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Fifteenth International Specialty Conference on Cold-Formed Steel Structures 
St. Louis, Missouri U.S.A., October 19-20,2000 

LATERAL BUCKLING OF PRISMATIC MEMBERS 
ABOUT AN IMPOSED AXIS OF ROTATION 

by Leopold K. Sokol' 

ABSTRACT 

This paper deals with the lateral buckling of prismatic members whose position of the axis of 
rotation is imposed by the conditions of lateral support. As a function of the type of connection with 
the lateral support, the rotation may be free or hindered (elastic end restraint). This may concern, for 
instance, the case of a purlin stabilized by a roof structure or of a column stabilized by an external 
cladding or by another type of efficient continuous bracing. 

Usually, the check of this type of instability is complex and leads to sophisticated and tedious 
computations. In order to avoid this inconvenience, approached solutions are often used. One of the 
most frequently used consists in calculating the compressed member as being fictitiously separated, 
submitted to lateral buckling in an elastic medium. The stiffness of this fictitious member is taken 
equal to its stiffness in lateral bending. 

The present paper proposes an improved behaviour model of members submitted to lateral 
buckling through which the stiffness of the fictitious member is determined by taking into account 
the torsional stiffness of the whole transverse section of the profile. 

1. INTRODUCTION 
In Reference 1, adopting the model defined in Refs. 2 and 3, the free flange of pur lin is dealt with 

as a fictitious separate member, in elastic medium, where: 
- the stiffness of elastic medium depends on the transverse deformability of the cross-section of 

the purlin, on the flexibility of the steel sheeting and on the local deformability at the fasteners 
sheeting - purlin; 

- the stiffness of the fictitious member is considered as being equal to its lateral bending stiffness 
with no taking account of the participation of the remaining section. 

In the present paper we propose an improved behaviour model of members submitted to the 
lateral buckling, through which the stiffness of the fictitious member is determined by taking into 
account the torsional stiffness of the whole section of the profile. 

To alleviate the drawing-up, some justifications of the formulas get developed in the Appendix. 

2.1. Usual simplified model with flexural stiffness of the member 
In the framework of this model: 

- the member rests laterally on a cylindrical longitudinal elastic hinge, 
- the free compressed flange is considered as being separate (not connected to the remaining part 
of the section) and its stability is checked in the same way as for a member on elastic soil where 
only its flexural stiffness intervenes in the equation of equilibrium of the member at the moment 
the torsional buckling process occurs. 

* PAB - GROUPE USINOR, 93 Rue des Trois Fontanot, 92000 Nanterre, France 
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2. THEORETICAL BEHAVIOUR MODEL 
This means that the torsional buckling of the member about an imposed axis get reduced to the 

lateral buckling of the flange. As an example, let us take a Z-steel member laterally supported at the 
level of the upper flange. 

The deflected shape of the member is shown in Figure 1. For better intelligibility, the case is 
shown where the hinge is perfectly free. In the contrary case, the effect of the transverse 
deformation of the section will be added by superposition. 

~ 

f 
~ 
A-A 

~ 
Figure 1- Deflected shape of the freely supported member under buckling of separated free flange 

It is obvious that the stability of the thus modelled member is underestimated, as only a part of 
the stiffhess of the section is taken into account, namely that relative to the lateral bending of the 
separate flange, considered as being not integrated into the section as a whole. 

2.2 Proposed improved model, with torsional stiffness of the whole member 
Let recall that we take into consideration the torsional buckling of a member laterally supported 

on a cylindrical elastic longitudinal hinge. The deflected shape of the member is shown in Figure 2. 
In case of zero stiffhess of the hinge, the section of the member remains transversally undeformed 
(Fig. 2.b), according to the law of the non-uniform torsion. In case of elastic restraint, the member 
section would in addition undergo a transverse deformation, which should be added by 
superposition. 

Section A-A 

Figure 2- Deflected shape ofthe freely supported member under torsional buckling 

The basic difference between the behaviour modes shown in figures I and 2 consists in the fact 
that: 

- according to the first mode, the free flange is fictitiously separated and only its stiffuess in 
lateral bending cooperates to the equilibrium; 

- in the second one, as this flange is locked with the rest of the member, it is the stiffness of the 
whole section and namely the torsional stiffness at non uniform torsion that cooperates to the 
equilibrium. 

