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Parameter Study for First-Generation Sheeting Failure using a 

Theoretical and FE Model 
 

H. Hofmeyer1, M. Rosmanit2, and M.C.M. Bakker3 
 
Abstract 
 
First-generation sheeting is sheeting without longitudinal and transversal 
stiffeners. For the prediction of failure of this sheeting type, if loaded by 
concentrated load and bending moment, several theoretical models and design 
codes exist. One of these theoretical models was developed recently and predicts 
failure by using a derivative of the web-crippling deformation due to the 
concentrated load as an imperfection for the compressed flange for which the 
behaviour is predicted by Marguerre's simultaneous differential plate equations. 
The quality of the model has been checked with a whole range of experiments, 
however, the experiments did not have such a variation of variables that the 
model could be checked systematically. In this paper, a FE model is used to 
predict failure for a systematic variation of sheeting variables and the failure 
loads are used to check the theoretical model. For varying web width, angle 
between web and flange, corner radius, yield strength, plate thickness, and span 
length, the theoretical model performs well, qualitatively and quantitatively, 
compared to the finite element model. For the compressed flange width and load 
bearing plate width, the theoretical model results show some divergence from 
the FE model results, although absolute differences remain acceptable. 
  
1 Introduction 
 
For first-generation sheeting under combined bending and concentrated load, 
only a few theoretical models exist. It was already recognised in the seventies 
that curve-fitting rules could possibly be improved by using a fully theoretical 
model.  
________________________________________ 
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As such, Tomà developed the RSD-model [Toma74a] that was based on the 
theoretical prediction of web buckling under bending and several other load 
types. In the meantime, Reinsch developed a model specifically for predicting 
moment redistribution and this model was based on an empirically determined 
capacity for concentrated load and energy equilibrium [Rein83a]. The second 
attempt for a model to substitute the design rules was by Bakker in 1992 
[Bakk92a]. Bakker developed a fully analytical yield line model for short span 
members. However, by using yield line theory the model was complex to use 
and it could only be applied to short-span members with a specific failure 
mechanism. In this context it is good to note that promising attempts to use yield 
theory for theoretical models are still in progress [Hiri05a]. In 2000, a new 
theoretical model was developed for normal span members [Hofm01a], based on 
theories by Marguerre [Marg38a] and Vaessen [Bakk99a]. It proved to yield 
good results given the considered set of experiments [Hofm01a]. Furthermore, 
the model has the potential to be used for design rules, if the nonlinear 
behaviour of the compressed flange can be modelled by a simple yet accurate set 
of equations for initial imperfections (stress-less imperfections) [Bakk06a] and 
imperfections caused by a lateral load (stressed imperfections) [Bakk06b]. 
 
In this paper the theoretical model is systematically verified by using the finite 
element method. The finite element model that is used in this paper was 
developed by recognising the effort worldwide to develop such models 
[Sant86a, Wise91a, Talj92, Land94a, Bakk99a, Schaf97a, Davi97a, Sama99a, 
Kait04a]. Most of these models use a quarter model instead of a half or full 
model and they model the corner radius with only one element. More recently, 
more advanced models are developed [Akha04a] and it is realised that the corner 
should be modelled with more than one element for a wide scope of 
applications, for instance impact analysis [Lang06a]. 
 
2 Theoretical model 
 
Experimental research indicates [Hofm01a] that the first signs of failure for 
sheeting under combined bending and concentrated load are little folds adjacent 
to the load bearing plate. The theoretical model focuses on predicting the load F 
at which these folds occur. It is assumed that the little folds occur if a point at 
the fold location yields.  
 
Figure 1 shows a part of the sheeting's compressed flange and the load bearing 
plate. The location at which yielding occurs first is point Q. The principle of the 
model can be described as follows. A certain load F is assumed to work on the 
load bearing plate. Due to this load, a part of the compressed flange will deform. 
This deformation is modelled as shown in figure 1 by the curved lines in the 
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shaded rectangle. A modification of the beam on elastic foundation method 
developed by Vaessen [Bakk99a] can be used to predict the change of distances 
dQ and dP. The difference between these two changes is the out-of-plane 
displacement wP of point P: 
 

QdPdPw −=        (1) 
 
Assuming a sinusoidal displacement shape and using simple geometry, the out-
of-plane displacement wR of point R can be determined: 
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Because of load F, a bending moment acts in the section and therefore, a 
compression force Ftf is present in the compressed flange longitudinal direction. 
This compression force Ftf results in a compression stress σz at the shaded 
rectangle. A solution of Marguerre's equations [Marg38a], makes it possible to 
predict the Von Misses stress at point Q (at the outer fibre) for a given out-of-
plane displacement wR of point R and compression stress σz.  
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Figure 1, a part of the sheeting's compressed flange 
 
Using a bisection iteration method, the specific load F at the load bearing plate 
can be found, needed to reach the yield stress at point Q. This load F is the 
predicted ultimate load of the sheeting. Note that in the model, local indentation 
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of the section, compression stresses in the compressed flange, and non-linear 
behaviour of the compressed flange are all taken into account.  
 
