
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

International Specialty Conference on Cold-
Formed Steel Structures 

(1992) - 11th International Specialty Conference 
on Cold-Formed Steel Structures 

Oct 20th, 12:00 AM 

Some Applications of Generalized Beam Theory Some Applications of Generalized Beam Theory 

J. Michael Davies 

Philip Leach 

Follow this and additional works at: https://scholarsmine.mst.edu/isccss 

 Part of the Structural Engineering Commons 

Recommended Citation Recommended Citation 
Davies, J. Michael and Leach, Philip, "Some Applications of Generalized Beam Theory" (1992). 
International Specialty Conference on Cold-Formed Steel Structures. 2. 
https://scholarsmine.mst.edu/isccss/11iccfss/11iccfss-session8/2 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in International Specialty Conference on Cold-Formed Steel Structures by an authorized 
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including 
reproduction for redistribution requires the permission of the copyright holder. For more information, please 
contact scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229099623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/isccss
https://scholarsmine.mst.edu/isccss
https://scholarsmine.mst.edu/isccss/11iccfss
https://scholarsmine.mst.edu/isccss/11iccfss
https://scholarsmine.mst.edu/isccss?utm_source=scholarsmine.mst.edu%2Fisccss%2F11iccfss%2F11iccfss-session8%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/256?utm_source=scholarsmine.mst.edu%2Fisccss%2F11iccfss%2F11iccfss-session8%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/isccss/11iccfss/11iccfss-session8/2?utm_source=scholarsmine.mst.edu%2Fisccss%2F11iccfss%2F11iccfss-session8%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


Eleventh International Specialty Conference on Cold-Formed Steel Structures 
St. Louis, Missouri, U.S.A., October 20-21, 1992 

SOME APPLICATIONS OF GENERALIZED BEAM THEORY 

J Michael Davies* and Philip Leach** 

Introduction 

Generalised Beam Theory (GBT) has been developed by Professor R Schardt 
and his colleagues at the University of Darmstadt in Germany. The definitive 
reference at the present time is a recent German text(1) which describes the 
first-order theory. For the analysis of cold-formed sections, second-order 
theory may be required and this is less well documented. This paper will 
attempt to describe the principles involved and illustrate them by means of 
some practical examples. 

GBT unifies the conventional theories for the analysis of prismatic thin-walled 
structural members within a consistent notation. It then extends them into 
new territory. Conventional beam theory identifies four fundamental modes of 
deformation, namely extension, bending about two principal axes and torsion. 
These may be referred to as the "rigid-body" modes because they do not involve 
any distortion of the cross-section. Higher-order modes also exist but these 
involve cross-section distortion together with transverse bending. 

In first-order theory, all modes are orthogonal. This means that they are 
uncoupled and can be considered separately before their effects are combined. 
In second-order theory, the modes may become coupled but their orthogonal 
nature ensures that the coupling is minimised so that important results can 
often be obtained by a trivial calculation involving a single mode. 

GBT is a big subject with many ramifications and a full treatment is not 
possible within the confines of a single paper. No attempt will, therefore, be 
made to derive the basic equations and attention will be confined to explanation 
and application. 

Modes of deformation and warping functions 

A unifying feature of GBT is the "warping function" whereby each deformation 
mode 'k' is associated with a distribution of axial strain kii. Thus, the first 
mode has a uniform distribution of axial strain over the cross-section and 
1ii = -1 for all the points's' of the cross-section. The second and third modes 
are bending about the two principal axes and the associated warping functions 
are linear distributions of strain about two orthogonal axes through the 
centroid of the section. The fourth mode is torsion about the shear centre and 
here the term "warping" has its conventional meaning and the warping 
function is the sectorial coordinate which reflects the distribution of axial 
strain due to a bi-moment. For higher-order modes, the physical meaning of 
the warping function is less clearly visualised. 

*-Profu~o~ofci~lE~w~e~~---------------------------------

** Lecturer 
Department of Civil Engineering and Construction, University of Salford, UK. 

479 



480 

From these warping functions, a number of other properties can be derived so 
that each mode k has associated with it: 

a warping function as already described 
a corresponding pattern of cross-sectional displacements 
(for modes 5 and above) a distribution of transverse bending 
stresses 
three section properties kC, kD and kB. 