At this point, let us recall that both types of stiffhess are tightly linked, but the torsional one is a 
more general notion. This topic will be developed in the chapters hereafter and in the Appendix. 
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3. - WRITING DOWN THE EQUATIONS OF THE VARIOUS CASES 
OF APPLICATION OF THE PROPOSED MODEL 

3.1. Case of a purlin restrained by steel sheeting 

3.1.1. Description ofthe behaviour model 
Let consider a purlin restrained by steel sheeting attached on the upper flange; one or several sag

bars may possibly be included in the structure. The stability of the free (lower) flange has to be 
checked in the compression zones, i.e. on the supports under a downward load (Fig. 3.a) and in the 
span under an upward load (Fig. 3.b). 

a} b} (~ 

Lt 

Figure 3- Moment diagram under downward load (a) and upward load (b) 

In order to facilitate the analysis, it is assumed that at the ends of the purlin segment under 
consideration (limited either by sag-bars or by vertical supports) an inflexion point appears when 
the buckling of the free flange occurs resulting in a hinge (Ref. 4). This assumption is safe as, on 
account of its continuity, the flange is partially restrained and consequently, its stability is better. 

Let remark that this simplification may lead under certain conditions to "paradoxical" results 
such as those where the addition of a sag bar will allow to obtain the increased buckling length. It is 
obvious that in such cases, that is the more beneficial value that shall be adopted. 

In the model under consideration, the free member composed by the bottom flange and an 
adjacent part of the web get dealt with as a fictitious member in elastic medium. The stiffness of this 
medium depends on the lateral displacement under a fictitious linear load F applied at the level of 
the centroid of the member (Fig. 4). The member is considered as jointly integrated in the rest of the 
section, i.e. the lateral displacement is calculated by taking into account the torsional stiffness of the 
whole section ofthe purlin. 

I zR h 
;;IO--i--FJ-:j 

,zo I / 
YQ+ - ~_ J~ H/6 

~ 
Figure 4- Transverse section ofthe fictitious member (lower flange ofthe purtin) 

On the figure 4: 
h = depth of the purlin, 
R = imposed axis of rotation, 
G = centroid of the fictitious member, 
F = fictitious transverse linear load, applied at the level of the centroid axis Yo, 
Yo, Zo = neutral axes ofthe fictitious member, 
YR , ZR = coordinates ofthe center of rotation R in the system of axis Yo, Zo. 
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The fictitious member is submitted to a normal variable load in form of a uniformly distributed 
normal stress in the cross section. The scheme of the stresses is shown in figure S: the external load 
in S.a, and the internal normal force generated by the external load in S.b. 

In a general case, each one of the external loads P, qo or ql' may be of the opposite orientation. 
The maximal compressive force (Nmax) has to be determined in any actual case as a function of the 
external loads. As an example, for the case presented in figure S: Nmax = P+O,S(q" +'h)L. 

x 

Figure 5- Static scheme of a segment of purlin between two sag bars 

The state of deformation of the transverse section of the purlin in instability situation is shown in 
figure 6. Both the side support and the elastic restraint on the sheeting are continuous. Let notice 
that this behaviour model may be applied to any section of light purlins such as "Z" or "e", and to 
their derived products "Zeta" or "Sigma". 

b) 

Figure 6- Deformed shape of the transverse section of the purlin in instability state. 

The orientation of the force F depends on the application direction of the load (upward or 
downward) (Ref. 1). The displacement "u" depends on the stiffness offastening of the purlin in the 
steel decking and of transverse deformation of the section. This stiffhess may be found (either by 
computation or by tests) by determining the components u,. and Ud of the displacement under the 
load F, at the level of the centroid of the flange (Fig. 4). 

Thus the following is obtained: Ar::L Ad~ A::E. (1) 
P Ur' P Ud' P u 

where: - u,. ensues from the rotation Sr of the transversally not deformed section, 
- ~ results from the transverse deformation of the section, 
- u is the complete displacement, 
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- p, is the stiffness of the elastic hinge (of the connection with the steel-decking), 

- Pd is the stiffness of the transverse deformation of the section, 

- P is the global stiffness. 

