i.e.,  
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where Ixf is the x-axis (strong axis) flange moment of inertia; xo is the x distance 
from the centerline flange/web junction to the centroid of the flange; hx is the x 
distance from the flange centroid to the flange shear center; Cwf is the flange 
warping torsion constant; Ixyf is the product of the flange moments of inertia; Iyf 
is the centroidal y-axis (weak axis) flange moment of inertia, G is the shear 
modulus; and Jf is the St. Venant torsion constant of the compression flange and 
lip stiffener. Table C-C3.1.4(b)-1 in the AISI-S100-07 commentary aids in 
calculating the geometric flange properties for use in Eq. (9). 
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Prediction validation with a finite element parameter study 
 
The values of kv were calculated for the 99 Steel Stud Manufacturers 
Association C-sections (SSMA 2011) using thin shell finite element eigen-
buckling analysis with the boundary conditions and applied loading shown in 
Figure 5; see Naik (2010) for full details and the finite element kv magnitudes. 
The member length (L) to web height (H) ratio was kept constant at 8:1 in the 
FE models to accommodate multiple shear buckling half-waves along the 
length.  
 
The finite element eigen-buckling results and energy solution predictions are 
compared in Figure 6, and the FE-to-energy solution kv mean and coefficient of 
variation (COV) are 0.90 and 0.03 respectively.  The energy solution has an 
unconservative bias (i.e., the energy solution is higher than the finite element 
solution) which can be corrected by multiplying Eq. (2) by 0.90, resulting in a kv 
mean and COV of 1.0 and 0.03 respectively.   
 
A complication of the Eq. (2) energy solution is that an iterative numerical 
solution is required. If λ/b=0.85 is assumed for any value of ε, then Eq. (2) can 
be solved by hand without iteration and without a loss of prediction accuracy 
demonstrated by the FE-to-energy solution mean and COV of 1.0 and 0.02. The 
COV is improved because the energy solution with λ/b=0.85	   is more accurate 
for small ε , see Figure 6. Work is ongoing to validate the proposed approach for 
calculating the critical elastic buckling stress of Z-section members.   

 
Figure 5.  Finite element model boundary conditions and loading (Naik 2010) 
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Figure 6.  Shear buckling coefficient kv calculated with finite element eigen-buckling and Eq. 
(2) for SSMA C-sections 
 
 
CONCLUSIONS 
 
Approximate engineering expressions are developed for calculating the critical 
elastic shear buckling stress of C- and Z-section webs including cross-section 
connectivity. The approach merges a classical energy solution for shear buckling 
of an edge-restrained infinitely long plate with an existing hand solution for the 
rotational stiffness provided to the web-flange junctures by a C- or Z-section 
flange and stiffening lip. The approximate method is accurate for the C-sections 
considered, however the solution requires iteration because the shear buckling 
half-wavelength is a function of edge rotational restraint. A viable solution 
without iteration can be achieved for C-sections if the shear buckling half-
wavelength is assumed to be 85% of the plate (web) width regardless of the 
rotational restraint magnitude. Finite element modeling work is ongoing to 
validate the energy solution for Z-sections. 
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