For the rigid body modes 1 to 4, the section properties are familiar, thus 

IC = cross-sectional area; ID=IB=O 
2D=2B=O 
3D=3B=O 

2C second moment of area about the first principal axis; 
3C second moment of area about the second principal axis; 
4C warping constant; 
4D St Venant torsional constant; 4B=O 

For the higher order modes which involve cross-sectional distortion, all three 
section properties are, in general, non-zero. 

Notation 

The notation used in this paper for GBT follows that developed by Schardt(1). 
In general, terms will be defined as they are introduced but two points are 
worthy of particular note: 

a forward superscript is used to denote the mode number 
- over a symbol denotes a unit value of a quantity, e.g. a warping 
function or a related quantity derived from it. 

Number of deformation modes 

It is convenient to illustrate the principles of GBT with an example and a 
suitable cross-section for this purpose is shown in Fig. 1. This section has 
been used by Lau and Hancock(2) to illustrate the use of the finite strip method 
in investigating the elastic and inelastic buckling of columns. Later it will be 
convenient to compare some results obtained for this section using GBT with 
those obtained by Lau and Hancock. 

The section shown in Fig. 1 has six nodes which, according to GBT, can 
"warp" independently. The warping functions are linear between the nodes 
and it follows that the section has six independent warping functions together 
with their associated deformation modes and section properties. Four of these 
are the rigid body modes shown in Fig. 2(a) and two are the cross-section 
distortion modes shown in Fig. 2(b). The full set of GBT properties for this 
example are tabulated in Fig. 3. This table may be interpreted as follows: 

k­
U 

kF-L 

warping function defined at each node of the cross-section 
and assumed to be linear between the nodes. The 
remaining quantities are associated with a unit value of 
this warping function. 

in-plane displacement of a face at its mid-point. 
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F I G 3. C R 0 S S -SECTIO N V A L U E S FOR EXAMPLE 
========================================================================== 

MODE k = 1 
--------------
NODE Ii F-L F-Q F-e 'IJ W iii S/W' 
1 -1. 0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2 -1. 0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
3 -1. 0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
4 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
5 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
6 -1. 0000 0.0000 0.0000 0.0000 

C 4.2335 D = 0.0000 B = 0.0000 

MODE k = 2 
--------------
NODE U F-L F-Q F-e 'V W iii S/W' 
1 3.1750 -1.0000 0.0000 0.0000 -1.0000 0.0000 0.0000 0.0082 
2 4.4850 0.0000 1.0000 0.0000 -1.0000 0.0000 0.0000 0.3743 
3 4.4850 1.0000 0.0000 0.0000 -1.0000 0.0000 0.0000 1. 0164 
4 -4.4850 0.0000 -1. 0000 0.0000 -1.0000 0.0000 0.0000 0.3743 
5 -4.4850 -1.0000 0.0000 0.0000 -1.0000 0.0000 0.0000 0.0082 
6 -3.1750 -1.0000 0.0000 0.0000 

C 62.7540 D = 0.0000 B = 0.0000 

MODE k = 3 
--------------
NODE U F-L F-Q F-e V W iii S/W' 
1 -4.3017 0.0000 -1. 0000 0.0000 0.0000 1.0000 0.0000 -0.0214 
2 -4.3017 -1. 0000 0.0000 0.0000 0.0000 1. 0000 0.0000 -0.4999 
3 2.5783 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 
4 2.5783 1.0000 0.0000 0.0000 0.0000 1. 0000 0.0000 0.4999 
5 -4.3017 0.0000 -1. 0000 0.0000 0.0000 1.0000 0.0000 0.0214 
6 -4.3017 0.0000 1.0000 0.0000 

C = 28.8300 D = 0.0000 B = 0.0000 

MODE k = 4 
--------------
NODE U F-L F-Q F-e V W iii S/W' 
1 28.8492 10.3510 3.8300 1.0000 10.3510 -3.1750 0.0000 0.0067 
2 15.2894 4.4850 -6.9110 1.0000 10.3510 -4.4850 0.0000 0.1012 
3 -15.5674 -3.4710 0.0000 1.0000 3.4710 -4.4850 0.0000 0.0134 
4 15.5674 4.4850 6.9110 1. 0000 3.4710 4.4850 0.0000 0.1012 
5 -15.2894 10.3510 -3.8300 1.0000 10.3510 4.4850 0.0000 0.0067 
6 -28.8492 10.3510 3.1750 0.0000 