As it is known that u = 11,. + Ud , the following relation is obtained: 
1 1 1 
-=-+-
P Pr Pd 

(2) 

The components 11,. and Ud remain in constant proportion with respect to the total value "u", while 
the load F is variable. In fact, by taking count of (1), we have: 

~ =(;J /(i) = :r =Rr (3.a) 

u: = (p~) /(i) = :d = Rd (3.b) 

3.1.2. Energy of deformation of the system 
The energy of deformation of the system may be computed in relation to the two displacement 

components 11,. and ud. With taking into account (3.a), the external deformation energy when 
assuming linear conditions corresponding to the displacement 11,. , becomes: 

RR L 
Eer = _I-' _r fu 2dx (4) 

2 0 

With taking into account (3.b), the internal energy of transverse deformation of the linear section 
of the member corresponding to the displacement Ud , becomes: 

PR L 
E = __ d fu 2dx (5) 

ed 2 
o 

The sum of both energies (4) and (5) is: (6) 

The internal energy generated by the non-uniform torsion of the section is equivalent to: 
E j = E jr + Ejd (7) 

where: Ei, is the energy resulting from the torsion ofthe whole transversally not deformed 
section, concomitant with the horizontal displacement 11,. of the flange, 

Eid is the energy resulting from the torsion of the lower part of the section, 
concomitant with the horizontal displacement Ud of the flange. 

- The energy due to the torsion of the global section is equal to (see Ref. 5): 

where: 

R 2 J2 L()2 E jr = EIroR d ~r dx + GIs f d8 r dx 
2 0 dx 2 0 dx 

(8) 

E, G = Young's and shear modulus respectively, 

S, = angle of torsion ofthe section around the point R, 
IroR = warping constant with respect to the imposed center of rotation R (Ref. 6), 

Is = 8t. Venant torsional constant. 

By converting the angle of rotation 8, in displacement 11,. (figure 6): 8 r = ~ (9) 
zR 

in (9) and with taking account of (3.a), we obtain: 
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(10) 

- The energy related to the horizontal displacement Ud of the flange is determined by taking into 
account the rotation of the lower part of the section that consists of the flange and a part of the web, 
see figure 8. For more simplicity, only the effect of the displacement Ud is shown in this figure 
whilst knowing that it has to be added to that ofthe displacement u,. see Reference 6. 

The point D is obtained by the intersection of the tangent at the lower end of the deformed web 
with its initial position. It can be estimated with a satisfactory accuracy that for a given load F, the 

whole part of section under this point is submitted to a uniform rotation Sd (Fig. 7). The depth of 
this part is: 

ZD = (2/3)ZR (11) 
The energy corresponding to this deformation may thus be calculated in the same way as that of 

the torsion Sd of this part of the section. The calculation has to be effected with taking count of the 

fact that the rotation Sd get done in addition to Sr and that the rotation Sd around the point D is 

obtained as a sum of the rotations Spr around the point R and Spe around the point e (Fig. 7): 

E. ~ I{E'd[ ~; + d~ir -(~{l} Fl;,c[ d~indx+ 
fGI sp [(dSr + dS pr )2 _( dSr r +(dSpc )2]dX 
o 2 dx dx dx dx 

where: IOlpR = warping constant of the lower part of the section, with respect to R, 

IOlpc = warping constant of the lower part of the section, with respect to e, 
Isp = St. Venant torsional constant of the lower part of the section, 

Sr = angle of rotation of the whole section around the point R, 

(12) 

Spr' Spc = angles of rotation of the lower part of the section around the point Rand e 
respectively 

R 

I 
I 
I zn 
I Sd 

I ~ 
G; I 

)'0-- --;""L--'''---m-~±Y~r~ ---, ---

tOe 

b) 

Figure 7- Torsion ofthe lower part of the section, corresponding to the displacement ud 

By substituting (9) and with: 

S _ ud 
d--' 

zD 

S = udr 
pc zD 

(13) 
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in (12) and with taking into account the equations (3.a) and (3.b) we obtain: 

Ejd = E~d [lroPR(1+Rr)+0'25IropcRd]f(d2~J2 dx+ GIi Rd(1+Rr +0,25Rd)f(dU/ dx 
2zR 0 dx 2zR 0 dx 

........................... (14) 

By introducing (10) and (14) in (7) we obtain: 

E j = Elm f(d2~)2 dx+ GSm f(dU/ dx 
2 0 dx 2 0 dx 

(15) 

lroR R; + lropRRd (1 + Rr) + 0,25IropcR~ 
1m = 2 

ZR 
where: (16) 

IsR; + IspRd(1 + Rr + 0,25Rd) 
Sm = 2 

ZR 
(17) 

The first term of the equation (15) stands for the energy of deformation in non-uniform torsion, 
which results in differential elongation of the longitudinal fibres of the member, leading to the 
warping of the section. The product Elm expresses the stiffness corresponding to this deformation. 
Let us call it efficient stiffness. The inertia 1m , which we shall call efficient inertia, replaces that of 
the axial bending in the whole process of proposed calculation, including the definition of the 
gyration radius and as a consequence, the slenderness. 