The model assumes that the out-of-plane displacement wR does not imply the 
occurrence of stresses in the compressed flange. However, because the out-of-
plane displacement is caused by the concentrated load, stresses exist. This is 
currently under investigation [Bakk06b]. Furthermore, the model uses a location 
of first yield at the location where first plastic behaviour is seen for the 
experiments. However, plate theory may indicate that first yield occurs at 
another location in the plate. More information and the comparison of the model 
with experiments can be found in [Hofm01a]. 
 
3 FE model 
 
A finite element model as presented in [Klei06a] was used. The FE model is 
built with Ansys 8.1 using solid modelling. This means the geometry of the 
sheet-section is primarily generated via keypoints, lines, and areas. A half sheet-
section is modelled because symmetry is valid for the cross-section but not in 
length direction for specific failure mechanisms. For the application of 
imperfections, the geometry is split up in parts in length direction for which the 
sheeting height can be adjusted to fit the imperfections required. For the sheet-
section shell elements "SHELL43" are used. They have four nodes (with 6 
degrees of freedom each) and extra displacement shapes. The elements are 
capable of describing plasticity, large deflections, and large strains and there are 
five integration points along the thickness. The material behaviour of the shell 
elements is specified using points of the real stress-strain curve of steel tension 
tests. Element sizes are listed in table 1.  
 

Table 1, element sizes for finely and coarsely meshed parts 
 

 Finely meshed part Coarsely meshed part 
 Longitudinal 

dir. 
Transverse 
dir.  

Longitudinal 
dir. 

Transverse 
dir.  

Bottom flange 4 mm 4 mm 24 mm 24 mm 
Bottom corner 5 mm 3 elements 18 mm 1 element 
Web 10 mm 10 mm 24 mm 24 mm 
Top corner 5 mm 3 elements 18 mm 1 element 
Top flange 10 mm 10 mm 24 mm 24 mm 
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Figure 2, finite element model 
 

The load bearing plate is made of a single solid element "SOLID45". It is wedge 
shaped to avoid contact difficulties near the bearing plate edge, see also figure 2. 
The three sides facing to the sheet-section are covered with "TARGE170" target 
elements. Sheet-section nodes that possibly contact these elements are provided 
with contact elements "CONTA175". 
 
Along the longitudinal section line, boundary conditions are applied to assure 
symmetry conditions. Supports are made by boundary conditions at two lines 
near the ends of the bottom flange.  
 
Loading is applied via prescribed displacements for the load bearing plate. A 
Newton-Rhapson solution strategy is used for which calculations were forced to 
continue if no convergence could be accomplished. 
 
4 Parameter study 
 
The theoretical model as presented in section 2 was already verified with several 
sets of experiments [Hofm01a], also from other researchers. These sets were 
quite large and in total the model was checked against 383 experiments. 
However, even with 383 experiments it is not possible to find -for all section 
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variables- combinations of experiments that differ for just one variable along the 
total relevant range of that variable. Therefore the finite element model as 
presented in section 3 was used to carry out a parameter study as shown in table 
2. Variables are explained in the table and figure 3. 
 

Table 2, parameter study 
  Change of variable 

in order to generate 
simulation 
 
 
 
 
value (simulation) 