C = 523.538 D = 0.039356 B = 0.0000 

MODE k = 5 
--------------
NODE u: F-L F-Q F-e V W iii S/W' 
1 1.0000 0.9448 -0.1455 0.1606 0.9448 0.2507 0.0000 0.5237 
2 -0.2377 -0.0404 -0.4724 0.1373 0.9448 0.0404 0.0000 0.0026 
3 0.0401 0.0000 0.0404 0.0000 0.0000 0.0404 0.1728 0.0000 
4 0.0401 0.0404 -0.4724 -0.1373 0.0000 0.0404 0.1728· -0.0026 
5 -0.2377 -0.9448 -0.1455 -0.1606 -0.9448 0.0404 0.0000 -0.5237 
6 1.0000 -0.9448 0.2507 0.0000 

C 0.16074 D = 0.00055128 B = 0.047461 

MODE k = 6 
--------------
NODE 'ii F-L F-Q F-e V W iii S/W' 
1 1. 0000 1.0066 -0.2008 0.2017 1.0066 0.3329 0.0000 0.4320 
2 -0.3186 -0.0687 -0.4862 0.1513 1.0066 0.0687 0.0000 -0.6687 
3 0.1537 0.0343 0.0000 -0.0153 -0.0343 0.0687 0.3751 0.8765 
4 -0.1537 -0.0687 0.4862 0.1513 -0.0343 -0.0687 -0.3751 -0.6687 
5 0.3186 1.0066 0.2008 0.2017 1.0066 -0.0687 0.0000 0.4320 
6 -1. 0000 1. 0066 -0.3329 0.0000 

C = 0.18592 D = 0.00068007 B = 0.12499 
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displacement normal to the face at its mid-point 

rotation of chord line of face 

nodal displacements in horizontal and vertical directions 

transverse bending moment at each node (distortional 
modes only) 

shear force in each face (as a function of kW') 

(warping resistance) (1) 

(torsional resistance) (2) 

(transverse bending (3) 

resistance) 

and iJ Poisson's ratio 

It should be noted that all of the quantities tabulated for modes 1 to 4 are 
obtainable from the standard procedures of structural mechanics which are 
given in basic texts on the subject. 

For second-order problems, it may be necessary to introduce intermediate 
nodes in order to allow local buckling of plate elements. Thus, if local buckling 
of the long side is to be considered, an additional node is inserted, as shown in 
Fig. 4(a) and an additional warping function is generated, as shown in Fig. 
4(b). 

3 

2 
(a) Addition of a mid-side node 

4 

r y ---. 
1 

5 

7 6 
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MODE k = 7 
-------------
NODE u F-L F-Q F-O v w m SjW' 
1 1. 0000 1. 0026 -14.1458 21. 5094 1. 0026 28.2344 0.0000 0.0011 
2 -0.3134 -0.0571 -0.5011 0.1458 1. 0026 0.0571 0.0000 -0.0029 
3 0.0797 0.0003 -94.8328 -42.3144 -0.0003 0.0571 158.926 -0.0019 
4 0.0782 -0.0003 -94.8328 42.3144 0.0000 -i89.723 -320.900 0.0019 
5 0.0797 0.0571 -0.5011 -0.1458 0.0003 0.0571 158.926 0.0029 
6 -0.3134 -1. 0026 -14.1458 -21. 5094 -1. 0026 0.0571 0.0000 -0.0011 
7 1. 0000 -1. 0026 28.2344 0.0000 

C = 70.986 D = 53.378 B = 40653.4 

(b) corresponding additional warping function 

Fig. 4. GBT model allowing local buckling of the longer plate element 

The requirement that the warping functions should be orthogonal ensures that 
modes 1 to 6 remain unchanged by the insertion of an additional node or nodes. 

Calculation of the warping functiow; and associated properties 

For relatively simple problems, it is possible to calculate all of the properties in 
Fig. 3 by hand and explicit expressions have been given for some common 
shapes(1). However, in general, it is simpler and more convenient to use 
standard computer software. 

Fundamental equation for first-order theory 

The basic equation of first-order GBT is 

E kC kV"" - G kD kV" + kB kV = kq (4) 

In this equation, in addition to the section properties kC, kD and kB, 

E Young's Modulus 

G = Shear Modulus 

kV generalised deformation in mode k (e.g. horizontal and 
vertical displacement for modes 2 and 3, rotation for mode 4 
etc) 

distributed load applicable to mode k 

and primes indicate differentiation with respect to z which lies along the 
length of the member. 