The second term of the equation (15) represents the energy of deformation in uniform (St. 
Venant) torsion of the member. 

The potential energy of the external static loads acting on the fictitious member consists of that 
due to the load at the end and of that due to the distributed load on the length of the member (Fig. 
5). Let recall that according to the simplifying assumption stated in 3.1.1, the load is considered as 
being uniformly distributed on the section of the fictitious member, as a normal stress. 

- The potential energy of the load at the end Pis: 

Ep = EPr + Epd (18) 

EPr is the potential energy related to the displacement of the force P due to the rotation er of the 
section of the fictitious member (Fig. 6): 

EPr = _P- f f PR _r dPR dx 8 P L[ (de)2 1 
2Am 0 Am dx 

where: 8p = a parameter indicating the direction of the load P at the end ofthe member: 
+ 1 indicates the positive direction (x-axis orientation), 
-1 indicates the negative direction (opposite orientation of the x-axis), 
PR = radius connecting the pole R and a given point of the section, 

Am = section area of the fictitious member. 

Taking into account the equations (3.a) and (10) as well as the equality: 

fPR dPR = loR 
Am 

(19) 

(20) 

where: loR = loy + loz + Ame~R = polar inertia moment of the member with respect to R, 

eoR = distance between the centroid G and the pole R, 
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loy and loz = axial moments ofinertia with respect to the y and z axes respectively, 

we get: EPr = op P IOR2R; f(dU) 2 dx (21) 
2AmzR 0 dx 

Epd is the potential energy corresponding to the displacement of the force P due to the rotation 

Sd of the section of the fictitious member (Fig. 4) around the point D (Fig. 7). By superposition of 
the rotations Sf around the point R and Sc around the point C and by.proceeding in a similar way as 
in that used to calculate the internal energy Eid, we obtain: 

EPd=~A~ i{l.p{ ( ~~ I d:;r J -(~~ r }PR+P{ d:;c J dpc rx (22) 

By taking count of (3.a), (3.b), (13) and (22) as well as of the equality: 

Jpc dpc = loC 
Am 

(23) 

where: loc = polar moment ofinertiaofthe fictitious member (Fig. (8)) with respect to the pole C, 

we get: Epd = op P~d [loR(I+Rr)+O,25IocRdlf(dur dx (24) 
2AmZR 0 dx 

Ep __ op PC LJ(dU)2 dx By substituting (21) and (24) in (18) we obtain: 
2 0 dx 

(25) 

where: C = ~ (26) 
Am 

A - loR + O,25IocR~ (27) 
f - 2 

ZR 

- The potential energy of the distributed load: qx = o,q,[(I- 'Il)x/ L + 'Ill (28) 

ooqo 
where: 'Il = -- (29) 

o,q, 
qo' ql = absolute values of the load qx at the origin and at the end respectively, 
00,01 = parameters indicating the direction of the load qx at the ends of the member: 

+ I, -I indicate respectively the positive and negative direction (x-axis orientation) 
is equal to: Eq = Eqr + Eqd (30) 

Eqr is the potential energy relative to the displacement of the load qx, due to the rotation Sf of 

the fictitious member (Fig. 4) around the point R: 

Eqr =-I-f[ J PR(dSrfdPR](fqXdX](dUr dx (31) 
2Am 0 Am dx x dx 

Taking count of the equations (3.a), (3.b), (20) and (28), we get: 

Eqr = o,q, IOR~; S[('Il_ 1)X2 -'Ilx+.!:(1+ 'Il)](dUr dx 
2AmZR 0 2L 2 dx 

(32) 
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Eqd is the potential energy relative to the displacement of the load q., due to the rotation Eld ofthe 

the fictitious member (Fig. 4) around the point D (Fig. 8). By proceeding in a similar way as in that 
used to calculate the load at the end, we obtain: 