Default 
values (also 
relevant for 
simulation 

A) 
↓  

Change of 
variable in 
order to 
generate 
simulation 
 
value 
(simulation) 

  much 
smaller 
-- ← 

smaller 
 

- ← 

default larger 
 

→ + 
bw web width [mm] - 75 (B) 100 125 (C) 
bbf flange width [mm] - 40 (D) 70 100 (E) 
θw angle web-flange [deg.] - 50 (F) 70 90 (G) 
rbf corner radius [mm] 1(H) 3 (I) 5 10 (J) 
fy yield strength [N/mm2] - 300 (K) 355 400 (L) 
t plate thickness [mm] - 0.5 (M) 0.68 1 (N) 
Lspan span length [mm] - 1400 (O) 1800 2400 (P) 
Llb plate width [mm] - 50 (Q) 100 150 (R) 

bwfl bw

1/2btffl

ritfrtf

hw hm

bm

flange under
tension

web

1/2btf

θw

bbf
bbffl

ribfrbf
compressed

flange

t

 
Figure 3, sheeting variables 
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Simulation "A" as listed in table 2 uses all default variable values as listed in the 
column below. Simulation "B" equals simulation "A" for all variable values 
except the web width which equals 75 instead of 100 mm in this case. Like 
simulation "B", the other simulations differ only for one variable to simulation 
"A" as indicated in table 2. 
 
Web width 
Figure 4 shows the ultimate load as predicted by the theoretical model (section 
2) and the finite element model (section 3) for a variable web width. 
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Figure 4, FE model and theoretical model predictions for varying web width 
 
The theoretical model and the finite element simulation have a very similar 
behaviour. If the web width is larger, the sheeting height increases and this 
means a higher bending moment can be resisted. Although a web that is higher 
is expected to buckle earlier and thus is reducing the ultimate load, this effect 
cannot be observed here. 
 
Compressed flange width 
As for the web width, figure 5 shows the ultimate load for varying flange width 
as predicted by the theoretical model and the finite element model. The figure 
shows that the model and simulations do not have the same behaviour, although 
quantitatively the values are in the same range. 
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Figure 5, FE model and theoretical model predictions for varying flange width 

 
Angle between web and flange 
For varying angle between web and flange, an angle of 50 degrees -simulation 
"F"- shows convergence problems. The convergence problem context and their 
possible causes are presented in [Klei06a]. For the remaining two simulations, a 
good correlation is found with the theoretical model. 
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Figure 6, FE model and theoretical model predictions for varying angle between 

web and flange 
 

Corner radius 
Normally, for short span sheeting, the corner radius has a large influence on the 
failure mechanism to occur. However, for normal to large span sheeting, figure 
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7 shows that the ultimate load differs only slightly if the corner radius is varied. 
The figure shows also an almost perfect correlation between the FE model and 
the theoretical model. The smallest corner radius (1 mm) in combination with 
the section variable values as shown in table 2 results in convergence problems 
of the simulation, see [Klei06a] for more details. 
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Figure 7, FE model and theoretical model predictions for varying corner radius 
 
Yield strength 
The ultimate load is more or less linearly related to the yield strength. This is 
true for both the FE model and the theoretical model as is shown in figure 8. 
Also here, an almost perfect correlation exists between the two models. 
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Figure 8, FE model and theoretical model predictions for varying yield strength 
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Plate thickness 
FE model and theoretical model results for a varying plate thickness are shown 
in figure 9. There is an overestimation of the theoretical model for larger 
thicknesses, but this overestimation is small compared to the absolute increase in 
strength. The models have a comparable behaviour for a changing plate 
thickness. 
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Figure 9, FE model and Theoretical model predictions for varying plate 

thickness 
Span length 
For varying span length, the theoretical model and the FE model yield almost 
the same results, as shown in figure 10. The span length has quite some 
influence on the ultimate load. 
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Figure 10, FE model and theoretical model predictions for varying span length 
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Load bearing plate width 
For increasing load bearing plate width, the ultimate load increases both for the 
theoretical model and the FE model. However, the FE model seems to predict a 
steeper increase than the theoretical model. An explanation can be the following. 
If a load application by a load bearing plate is modelled, often four point loads 
are used. The load bearing plate width thus influences the distance between the 
point loads.  If the bearing plate width is varied, the ratio between the load 
distances and the compressed flange width and thus the (post-) buckling 
behaviour of the compressed flange is changed. Possibly, this is not taken into 
account fully correctly in the theoretical model.  
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Figure 11, FE model and theoretical model predictions for varying load bearing 

plate width 
 
Flange out-of-plane deformation at ultimate load 
All finite element simulations were used to monitor the compressed flange out-
of-plane deformation at ultimate load (note that the initial out-of-plane 
deformation was zero). The average value of this deformation was 3.35t (with a 
standard deviation equal to 1.0t). These values are needed to determine the 
relevant range of plate deformations to study elastic [Bakk06a, Bakk06b] and 
elasto-plastic plate behaviour. 
 