It is easy to see that the differential equations for bending about the two 
principal axes and torsion are all special cases of equation (4). 

Equivalence ofGBT and conventional notatiow; 

The equivalence between the conventional and GBT notations extends across 
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the whole spectrum of beam theory and progresses naturally from the familiar 
rigid-body modes into the higher-order modes using a unified notation. As a 
further example, the GBT equations for stresses and stress resultants are 

where, in addition to quantities already defined: 

kW = stress resultant for mode k (e.g. bending moment for modes 2 

and 3, bi - moment for mode 4, etc) 

ka distribution oflongitudinal stress for mode k 

(5) 

Equation (5) can be seen to embrace the familiar equations for stresses due to 
bending moment and bi-moment as special cases. 

Solution offirst-order problems using GBT 

The use of GBT to obtain the stresses and deformations of a member under 
specified loading and support conditions requires three distinct steps. In the 
first step, only the cross-section is considered in order to obtain, for each mode 
k, the warping functions kii and the associated section properties, kC, kD and 
kB together with the other relevant information as shown in Fig. 3. In the 
second step, this basic information is used to obtain solutions of equation (4) for 
each mode taking account of the relevant loading and boundary conditions. 
The third step then involves combining the results of step 2 to calculate the 
required stresses and deflections. 

Bearing in mind that the first step has already been discussed in sufficient 
detail for the purposes of this paper, attention now focuses on the second step, 
after which the final step is relatively trivial. 

Equation (1) may be solved in a number of different ways depending on the 
loading and boundary conditions. It is, of course, identical in form to the 
differential equation for the displacement of an axially-loaded beam on an 
elastic foundation. In order to apply beam on elastic foundation solutions to 
GBT problems, the following substitutions must be made: 

second moment of area I - kC 

axial load (tension positive) N - GkD 

foundation constant k - kB 

uniformly distributed load q - kq 

and, when the solution has been completed, the stress resultant 
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It follows that the solutions for many relatively simple loading and support 
conditions are well documented(3). Indeed, reference 3 is a whole book devoted 
to the topic and explicit solutions, such as those given therein, will provide an 
appropriate method for a wide range of practical problems. 

Schardt and his associates(l) at Darmstadt have exclusively used the finite 
difference method for their solutions of the general case and, certainly, this 
approach has advantages for second-order analysis. However, for first-order 
analysis, the finite element method is demonstrably more efficient. The 
reason for this is that equation (4) falls into the class of equations for which the 
finite element solution is exact(4). This means that, for many first-order 
problems, the computational requirements become almost trivial 

Example of first-order Generalised Beam Theory 

As a simple example, consider the cross-section of Fig. 1 simply supported 
over a span of 1.2 metres and subject to a single point load applied over one 
corner at the third point of the span as shown in Fig. 5. 

Fig. 5. Example of first-order GBT 

n+l 

kQ = L (Qy .• kV. + Q •.• kW.) 
r=1 

It is first necessary to 
apportion the applied load 
between the various modes 
and this can best be done by 
considering the virtual 
work of the horizontal and 
vertical components of the 
nodal loads acting on the 
modal displacements kV 
and kW, i.e. 

(6) 

so that, noting that the load is applied at node 4 in the negative z direction, 

lQ 
3Q 
4Q 
5Q 
6Q 

= 
= 
= 
= 
= 

2Q = 
1.0 
-4.485 
-0.0404 
0.0687 

o 
(bending about a horizontal axis) 
(torsion about the shear centre) 
(symmetrical mode of distortion) 
(antisymmetrical mode of distortion) 

Equation (4) has, therefore, to be solved four times although for mode 3 we have 
a simple case of bending for which the solution is trivial and for mode 4 we 
have a case of warping torsion for which alternative solutions exist(5). Taking 
mode 6 as an example of the general case, it is necessary to solve the 
analogous beam on elastic foundation problem shown in Fig. 6(a) with the 



values. 