Eqd = O,qlR~ [loR(l+ Rr)+O,25IocRdlJ[(TJ-l) x
2 

_l1X+.!:(1+TJ)](dU)2 dx (33) 
2AmzR 0 2L 2 dx 

By substituting (32) and (33) in (30) we have: 

E =-- (TJ-l)--TJx+-(l+l1) - dx 0lqlC Lf[ x2 . L ](dU) 2 

q 2 0 2L 2 dx 
(34) 

The total energy of the deformed system is: Esys = Ee + Ei + Ep + Eq 

Substituting in this formula (6), (15), (25) and (34) and replacing x by ~ =~, we obtain: 
L 

I ' / EI {o PC °lqlC [2 l} ) Esys=2"!\ l(u"f+ T+-2-(11-1)~ -211~+11+1 +GSm (u')2+f3Lu2 d~ 

where: 
, du 
u=-

d~ 

3.1.3. Equation of equilibrium of the system 

(35) 

The equation (35) represents a functional of type J[u] = F(~,u,u' ,u")d~ that meets its minimum 
when its first variation is zero, expressed by the so-called Euler-Poisson relation: 

d d2 
F --F o+-F" = 0 (36) 

u d~ u d~2 u 

where: F = of 
u 00 

F, = of 
u 00' 

By expressing the load P in form of: q,L 
2 

of 
Fu"=-

00" 

(37) 

where the factor \I' has to be preliminarily determined as a function of the ratio \I' = P / (q~L) , 
and by substituting (37) in (38), we get: 

GS L2 AL4 0 q CL3 [ 1 uIV __ m_u,,+_I-'_u_ II OpOI\l'+(TJ-l)~2_211~+TJ+lu"-
Elm Elm 2Elm 

o q CL3 
I 1 [(11-1)~-TJlu'=O 
2Elm 

(38) 

By setting in these: N = n2Elm (39), N = q,L (40), Ne (41) uref =--e L2 r 2 Nref 

Nref = NrC (42), 
f3L4 

(43), K = GSmL2 (44) K=--
n 4Elm s n2Elm 
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the following differential equation of equilibrium of the 4th degree results: 

aref{UIV -7t2Ksu"+7t4Ku) - 7t201[(1l-1)~2 - 211~ + lipOl\jl + 11 + 11UIl-27t2lil[(1l-1)~ -ll]U' = 0 

(45) 

3.1.4. Solution of the equation of equilibrium 
In order to resolve the equation (45), one of various "direct" methods may be used that consist in 

minimizing a residue Ej obtained with a previously adopted functionale basis <I>i , whilst 
nevertheless respecting the limit conditions. We have chosen the Galerkin method (see Ref. 9), 

searching after the solution in the form: 

with the functional basis: 

n 

U = ~>i<I>i 
i=l 

<I> i = sin 7ti~ 

By substituting (46) in (45), the following residue is obtained: 

Ei = t7t4ai{[aref{i4 +i2Ks +K)+lili2(1l+oPOI\jl+l)lsin7ti~+ 
1=1 

iii i2( 11 _1)~2 sin 7ti~ - 2lillli2~ sin 7ti~ - iii 2i (1l-1)~ cos 7ti~ + iii 2i llCOS 7ti~} 
7t 7t 

(46) 

(47) 

(48) 

that generally is not nil. The minimization of the residues Ej (i=l,n) is effected by writing down the 
I 

conditions of orthogonality: JEi<I>jd~ = 0 ..... j =l,n (49) 
o 

We thus obtain a system of homogeneous equations, whose determinant: 
(All -aref) AI2 ............. Aln 

(50) 

Ani An2 ............ · (Ann - a ref ) 
has to be zero in order that a non-nil solution be possible. This leads us to search after the eigen-

- for i = j: 

- forh=j: 

Let remark that the above obtained eigen-values aref do not correspond to the maximum (critical) 
force Nmax, but to the reference one (equation (41». To obtain the buckling length, we set: 

Y= Nref (51) 
Nmax 

With the equalities (39), (41) and (50) being taken into account, the buckling length is: 

Lf = L.ra;; (52), a cr = yaref (53) 

that corresponds to the critical force called Euler's force: 
7t2EI 

N max = -2- = Ncr 
L f 
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3.1.5. Examples 
For practical demonstration, we present hereafter the results by computer design of various cases 

of a purlin MULTIBEAM A300, a product of Profil du Futur - GROUPE USINOR (Fig. 9), under 
an upward load, as a simple 6000 mm long span, with one sag-bar and with no sag-bar, of various 
thickness and with different fastening conditions with the steel decking. 

