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CRITICAL SHEAR LOADING OF CURVED PANELS

OF CORRUGATED SHEETS WITH RESTRAINED EDGES

by George Abdel—sayod(.), Ph.D.

INTRODUCTION

Tn 1ong cylindrical shells made of corrugated sheets longitudinal
stiffeners are arranged to take the flexural tension and compression while
the shear is carried by the corrugated sheets. The shear buckling of these
curved corruqated sheets is a prime factor in determining the ultimate load
that can he carried by such shells. This critical shear loading was examined
for the case in which the longitudinal stiffeners were flexible in the
directinn of the sheets (1). It was also noticed that the carrying capacity
of the curved shear panels increased in the experiments when the stiffeners
were replaced hy flexurally rigid ones that could resist the displacement
of the lonqitudinal edges in the direction of the sheets.

Herein, the curved shear panels of corrugated sheets are re-examined
theoretically with the longitudinal edges forced to remain straight in the
direction of the sheets. The panels are treated as orthotropic curved plates
in whirh the mechanical nroperties are the average properties of the corrugated
sheeta

(1). This apnroach is justified because the interest of this paper is

in the overall buckling and not the local buckling.

BOTNDARY CONDITIONS
The boundarv conditinns imposed on the middle surface of a buckled simply

suonorted curved nanel are:

A - peflectjon and Bending Conditions:

The edges of the shear panel undergo

nn deflection and are frec from moment lateral to the sheets, i.e.:

aleong x =0 and x = a w=— = 0 (la,b)

s = 2wy wel¥ 2y

alona 2 >

(lc,q)

jn wni~h v = the disnlacament of the middle surface in the z- direction;
x, s, and 7 heaina, respectively, the longitudinal, circumferential, and radial
~oordinates as shown in Fig. 1;

a, b = lenath and width of the shear panel.

B - Conditinns in the Plane of the Panel (Membrane Conditions): The edge
members are assumed to be so riqgid that the edqes of the nanel are prevented

from any lateral disnlareament or longitudinal strain, i.e.:

3
Aalong x =0 and x = a % = 0 (2a)
and = n = 0 (2b)
s s
+ v ,
alont s = = b/, I -0 (2¢)
and € = n_ = 0 (2d)

X x

in whieh u, v = disnlacement in the x-, and s- directions, respectively,

¢ _, £ = axial strain of the middle surface in the x- and s- directions,

X

respantivelv; n_, ns

x = axial force per unit length acting in the x- and

s- diractinns, respectively.
‘the ronditions 2b and 24 can be modified and expressed in terms of the
disnlacement comnonents u and v as follows:

Meona s = +2 and s = -% the differentiation of n_with respect to x is equal

to 2aro, iL.0o.:
an,
52 = 0 (3a)
s=th
2
‘The conditinns of equilibrium in the s- and x- directions are:
:)ns anx’
— 3 3b
PRl T = 0 (3b)

Associate Profassor, Dent. of Civil Engineering, University of Windsor,
Windsor, Ontario, Canada.

anx an
and re + 78 = 0 (3¢c)
Substituting Eq. 3a in 3c leads to:
anx'
G5 +b =0 (39)
8 == =
2
Eq. 3d is differentiated with respect to x and substituted in Eq. 3b leading
to:
azn!
( 3 ) = 0 (3e)
ECRNE S )
2
The

relation between the membrane force ng and the axial strain Fg is (1) :

1
n b € (4a)

in which l)s = the axial rigidity in the s- direction. The geometric relation

in the s- direction is given (4) by:

av w
€ % 3w Y T (4b)

Applying Eq. 4b and 4a into Eq. 3e the boundary condition Ea. 2d, alona

s --% and s-#%, can be replaced by:

3
v

32

3s

£
£

L]
2

+ % (5a)

w
N

3s
Similarly, the condition Eq. 2b, along x = 0 and x = a, can he renlaced bhv:
33u

= 0
3x]

(5b)

GOVERNING DIFFERENTIAL EQUATIONS

The differential equations qoverning the buckling of a shear panel are
obtained by considering the orthotropic properties outlined in reference (1)
together with the equilibrium conditions and geometric relationships of an
infinitesimal element dx.ds of the buckled middle surface. Because the
boundary conditions are all expressed in terms of the displacement components
u, v and w, the differential equations are also developed to be in the

displacement components. These are:

34u DxDs 34u a‘u Ds 33w

%2t 7% 2.2 "% e Tt 2 (ea)
ax xs 3x 3s 9s s 9x
34v DxDs 34v 34v 1 DxDs 33w 33

Dx *'p 2t g 3 =~ ;[D 2 * P 3! (6b)
x xs 3x 3s s xs  3sdx as
4 4 4 D 2
3w 3w 3w, ,s 3v w 3w

Bt P 2. 2P atr Gt Y * B s " ° (6¢)
Ix 3x 3s 3s

in which Dx = the axial rigidity in the x- direction; st = the shear

rigidity; Bx' B. = the bending rigidity in the xz- and sz- planes, respect-

ively; Bm = the torsional rigidity; r = the radius of curvature of the

shear panel; and S = the buckling shear force per unit lenath and is

considered:
B_B (&)]

in which kl = a coefficient of shear buckling.

Note that Eq. 6b and Eq. 6c are independent of the displacement
component u but they have to be solved simultaneously for w and v.
DISPLACEMENT FUNCTIONS

The following series expressions are used to present the displacement

components w and v to any degree of accuracy:

- -
w= [ L A.n sin .ﬂ x cos :—' s
m™=1,2,3 n=1,3,5
> > mr nx
+ I L An sin e X sgin b s (8a)

m=1,2,3 n=2,4,6
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- -
ve I 5 Vin sin :-—'-’- x sin :—" s
m=1,2,3 n=1,3,5
- - m nn
+ L L vm sin e x cos b s

m=1,2,3 n=2,4,6

-
1 2 nn

+ L (Y + YY) sin — x (8b)
me1,2,3 ™ " a

Eq. 8a satisfies the deflection and bending boundary conditions,

1

Eq. la to 1d. Ym and Y:' are functions in y only, they are odd and even

functions respectively and satisfy the homogeneous equation:

a‘v
Dg ™2 ™ 0 9)

98
(10)

is always areater than zero and less than one, therefore, Y']'; and Y:‘ can

be written as follows (3):

Y:‘-K:\(Coshaussinhan+a:lsinhqnscoshua) (1la)
2 2 2
Ym-Km(sinhar\ssinhms¢BmCoshqqscoahus) (11b)
in which:
mn HX
noe T (12a)
s
1
a = (A (12b)
N T (12¢)
2
‘:']1' 5:;;, B:” and Bi are intearation constants which are calculated by satisfying

+
the membrane houndary conditions along s = - l:»/2 (i.e. kEn. 2c and Ev. 5a):

atl
1 1 g
" B 5 -1) an (13a)
! 1on=1,3,5
n
2 -1 b B
¥ = ‘ (-1 vmn (13b)
2 n=2,4,h
l'I _ “<\n!\_'-_ tan i (130)
m anh 5 tan I
g’ e Mfwh G- 7 tan i
‘m S TTanh G ¥V tan 1t (13d)
in v¢hich
nl = Cosih i sin Il + H':‘ sinh G cos 11 (14a)
2
P, = Sinh Gsin il + a; Cosh G cos H (14b)
h
fy = qn ;' (l4c)
o= onal (14a)
2
M (14e)
r = ’lj -3 n2 q (14f€)

Wote that the membrane conditions along x = 0 and x = a, Eq. 2a and 5b, are not
taken in consideration. They have no effect on the solution because the
proolem is simultanreous in w and v only while these conditions are in terms
of the disnlacement comnonent u.

Bv substituting Ens. 8a and 8b into the differential Eq. 6b, the
disnlacemant coefficients an are exnrassed as functions of the corresponding

daflartion confficients A :
mn

n b
Vmn = ™ omn Amn 118)
in which:

D 2
F=n n + ) n’
° = = "’2 S " (16)
mn
X m4 (g) P mznz + n‘ (5)
D, a D b
s xS

Eq. 8a and Eq. 8h are substituted in EQ. 6c, then the displacement

coefficients Vi 3T® substituted by the corresponding deflection coefficients

A as by Eq. 15. The resulting equation is multiplied by a single term of

m
the deflection series, Eq. 7a (with m = m and n = nl) and is integrated
from x = 0 to X = a and from 8 = -b/2 tos = +b/2. This Galerkin method of

solution leads to the following equation which governs the buckling condition:

1 1
= 0 A + = I L A
k' mny mny ks n=1,2,3 mn ‘mn mn
© -
+ I ) X A = 0 (%))
n=1,2,3 n=1,2,3 ™™ ™
2
L") 2
% " T @ I 23262 -
mny 32 a mn, + B =) 67 (1 n Om n )l (18a)
s 4 (2 2 Bys
mn, = gz Gt J.ﬁ ("lml) (18b)
8 x
2
1 b
8 = T (18¢)
L]
ra 2 Ds n;_l
Len ™ 32 6" a . (=1 (Cl¢c2) (19a)
1 x
1 1 1
c = 31 [k, (h +gB) +K;(g-hB)I (19b)
1 2 2
C, = -52 [k, (h+ 9B +K, (g-hBY) (19¢)
T.b t,b
K, = S [t, sin 21 coshgt ga cos L simn Gl
1 ( 0)2 1.2 1 2 2
3 g 1
b T.b
+ 1 [t, sin 2 coshgt ga cos 2 sinh g (10d)
2 2 2 2 2
(ga)” + 1
2
T.b t.h
K, = ?—1——2—:\' sinLcashG-qn cos—l-sinh G)
(ga)” + 1 1 2 2
4 9 1
1 sz rlb
+ 3 5 3 1, sin —5— Cosh G + ga cos —— sinh G (19e)
2 2 2
(gu)™ + 1
2
nm
- ha + 3 (19fF)
"
T, = ha - "—b (199)
]./k is assumed:
s
L aa-w 2m
s
and Eq. 17 is written in a matrix form:
(A-2B) X = 0 (21)

in which, A and B are square symmetric matrices and X is a vector of the

deflection coefficients Am. Eq. 21 is multiplied by the inversion of

the matrix B:

arl-anx = o0 (22)

Eq. 22 represents a system of infinite numb of simult h

equations. For calculating the eigenvalues ) only a limited number of the

are considered, n = 1,2,3....n and m = 1,2,3....m. This

coefficients A
mn

leads to n.m possible roots from which the minimum value of A is considered

since it leads to the minimum coefficient kqg+ Either one of the IBM

subroutines NROOT or ATEIG is applied to find the roots A.

OBSERVATIONS
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1 - The shear strength of the curved panels increases when the longitudinal TABLE 1, - Coefficient of Ruckling k_ for Sheets
L]

edges are forced to remain straight rather than being free to move in of GA 26 (t = 0.018 in.)
the curved direction of the sheets. This increase is attributed to the ! a/
() b
membrane forces developed at the longitudinal edges acting in the curved 0.5 I 0.75 ] 1.0 ] 2.0 I 3.0
direction and thus having components perpendicular to the sheets. How- (a) Corrugation in Curved Direction
ever, restrained curved edges have no effect on the results since thers o 21.3 20.5 20.3 20.3 20.3
is no curvature lateral to them, in the longitudinal direction. This 1.25 26.1 25.3 25.3 25.3 25.3
2.5 34.3 33.4 33.4 33.4 33.4
explanation is apparent in the mathematical formulation of the problem
5 50.2 49.4 49.4 49.4 49.4
in which Eqs. 6b and 6c are solved simult ly for the displ t 10 78.7 78.7 78.7 78.7 78.7
components w and v. The solution is independent of Eq. 6a which 20 127.2 127.2 127.2 127.2 127.2
40 202.7 202.7 202.7 202.7 202.7
en; s the displ np t u that governs the membrane
80 296.0 296.0 296.0 296.0 296,20
boundary conditions along the curved edges. 160 426.8 425.0 425.0 425.0 425.0
2 - The experiment reported in reference (1) for a shear panel with longitu- 320 656.4 608.9 604.9 604.9 604.9
640 994.4 907.1 858.5 A58.5 858.5
dinal edge members of angles 2-in. x 2-in. x 1/4 in. has a critical load
of 150 1b/in. This buckling load is examined theoretically here and is (b)  Corrugation in longitudinal Direction
found to be 180 1lb/in. The deviation between the experimental and 0 81.4 35.6 20.3 5.31 2.52
1.25 8l.4 35.6 20.3 5.33 2.55
th etical 1ts is attributed to the theoretical assumption that the
eorerical resu u oF une 2.5 81.4 35.6 20.3 5.38 2.66
longitudinal edges are perfectly straight. This assumption cannot be 5 81.6 35.7 20.4 5.55 3.03
exactly fulfilled in the experiments. On the other hand, the results 10 82.1 35.8 20.5 6.15 3.86
20 83.8 36.2 21.1 7.48 5.26
i i s with £ 1 itudi
obtained theoretically for the shear panel. it ree longitudinal edges (1) 40 5.1 37.7 23.2 10.1 .81
are less than those ohtained experimentally although the experiments were 80 20.2 42.7 27.9 15.2 12.4
arranqged so that the longitudinal edges could move as free as possible. 160 108.5 54.6 38.8 24.7 20.4
320 166.9 97.1 73.5 43.4 1 34.4
Therefore, it is concluded that the theoretical assumption that the 640 140.0 246.4 109.7 91.1 ; 2.3
lonaitudinal ednes are either completely free or completely restrained gives -

the lower or unper limit of the strengt: of practically used shear panels.