E 

G = 
I -
N -
k -

8 
Q·0.0687 
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20000 kN / cm2 

7692.3 kN / cm2 

6C = 
G 6D = 

6B = 

0.1859 cm4 

7692.3 x 0.0006801 = 5.2315 kN 

0.1250 kN / cm2 

The finite element model shown in Fig. 
6(b) has only four unknowns so that the 
calculation is almost trivial. The values 

Beam of Flexural of interest at the loaded section are:­
Rigidity EI 

M == 6W = -0.3003 

bending moment == stress resultant 

s == 6y = - 0.01418 

deflection == generalised deformation 
(a) equivalent beam on elastic foundation 

(b) finite element model (exact) 

Fig. 6. Analytical model for mode 6 

60i = 
6W6U1 

~ 

6V1 6 Y 6V1 

6W1 6y 6W1 

The actual stresses and deflections for 
this mode then follow, e.g. 

0.3003 x 1.0 
0.1859 

0.01418 x 1.0066 

0.01418 x .3329 

1.615 kN / cm2 

0.0143 cm 

0.0047 cm 

The full pattern results, when all modes are superposed, is given in Fig. 7. 

It follows that Generalised Beam Theory provides a relatively simple and 
elegant solution for problems in which distortion of the cross-section cannot be 
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Mode 1 2 3 4 5 6 

W 0 0 -26.67 -116.1 -0.2172 0.3003 

V 0 0 -0.04933 -0.01172 -0.01762 0.01418 

(a) Stress resultants (kN) and generalised deformation (cm) 

Node 1 2 3 4 5 6 

\1 3.979 3.979 -2.385 -2.385 3.979 3.979 

40- -6.395 -3.389 3.451 -3.451 3.389 6.395 

50- -1.351 0.321 -0.054 -0.054 0.321 -1.351 

60- 1.615 -0.515 0.248 -0.248 0.515 -1.615 

0- -2.152 0.396 1.260 -6.138 8.204 7.408 

(a) longitudinal stresses (kN/cm2) 

Node 1 2 3 4 5 6 

3y 0 0 0 0 0 0 

4y -0.1213 -0.1213 -0.0407 -0.0407 -0.1213 -0.1213 
5y -0.0167 -0.0167 0 0 0.0167 0.0167 

6y 0.0143 0.0143 -0.0005 -0.0005 0.0143 0.0143 

y -0.1237 -0.1237 -0.0412 -0.0412 -0.0903 -0.0903 

(b) horizontal displacements (cm) 

Node 1 2 3 4 5 6 

3W -0.0493 -0.0493 -0.0493 -0.0493 -0.0493 -0.0493 

4W 0.0372 0.0525 0.0525 -0.0525 -0.0525 -0.0372 

5W -0.0044 -0.0007 -0.0007 -0.0007 -0.0007 -0.0044 
6W 0.0047 0.0010 0.0010 -0.0010 -0.0010 -0.0047 

w -0.0118 0.0035 0.0035 -0.1035 -0.1035 -0.0956 

(c) vertical displacements (cm) 

Fig 7. Stress resultants, stresses and displacements below load 
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neglected. However, it becomes even more powerful for buckling problems, as 
will now be shown. 

Second-order Genera1ised Beam Theory 

When second-order effects are included, a further group of terms is added to 
the basic equation ofGBT. The usual form of the equation is then: 

EkCkV"" - akDkv" + kBkV + L ijk/('ewiv')' 
i.j 

In this equation, 

• iW is the warping stress resultant in the i - th mode 

• iik/(' = i~fiueF-LkF-L + iF_QkF_Q)dA 
A 

(7) 

(8) 

is a three dimensional array of second-order terms which includes coupling 
terms so that the differential equations become linked and the individual 
modes are no longer independent. 

It may be noted that, if in-plane shear strains are included in the analysis, the 
second-order terms are augmented to 

where 

L iik/('O"ewiV )' + iik/('lW"iV + 2iW,iV') 
i,j 

ijkl('t is a further three dimensional array of coupling terms. 

(9) 

However, in the vast majority of practical cases, the additional shear terms 
have little influence on the results and, for the purpose of this paper, they will 
be neglected. 