Figure 8- Transverse section of the purtin. Design geometrical parameters. 

With reference to Fig. 5, the data are displayed in Table 1 (Ref. 5) 

With 1 sag bar With no sag bar 

qo=O, ql=0.5 (N/m) qo=O, ql=O.5 (N/m) 1 kN/m = 0.06852 kips/foot 

00=1, 01=-1 00=0.5, 01=-1 
P=O (N) p=O (N) 1 kN = 4.45 kips 

_ooqo -0 \jI=--.L=O ooqo 1 \jI=--.L=O 11- olql - , qlL 11- olql =- , qlL 
2 2 

L = 3000 mm (reference length = L = 6000 mm (reference length = 
distance between sag bar and bearing) distance between bearings) 

Table 1- DeSIgn data 

The design procedure is as follows: 

- the reference eigenvalue aref is calculated from the equation (50), 

- the critical eigenvalue acr is calculated from the equation (53), 
- the buckling length Lr is calculated from the equation (52). 

For purposes of this calculation work, a computer program has been especially evolved. The 
results are displayed in Table 2. 

T Number 13 Calculation method Ratio 
of proposed traditional 

mm sag bars N/mm/mm Lf/L im Xeo Lf/L im Xeo Xeo/Xm 
(mm) (mm) 

1.8 1 0.0051 0.763 26.7 0.586 0.755 24.5 0.529 1.11 
0 0.801 27.8 0.581 0.802 24.5 0.483 1.20 

0 0.0051 0.429 26.7 0.497 0.410 24.5 0.467 1.06 
0 0.675 27.8 0.247 0.694 24.5 0.185 1.34 

3.2 1 0.0100 0.749 27.3 0.618 0.766 24.5 0.517 1.20 
0 0.787 27.8 0.594 0.802 24.5 0.483 1.23 

0 0.0100 0.415 27.3 0.540 0.400 24.5 0.486 1.11 
0 0.628 27.8 0.281 0.694 24.5 0.185 1.52 

Table 2- CalculatIon results 1 mm - 0.0394 in. 
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In the table 2: 1 kN/m2 = 0.0186 kips / square foot 
im = (lm/ Am)0.5 = efficient radius of gyration of the free fictitious member, 
t = thickness ofthe transverse section of the purlin , 

13 = lateral spring stiffness of the connection between purlin and sheeting (N/mm/mm), 
L = reference length (distance between the side bearings), 
Lf= buckling length, 
X .. = buckling coefficient obtained with taking count of the member torsional stiffness (according to the 

proposed approach), calculated in compliance with Ref. 3, 
Xm = buckling coefficient obtained in conformity with the traditional approach (without taking count of 

the member torsional stiffness). 

The calculation according to the traditional approach ( Refs. 3 to 6) has been effected as a 
comparison. The values in the last column indicate the ratios between the buckling coefficients 
obtained according to these two different approaches. Although this comparison is not exhaustive, 
the following general conclusions may be inferred from: 

- the torsional stiffness significantly collaborate to the stability strength, 
- the gain in performance rises with the increase of the section thickness, due to the greater 

increase of the St. Venant torsional constant, 
- the proposed calculation model is especially interesting in the case when the steel decking offer 

a simple side bearing only, without impending the rotation (lateral stiffness 13 = 0). 

3.2. Case of a column under eccentric compression 

3.2.1. Description of the system 
Let consider a laterally restrained and simply supported column, under a compression force P 

and a bending moment M constant over the whole length. In case of variable forces and a possible 
elastic restraint on the side bearing, a more complex analysis would be necessary such as that used 
in chapter 3.1. It is assumed that the end bearing supports hinder the rotation in the plane 
perpendicular to the longitudinal axis, but they don't hinder the end sections from warping. Let take, 
as an example, the profile shown on figure 9. 

Z 

Figure 9- Laterally restrained column 

On this: R = imposed axis of rotation, 
G = centroid of the profile, 
ZR = coordinate of the point of rotation R. 