3 - Thr Huckling shear stress, S/t' is governed by the width of the panel, b, its
thirkness, t, its depth of corrugation, 2f, and the ratio Pr-. The effect of
each of these variables is shown in Figs. 2a to 24 when all but one variable
ar~ kept constant in each figure. These fiqures also compare the shecar
strenath of tha two cases of free and restrained longitudinal edges.

4 - The most ~memmonlv usnd vatterns of standard corrugated sheets in Canada and

thr 11,S.A, ar~ thns~ designated as standard 2-1/2 in. or 1-1/4 in. (2). TABLE 2. - Coefficient of Buckling k for Sheets
< s S

fansidering this tvre of corrugation and differ-nt values of ¢ and a/h, the of GA 24 (t = 0.024 in.)
values of the shear coefficient, ks, are calculated and nresented in Figs. 3a a/b
L]
to 3c and tables 1 to 3 for practical use of GA 26, 24 and 20. 0.50 ~[ 0.75 1.9 l 2.0 ‘ 1.0

(a) Corrugation in Curved Direction

o 18.2 18.2 17.7 17.7 ]77
1.25 23.2 22.2 22.2 22.2 22.2
2.5 30.2 29.3 29.3 29.3 29.3
5 44.1 43.1 43.1 43.1 43.1
10 68.4 68.4 68.4 68.4 68.4
20 110.1 110.1 110.1 110.1 110.1
40 173.7 173.7 173.7 173.7 173.7
80 259.2 255.5 255.5 255.5 255.5
160 373.7 370.7 370.7 370.7 370.7
320 578.3 526.1 526.1 526.1 526.1
640 939.8 819.0 765.5 749.5 747.9

(b) Corrugation in Longitudinal Direction

0 70.0 31.1 17.7 4.73 2.39

1.25 70.0 31.1 17.7 4.78 2.44

2.5 70.0 31.1 17.7 4.89 2.57

5 7.0 31.2 17.8 5.18 2,99

10 70.0 31.4 18.0 5.8% 3.96

20 70.4 32.0 19.0 7.51 5.56

40 71.9 33.9 21.6 10.5 8.46

80 77.2 39.1 27.4 16.2 13.5

. 160 95.9 52.4 39.5 26.3 22.2
The System of Coordinates of the Shear Panel 320 155.5 96.2 75.0 45.5 6.9
640 343.8 255.7 200.6 90.5 64.4

Figure 1
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TABLE 3. - Coefficient of Buckling kg for Sheets 20T
of GA 20 (t = 0.036 in.)
e‘ T a/,,
L 0.5 I 0.75 ] 1.0 T 2.0 I 3.0
(a) Corrugation in Curved Direction
TonT T e s 14.7 14.7 1.7
S VLR B NS i 18.7 18.3 18.3 18.3
|
2.5 25.8 | 24.3 23.9 23.9 23.9
1
‘ 5 [ 3.8 | 355 35.0 35.0 35.0 v
! 1n 56.4 . 56,4 55.3 55.3 55.3 18/t
20 B YO B - L 98 | 89.1 89.1 89.1
i | e
" oan " 140.0 ¢ 140.0 140.0 140.0 140.0
an ‘ 209.8 208.1 208.1 208.1 208.1
160 L324.3 302.6 300.1 300.1 300.1
EED) 4.6 4517 428.3 428.3 428.3 o
60 83n.4 696.6 657.4 €05.6 605.6 for
. RSN
(h)  Corrugation in Longitudinal Direction
ThT T TRE Y "i_""zs.a 14.7 3.99 1.99
1.5 57.5  ,  25.9 14.8 1 4.04 2.19
G751 a5 4.8  4.19 2.58
5 57.6 26.0 14.9 R ) 3.13
; i
1" 57.7 26,13 I15.4 i 5.80 a.27
0 58,2 27.13 17.0 7.79 6.21
an an.n 30.2 20.4 11.4 9.49
an AR.7 3701 27.6 17.9 15.2
1 i LONGITUDINAL EDGES FORCED TO REMAIN STRAIGHT
160 [a,3 | 52,1 i al.s 29.4 24.9
| e — = LONGITUDINAL EDGES FREE TO MOVE LATERALLY
EER! 145.6 97.8 77.2 | a9 41.2
4 6.1 261.9 195.0 92.1 69,9
. . . A : A
0.10 0.20 030 040 0.60 0.60
f
The Critical Shear Stress vs. Half The Depth of Corrugation
20p
FIGURE 2b
LONGITUDINAL EDGES FORCED TO REMAIN STRAIGHT 20,
———-~— LONGITUDINAL EDGES FREE TO MOVE LATERALLY \
S/t
\
S/t
\
[[e]8 N
~
\ \\
LONGITUDINAL EDGES FORCED TO REMAIN STRAIGHT
——=--—LONGITUDINAL EDGES FREE TO MOVE LATERALLY
R N N
113 226 339 4
< apsr . N .
The Critical Shear Stress vs. The Ratio b/r [ 10 15
b~ ft.
FIGURE 2a The Critical Shear Stress vs. The Width of The Panel
FIGURE 3¢