It may also be noted that for many bifurcation problems, including a number 
of the examples given later, a load is applied which is constant over the length 
of the member. This is the case when a column is subject to axial compressive 
load or when a beam buckles under uniform moment. Derivatives of iW are 
then zero, and the second-order terms simplify to 

iWL iik/('iV" 

i 

No attempt will be made here to explain the detailed derivation of ijkl(, suffice to 
say that it generally requires the use of a computer and that the calculation 
has been programmed, as with all GBT calculations. 
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Simple bifurcation problems 

The easiest way to illustrate the use of the augmented GBT equation (7) is by 
means of a simple example: 

Consider the channel section shown in Figs 1 and 4 acting as a column subject 
to a uniform axial compression. In GBT terms, the applied load is the 
warping stress resultant lW. It is assumed that the column behaves as simply 
supported at its ends with respect to each buckling mode. As there is no load 
causing deformation prior to buckling, the right hand side term kq is zero and 
we have a bifurcation problem. 

The cross-section has the seven nodes indicated in Fig. 4 so that generalized 
beam theory provides seven orthogonal modes of deformation. These modes 
are, of course, four rigid-body modes, two modes involving distortion of the 
cross-section and one local buckling mode. The relevant section properties are 
shown in Figs. 3 and 4. 

Also necessary for the analysis of this section acting as an axially-loaded 
column is the array of second-order terms ljkIC. This is shown in Fig. 8. The 
off-diagonal numerical values reflect the degree of coupling between the 
modes. For instance, it is immediately obvious that an analysis including only 
modes 2 and 3 would not be profitable because they would be uncoupled. 

j 
k 

1 2 3 4 5 6 7 

1 0 0 0 0 0 0 0 

2 0 -1 0 -6.049 0 -0.3087 0 

3 0 0 -1 0 0.0994 0 -37.695 

4 0 -6.049 0 -58.226 0 -2.557 0 

5 0 0 0.0994 0 -0.2515 0 15.503 

6 0 -0.3087 0 -2.557 0 -0.2543 0 

7 0 0 -37.695 0 15.503 0 -6548.5 

Fig.8 Values of ljkK 

Consider the column buckling in a single mode k and assume that the buckled 
shape in this mode is given by 
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Then we have a single governing equation and the only second-order term 
which appears in this equation is lkkl( so that, inserting kV and its derivatives 
in equation (2) 

(10) 

For non-trivial solutions, the expression in brackets must be equal to zero so 
that: 

(11) 

This equation is valid for buckling in any individual mode. The modes given by 
k = 2 and k = 3 are Euler buckling about the principal axes and, for these 
modes, the only non-zero generalized warping is kC. Furthermore, 

122l( = 133l( = -1 

so that for k = 2 or k = 3 

1 n2EkC w=--- (tension positive) 
J3 

which is the well-known formula for global buckling about a principal axis. 

The general solution for 1 W in equation (6) gives the critical axial load for 
buckling in mode k for any length L of the column. The relationship between 
lW and L may have one of two alternative shapes as shown in Fig. 4. If the 
mode is one of global buckling, the longer the column, the lower the buckling 
load as shown in Fig. 4(a). Conversely, if the mode is of a more local nature, 
there is a critical buckling length, as shown in Fig. 4(b) and long columns will 
buckle in a periodic mode with this wavelength. 

The calculation of the critical wavelength for local buckling follows directly 
from equation (6) 

(12) 

It follows that, in general, if kB exists, the buckling mode will be local in 
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nature. If kB is zero, the buckling mode is global and there is no critical 
wavelength. 

(a) 

L 

Global buckling, kB = 0 

w 

Lcrit 

(b) Local buckling, kB "# 0 

Fig. 9. Alternative buckling characteristics 

Finally, for a local mode, the critical axial force is given by 

IWmin =_1_ [Eke~ kB + GkD + kB~EkeJ 
1"1(' Eke kB 

i.e. 

L 

(13) 

For the channel example shown in Fig. 1, the shapes of the buckling curves in 
the individual modes are shown in Fig. 10. For short lengths up to about 60 
em, the local and distortional modes are critical. For longer lengths, mode 4, 
the torsional mode, governs. 

If we consider the interaction of more than one buckling mode, the principles 
remain the same but more terms appear and, in general, the modes become 
coupled. 

Consider the effect of combining several modes in the analysis of buckling for 
various lengths L on the assumption that all modes have the same shape but 
different amplitudes: 

kV = kasin 7rX 
L 

Then, substituting into the basic second-order GBT equation gives a family of 
equations of the form: 
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(14) 

Non-trivial solutions give rise to a set of homogeneous equations: 

(15) 

where (16) 

is a constant for a given length L. 