3.2.2. Energy of deformation of the system 
Two effects are superposed: 

• that of the force P, applied over the whole section, 

• that of the moment M, represented by the couple Pm = MIh, where: 
- h = distance between the axes of the flanges (considered as fictitious members), 
- the compression force Pm is applied on the free fictitious member, 
- the tension force Pm is neglected in the energy balance (that is safe simplification). 
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Internal energy due to the non-uniform torsion of the section 

By introducing the relationship: e = ~ 
zR 

. . EI Lf(d2U) 2 GI Lf(du)2 this energy may be written: E j = ~R -2 dx + -t dx dx 
2ZR 0 dx 2ZR 0 

where: E,G,ImR and Is are defined in chapter 3.1.2, 

(54) 

(55) 

zR = component about the z axis of the distance between the centroid G and the pole R, 
u = side displacement of the centroid of the section. 

Potential energy of the load 
The potential energy relative to the displacement of the forces P and Pm' due to the rotation e, of 

the section is: 

Ep = -~( P loR + Pm ImoR)J(dU)2 dx (56) 
2zR A Am 0 dx 

where: A, Am = area of the total section and of the fictitious member, respectively, 
loR = polar inertia moment of the total section with respect to the pole R, 
ImoR = polar inertia moment of the fictitious member with respect to R. 

After substituting: 

into (56), we get: 

(57) 

(58) 

After replacing the variable x by: ~ = x I L , the total energy of the system may be written: 

Esys = 2L~i [[E~R (u")2 + (GIs - P 1oe )(U·)2 }~ (59) 

where: • du 
U=-

d~ 

We may remark that by substituting: ~ = 0, q, = 0, R,.=l, R,.=O directly in (33) and (35) we would 
obtain the same result. 

3.2.3. Equation of equilibrium of the system 

The equation (59) represents a functional of type: J[u] = F(u' ,u")d~ that reaches its minimum 

d d2 
. value when: --Fu' +-2 Fu" = 0 (60) 

d~ d~ 

where: 
8F 

F.=-
u art 

8F 
Fu"=

au" 

By substituting (59) in this, we obtain the following differential equation of equilibrium: 

where: 

uIV + k2L2u" = 0 

k2 = P loR - GIs 
EIOlRA 

(61) 

(62) 
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The general solution of (62) is: u = C1 sin kL~ + C2 cos kL~ + C3 ~ + C4 

For the limit conditions (end hinges): u(O)= u(I)= u"(O)= un(I)= 0, we find: 
n 

C2 = C3 = C4 = 0 and k = -
L 

By taking into account (62), the critical force is obtained by the formula: 

P = ~(n2ElcoR + GI ) 
er loe L2 s 

Particular cases: 

(63) 

(64) 

(65) 

- For M = 0 (axial compression), with account ofthe equalities (63) being taken, we obtain: 

P = ~(n2ElcoR + GI ) (66) 
er loR L2 s 

We note that in a case of buckling by torsion around the shear centre, the equation (66) becomes 
identical to that well known of the strength of materials (Refs. I and 5). 

- For P = 0 (bending without axial force), the only terms corresponding to the bending are to be 
maintained in the equation (62) and as a consequence, the critical force is: 

P = Am ( n2EICOR + GI ) (67) 
er ImoR rJ S 

Let remark that although developed by the example of a doubly symmetrical profile, this 
formulation should be made generally applicable to non-symmetrical sections. 

Comparative example: proposed and traditional calculations 

Let check an IPE 300 vertical column under the axial load P, with a laterally restrained flange. 

Section properties (Fig. 9): 

fy = 240 N/mm2, A = 5380 mm2 Iz = 6,04 E+6 mm4 Iy = 8,356 E+7 mm4 Is = 1,947 E+5 mm4 
t8 = 10,7 mm (flange thickness), t~ = 7,1 mm (web thickness) , 
h = 300 - ts = 289,3 mm (distance between neutral fibres of the flanges), 
zR = h12 = 144,65 mm, 
loR = Iz + Iy+ A* ZR2 = 2,022 E+8 mm4 , lroR = Im* h2 = 2,528 E+ll mm6 

Calculation according to the proposed approach: 

A (1t2ElCOR ) Starting from the equation (72) we have: Per = - 2 + GIs = 1,963 E+6 N 
loR L 

J;; = (fyA I Per )0.5 = 0,81 I, cp = 0,5[ 1 + 0,21(J;; - 0,.2) + IZ] = 0,893 

1 
Column buckling factor: X = 05 0,789 

cp+(<p2 -IZ) , 
P P 

Stress: cr = -Y MI = 1,267 -Y MI 
XA A 

where: YMI = partial safety factor (Ref. I) 
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Calculation according to traditional approaches: 

The free member is considered as separated, loaded by force Pm = 0.5 P. 
Two modes of calculation are made: mode I, with the free member consisting of the flange and a half-web 
and mode 2, with the free member consisting of the only flange. The results are given in the table 3. 