Conclusions 
 
Theoretical models for first-generation sheeting under combined bending and 
concentrated load are rare. The latest available model [Hofm01a] performs well 
compared to experiments. 
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An existing finite element model was used to study the performance of the 
theoretical model systematically. For a limited set of cases, the finite element 
model has convergence problems as explained in another paper [Klei06a]. 
 
For varying web width, angle between web and flange, corner radius, yield 
strength, plate thickness, and span length, the theoretical model performs very 
well, qualitatively and quantitatively, compared to the finite element model. 
 
For the compressed flange width and load bearing plate width, the theoretical 
model results show some divergence from the FE model results, although 
absolute differences remain acceptable, which was also proofed by the set of 
experiments. 
 
The model has the potential to be used for design rules, if the nonlinear 
behaviour of the compressed flange can be modelled by a simple yet accurate set 
of equations for initial imperfections (stress-less imperfections) [Bakk06a] and 
imperfections caused by a lateral load (stressed imperfections) [Bakk06b]. 
 
To make the model possible suitable for second-generation sheeting, research is 
carried out to find simple equations for stiffened compressed flanges. 
 
Acknowledgements 
 
The M.Sc.-students R.P.A. Verhaegh and W.H. de Groot carried out the finite 
element simulations presented in this paper. Their help is highly appreciated.  
 
Appendix.-References 
 
[Akha04a] A. M. Akhand, W. H. Wan Badaruzzaman and H. D. Wright, Combined 
flexure and web crippling strength of a low-ductility high strength steel decking: 
experiment and a finite element model, Thin-Walled Structures, Volume 42, Issue 7, July 
2004, Pages 1067-1082. 
[Bakk06a] Bakker, M.C.M.; Rosmanit, M.; Hofmeyer, H.: Elastic post-buckling 
behaviour of uniformly compressed plates, 18th International Specialty Conference on 
Cold-Formed Steel Structures 2006, October 26 & 27, 2006, Orlando, Florida, U.S.A. 
[Bakk06b] Bakker, M.C.M., Rosmanit, M., Hofmeyer, H.: Post-Buckling Strength of 
Uniformly Compressed Plates, International Colloquium on Stability and Ductility of 
Steel Structures, Lisbon, Portugal, 2006. 
[Bakk92a] Bakker, Monique C.M.: Web Crippling of Cold-Formed Steel Members, 
Dissertation Eindhoven University of Technology, The Netherlands, ISBN 90-386-0122-
0, 1992. 
[Bakk99a] Bakker, M.C.M., Snijder, H.H., Kerstens, J.G.M. Elastic Web Crippling of 
Thin-Walled Cold Formed Steel Members. Proceedings Light-Weight Steel and 