This is an eigenvalue problem which can be solved, for any length L, by any of 
the usual methods to give a vector of eigenvalues, the lowest of which is the 
buckling load. The associated eigenvector contains the amplitudes of the 
modes and gives a clear indication of which mode or modes are critical at the 
length being investigated. 

Some results of analyses with different combinations of modes are given in 
Figs. 11 and 12. In Fig. 11, the symmetrical modes 3, 5 and 7 are shown 
separately and in combination. It can be seen that the interaction is minimal. 
Fig. 12 shows the anti symmetrical modes 2, 4 and 6, the individual modes 
being shown by fine lines and the combined modes by heavy lines. Here there 
is rather more interaction during the transition from short wavelength 
distortional buckling (mode 6) to long wavelength torsional buckling (mode 4). 
There is, of course, no interaction at all between the symmetrical modes 
shown on Fig. 11 and the anti symmetrical modes shown in Fig. 12. Figs. 11 
and 12 also show the results obtained when all modes are combined. It can be 
seen that at the critical minima, it is sufficient for all practical purposes to 
consider the individual mode. Thus, for local buckling in mode 7, 

Individual mode (equations 12 and 13) l(Jlllin = 33.1 kN/cm2; Lerit = 7.8 cm 
All modes l(Jlllin = 32.6 kN/cm2 

and for local buckling in mode 5, 

Individual mode 

All modes 
lcrmin = 27.2 kN/cm2; Lcrit = 50.7 em 
l(Jlllin = 26.6 kN/cm2 

As the results for individual modes can be calculated from a simple explicit 
expression, this result has considerable practical significance. 

It is also of interest to note that the 'all modes' curves in figs. 11 and 12 appear 
to be virtually identical to the curve obtained by Lau and Hancock(2) using a 
spline finite strip analysis. In particular, they quote the local and distortional 
buckling minima as: 
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Fig.10. Individual Buckling Modes 
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Fig.11. Symmetrical Buckling Modes 
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Fig.12. Antisymmetrical Buckling Modes 
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Fig.13 Sections tested by Lau & Hancock 
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lomin = 315 MPa at Lcrit ~ 80 mm 
lo-min = 270 MPa at Lcrit ~ 500 mm 

A further interesting point which will be taken up later is that the distortional 
buckling mode has a lower critical stress than the local mode and with a half 
wavelength too long for this mode to be picked up by a standard stub-column 
test. 

Analysis for elastic buckling failure due to pure bending would follow a 
similar course. The only difference is that the applied load is 3W and the 
relevant array of second-order terms is 3jklC, otherwise the calculations are 
identical. 

It is evident from these examples that GBT provides a particularly convenient 
method of investigating the different buckling modes of cold-formed sections 
both individually and in combination. 

General solution of second-order problems 

The above treatment is only applicable to a range of bifurcation problems 
where the applied load is constant over the length of the member and where 
the deformed shape of each mode is a sine wave extending over the length of 
the member. These assumptions are, of course, rather restrictive and for a 
more general solution it is necessary to resort to numerical methods of 
analysis. The finite difference method proves to be particularly appropriate 
and the usual procedures can be readily extended to include the second-order 
terms. Here, also, the individual modes generally become coupled so that it is 
not sufficient to consider them independently. However, this coupling is not 
usually strong so that, provided appropriate steps are taken, it does not 
dominate the analysis and the benefits obtained by using orthogonal 
deformation modes are retained. 

The simplest general approach to solving the coupled equations (7) is to move 
the as yet unknown terms in iWjVand their derivatives to the right hand side of 
the equations where they are treated as load terms together with kq. These 
terms are taken as zero in the first iterative solution and successively 
improved as the iterations proceed. Thus, in each iteration step, only a system 
of uncoupled linear differential equations of 4th order must be solved. After 
each step, the right hand sides are updated to include the internal forces and 
deformations calculated during the previous step and the cycle repeated. In 
general, the orthogonal nature of the deformation modes ensures that the 
process converges rapidly. 

When using the finite difference method to solve bifurcation problems, a 
preferable alternative to the iterative procedure described above is to set up the 
complete coupled differential equations as a single eigenvalue problem. This 
allows buckling loads to be computed without the need for iteration. 