- 16 - 170



20

k
® q00
a -3
L= 0.5 [
. 600 |_
- LONGITUDINAL EDGES FORCED TO REMAIN STRAIGHT RRUGAT N THE CORVED DIKLCTION
¢ I CURVE C .
——- —LONGITUDINAL EDGES FREE TO MOVE LATERALLY ——— conRuaNTION 1 VIR prens il
’ — — — CORRUGATION IN THE 1ONGITUDINAL LIRECTION. b
500
-
400 |
/
300 |
-
16 Changead Scale
200 |- —
.
Ve
100 |-
—-——— —_
N N
2624 26 T8 & GA. T e e ——
0.018 0024 0.036 0048 006 t " o oo -
fhe Crivieal shear Stress vs. The Thickness of The Sheet e Coefficient k. of Ruckling of Snear Diaphramms of GA %6 (t - 0,018 in.)
F1LURE 24 Figire 3a
r K -
a 3
5" 0.9
. coo |
2.0
———= COPRUCATION 14 ThE CURVLD DIRLCTION — CORRUGATION IN THE CURYLD DIRECTION. b
— = — - CORRUGATION IN THL LONGITUDIUAL DIRLCTION.
=S CORENRTLON 10 PN LOAGTTUDINAL DI1LECTION, 500
RIPI +
I q00 |
400 |-
POTT of 300 |-
!
Chanaed Scale ! ) Chated Scale
U ™~ e T ’/ I( 200 ~ s T s e il ' /
! 2. 0.5 !
I / I 5 0.5 ~ / i
I Y
/
[y / /
Ly B 2 /ot
ry) ROyt
/ AN
2.0 / // / /
b / , ]
100 —/\ ;! / 100 | /) /
- vy S
g Y P
- - - a y
5" 0.75 '\/ / / ’, 7
AP A P
B 7’
- ’/// // N X// A2 a2.0
T I -7 . '\_1.“ » Pr
— —— - e — —————— - . g
- e —_————— // T e —— o —— g
- T -
S SRR T TS LT 1 okl oo ——--7 |
100
0 1.0 10 100 1000 1.0 10
fficient k_of Buckling of Shear Diaphragms of GA 20 (t = 0,036 in.)
The Coefficient k. of Buckling of Shear Diaphragms of GA 24 (t = 0.024 in.) (] The Coefficient k » 8
Figure 3b : m Figure 3c



CONCLUSION

This paper examines theoretically the buckling problem of curved shear pa.nclo:‘
with longitudinal edges forced to remain straight. This problem is encountered in |
the design of long shells of corrugated sheets with flexurally rigid longitudinal
stiffeners. Curves and tables are given for the simple calculation of critical
shear load. The results obtained here present an upper limit to the shear strength
of such panels while the lower limit can be obtained from reference (1).
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APPENDIX II - NOTATION

J ‘The following symbols are used in this paper.
!

2 = length of shear panel
b = width of shear panel
lx,B' = bending rigidity in the xz- and sz- planes respectively
B" = torsional rigidity
D!, D' = axial rigidity in the x- and s- directions respectively
Du = shear rigidity in the xs plane
E = modulus of elasticity of diaphragm material
£ = half depth of corrugation
| k! = coefficient of shear buckling
i nny = axial force per unit length acting in the x- and s-
directions respectively
nu = ghear force per unit length acting in x-s plane
! r = radius of curvature of shear panel
: S = buckling shear force per unit length
t = average thickness of corrugated sheet
u, v, w = displacement in x-, s- and z- directions respectively
€'ty = axial strain in x- and s- directions respectively
o RS XX
*2 re Bst
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