203 

Aluminium Structures, Fourth International Conference on Steel and Aluminium 
Structures, Mäkeläinen, P; Hassinen, P., June 1999, Espoo, Finland. 
[Bakk99a] Bakker, M.C.M., Snijder, H.H., Kerstens, J.G.M. Elastic Web Crippling of 
Thin-Walled Cold Formed Steel Members. Proceedings Light-Weight Steel and 
Aluminium Structures, Fourth International Conference on Steel and Aluminium 
Structures, Mäkeläinen, P; Hassinen, P., June 1999, Espoo, Finland. 
[Davi97a] Davies, J.M.; Jiang, C.: Design Procedures for Profiled Metal Sheeting and 
Decking, Thin-Walled Structures 27 (1997), 43-53. 
[Hiri05a] Hiriyur, B.K.J., Schafer, B.W. (2005). “Yield-line analysis of cold-formed steel 
members.” KSSC, International Journal of Steel Structures. 5 (1) 43-54. 
[Hofm01a] Hofmeyer, H.; Kerstens, J.G.M.; Snijder, H.H.; Bakker, M.C.M.: New 
Prediction Model for Failure of Steel Sheeting Subject to Concentrated Load (Web 
Crippling and Bending Moment), Thin-Walled Structures, Volume 39, Number 9, 
September 2001, page 773-796, ISSN 0263-8231. 
[Kait04a] Kaitila, Olli: Web Crippling of Cold-Formed Thin-Walled Steel Cassettes, 
Ph.D.-thesis, Helsinki University of Technology, Department of Civil and Environmental 
Engineering, Laboratory of Steel Structures, Espoo, Finland, 2004, ISBN 951-22-7270-9. 
[Klei06a] Kleine, D. de; Hofmeyer, H.; Bakker, M.C.M.: Rigid Link and FE Models for 
First-Generation Sheet-Section Failure, accepted for publication in Thin-Walled 
Structures, January 5, 2006. 
[Land94a] Landolfo, Raffaele; Mazzolani, Federico M.: Ultimate Behaviour of 
Trapezoidal Steel Sheets in Bending, Proceedings 12th International Speciality 
Conference on Recent Research and Developments in Cold-Formed Steel Design and 
Construction, October 18-19 1994, St. Louis, Missouri, U.S.A. 
[Lang06a] G.S. Langdon and G.K. Schleyer, Deformation and failure of profiled stainless 
steel blast wall panels. Part III: finite element simulations and overall summary, 
International Journal of Impact Engineering, Volume 32, Issue 6, June 2006, Pages 988-
1012. 
[Marg38a] Marguerre, K.: Zur Theorie der gekrümmter Platte grosser Formänderung, 
Proc. Fifth. Int. Congress Appl. Mech., Page 93, 1938. 
[Rein83a] Reinsch, W.: Das Kantenbeulen zur rechnerischen Ermittlung von 
Stahltrapezblechträger, dissertation D17, Technische Hochschule Darmstadt, Germany, 
1983. 
[Sama99a] Samanta, Asokendu; Mukhopadhyay, Madhujit: Finite element static and 
dynamic analyses of folded plates, Engineering Structures 21, 1999, page 277-287. 
[Sant86a] Santaputra, C.: Eighth progress report, Design of Automotive Structural 
Components using High Strength Sheet Steels, Web Crippling of Cold Formed Steel 
Beams, Civil Engineering Study 86-1, Structural Series, University of Missouri-Rolla, 
Department of Civil Engineering, 1986. 
[Scha97a] Schafer, B.W.; Peköz, T.: The Behaviour and Design of Longitudinally 
Stiffened Thin-Walled Compression Elements, Thin-Walled Structures Vol. 27, 1997, 
page 65-78. 
[Talj92a] Talja, Asko: Design of cold-formed HSS channels for bending and eccentric 
compression., Bending in the plane of symmetry, VTT Research Notes 1403, Technical 
Research Centre of Finland, Espoo, 1992. 



204 

[Toma74a] Tomà, A.; Stark, J.W.B.: III. Twee veldsplaten zonder dimpel, Onderzoek 
geprofileerde stalen dakplaten, werkrapport van de werkgroep S.G.-T.C. 16 "Onderzoek 
van stalen dak- en gevelplaten", Instituut TNO voor bouwmaterialen en 
bouwconstructies, rapport nr. BI-74-37, Nr. 05.3.11.261, April 1974. 
[Wise91a] Wiseman, D.L.; Puckett, J.A1.: Applications of Compound Strip Method for 
Folded Plates with Connection Elements, Journal of Structural Engineering 117,  1991, 
268-285. 
 
Appendix.-Notation 
 

b Abbreviated variable. Stands for bbffl [mm]. 
bbf Compressed flange width, measured between the points of 

intersection of the web and flange midlines [mm]. 
bbffl Flat compressed flange width [mm]. Also possible is bbf;fl. 
bm Sheet section width [mm]. 
btf Width of flange under tension, measured between the points of 

intersection of the web and flange midlines [mm]. 
btffl Width of flat part flange under tension [mm]. Also possible is btf;fl. 
bw Web width, measured between the points of intersection of the 

web and flange midlines [mm]. 
bwfl Flat web width [mm]. Also possible is bw;fl. 
dQ, dP Distances of point Q and P to line of intersection flange and web 

[mm]. 
Ftf Compressive force in compressed flange [N]. 
fy Steel yield strength [N/mm2]. 
hm Sheeting height between flange midlines [mm].  
hw Sheeting height between flange outer surfaces [mm]. 
Llb Load bearing plate width [mm]. 
Lspan Span length [mm]. Also possible is Lsp. 
P, Q, R Points at the compressed flange. 
rbf Radius of compressed flange corner midline [mm]. 
ribf Interior radius of compressed flange corner [mm]. 
ritf Interior radius of flange under tension corner [mm]. 
rtf Radius of flange under tension corner midline [mm]. 
t Steel plate thickness [mm]. 
wP, wR Out-of-plane displacements of point P and R [mm]. 
θw Angle between web and flange [deg.]. 
σz Compressive normal stress in compressed flange [N/mm2]. 
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