Results of analysis and comparison with tests 

Lau and Hancock(2) have described the results of tests and finite strip analyses 
of 12 different cold-formed sections with fixed ends subject to uniform 
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compression. The shapes were those of typical pallet rack uprights and a 
selection of these, which are considered in this paper, are shown in Fig. 13. A 
total of 68 tests were reported and compared with both elastic and inelastic 
analysis. 

The results obtained by Lau and Hancock for the four sections shown in Fig. 13 
are compared with those given by GBT in Figs 14 to 17. The legend alongside 
the test result indicates the mode of failure. Thus 'L' is a local mode, 'DO)' is 
a single wave distortional mode and FT is flexural torsional buckling. Six 
different GBT curves are given, namely: 

1. Elastic buckling analysis with fixed end conditions including all 
modes. This generally gives results which are very similar to the 
elastic finite strip results. Some slight differences in the curves 
arise because Lau and Hancock only carried out analyses to 
correspond to the test points and drawing a smooth curve through 
these points does not necessarily reveal the undulations due to 
mode changes. This is a particularly general application of 
second-order GBT which provides a verification of the method over 
the full range of mode changes. 

2. Elastic buckling analysis with fixed end conditions including only 
the rigid-body modes. This is, of course, flexural torsional 
buckling without any interaction with the local and distortional 
modes and reveals the approximate length at which the mode 
change from distortional to flexural-torsional may be expected. 

3,4 Analysis of the individual local and distortional buckling modes 
with fixed end conditions. 

5,6 Analysis of the local and distortional buckling modes based on a 
sinusoidal buckling half wave using the explicit expression of 
equation (11). The boundary conditions implicit in this analysis 
are simply supported in contrast to the fixed ends used in the tests 
and all other analyses. 

The curves shown are typical of very similar curves obtained for the other 
sections tested by Lau and Hancock. Setting aside considerations of yield, 
which could not be considered by GBT, some interesting conclusions can be 
drawn from these results. 

Conclusions from GBT analysis of racking uprights 

1. The importance of the distortional buckling mode has been 
underestimated by the designers of cold-formed sections. For the typical 
racking posts considered, distortional buckling is more critical than 
either local buckling or torsional flexural buckling over most of the 
column lengths of practical interest. 

2. The wavelength of distortional buckling is much longer than that of 
local buckling and is generally so long that conventional stub-column 
tests will either miss it completely or give an optimistic result. This is 
particularly so if the specimens used for stub-column tests have fixed 
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Fig.14. Results for section RA 17 
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Fig.16. Results for section RL 17 
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Fig.17. Results for section RL24 
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ends with respect to the distortional mode. 

3. Fixed end conditions have a significant and complex influence on 
distortional buckling. The half-wave length results with pinned ends 
are significantly lower than the fixed end results until interaction with 
torsional-flexural buckling commences. Among other things, this 
indicates that designers should be particularly cautious when designing 
uprights with end details that do not inhibit the distortional mode. It 
would be dangerous to design uprights with loosely fixed base plates on 
the basis of tests with welded end plates. 

Conversely, theoretical results based on a buckled half-wave length may 
prove to be pessimistic when applied to longer sections with fixed ends. 

4. Provided that the critical buckling mode and its boundary conditions can 
be identified, it is generally sufficient to consider the critical mode on its 
own. There is very little interaction between local, distortional and 
flexural torsional buckling. 

5. Clearly, the distortional buckling of cold-formed sections is a subject that 
requires further research. By allowing consideration of individual _ 
buckling modes with different boundary conditions, GBT offers a 
particularly appropriate methodology for this. 

General conclusions 

Generalised beam theory is worthy of wider recognition for two reasons: 

1. It represents a major advance in structural mechanics and, 
therefore, has theoretical importance. 

2. It provides a powerful and elegant method of analysis which is 
particularly applicable to practical problems of cold-formed 
section design. 

In particular, GBT is particularly successful in dealing with problems of 
cross-sectional distortion which have often been neglected by the designers of 
cold-formed sections. Both first-order and second-order problems can be 
tackled. In the latter case, the separation of the alternative buckling modes 
means that mode interaction can be studied in a way that is not possible with 
other methods. 

The authors hope that this paper will provide a useful introduction of GBT to 
the English-speaking world, particularly its second-order form. Interested 
readers may then pursue the subject further with the aid of Reference 1 and 
the other (German) references to be found in its Bibliography. 
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