Mode I 
Am = 0.5A=0.5*5380 = 2690 mm' 
1m = 0.5 I, = 3.02 E+6 mm' 

im=(Im/Amf.5=33.5 mm 

Am=Llim=89.5 

1n=~ ~ r =0.963 

<pm=0.s[1+0.2ItAm-0.2}t-~~1.044 

X,m ~ I rS 0.691 
<pm+ <Pfu-~ . 

Mode 2 
Am = 10.7*150 = 1605 mm' = 0.298A 
1m = lO.7* 1503/12 = 3.01 E+6 mm' 

im={Im/Am)O,S=43.2 mm 

Am=Llim=69.3 

Im_A.:( ~ r =0.746 

<pm=0.5[1+0.2ItAm-0.2}t-~~0.835 

X,m= ~ I rS 0.825 
<pm+ <Pfu-~m . 

Stress: O'm- PmA YMI=1.447AP yMI Stress: O'm~YMI=2.034-f-yMI 
X,m m x,mAm A 

With regard to the proposed calculation, With regard to the proposed calculation, 

we get: O'm 1.447_1 14 we get: O'm=2.034 1.60 
0' 1.267 . 0' 1.267 

1 mm' = 1.55* lO·3 square inches 
1 mm' = 2.40* lO" inches' 
1 mm = 0.3937 inches 

Table 3 - Calculation results according to the traditional approach 

4. - CONCLUSION 

The present study is aimed at developing a behaviour model of a member submitted to torsional 
buckling with the position of its axis of rotation being imposed by the connections with the other 
structural members. 

The essential difference between this approach and the usually used methods consists in taking 
into account the stiffness in non-uniform torsion about the imposed axis of the whole transverse 
section of the member, instead of the only stiffness in lateral bending of the separated free flange. 

We have applied this model to light purlins steadied by steel sheeting and to laterally restrained 
columns. 

Numerical examples illustrate the advantages of the proposed approach by bringing out the not 
yet used resistance reserves generated by the simplified traditional calculation that takes into 
account the only bending stiffness of the free member considered as being separate. 
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APPENDIX - Calculation of sectorial properties 

A.1. Sectorial section properties - General principles 
The sectorial moment of inertia (warping constant) implied in the calculation of members submitted to 

non-uniform torsion is given by the following formula: 

1m = Jro 2dA (A.l) 
A 

where: ro = warping coordinate (sectorial area), A = section area. 

The warping coordinate ro is calculated with regard to the centre of rotation. When the member is free 
(as the case is for free torsion), the centre of rotation coincides with the shear centre. When the member is 
laterally supported by a fixed longitudinal cylindrical hinge, the centre of rotation coincides with this hinge 
(Ref. 8). In this case, a difference has to be made between two conditions ofthe connection with the hinge: 

- preventing the elongation ofthe restrained fibre, 
- unrestricting the elongation of the restrained fibre. 

In the first case, for the calculation of the warping coordinate ro, the initial point starting from which the 
calculation of the initial warping coordinate is effected, is located at the imposed centre of rotation. It means 
that the warping coordinate is zero at this point, according to the assumption of nuIl elongation of the 
restrained fibre. On the contrary, the shear force between the member and the support does not get annulled 

at this point since it is proportional to the sectorial static moment Sm = J rodA *- 0 

A 
This force has to be taken into account for the dimensioning of the connection between the member 

and the support (let take as example the case of the connection of a composite beam with a concrete slab). 

In the second case, the resultant of the normal forces in the section due to the non-uniform torsion is zero. 
To meet this requirement, the warping coordinate has to be "normalized" according to the formula (Ref. 10): 

L 

JOdA 

ro=O-_O_
A 

To calculate the "not normalized" initial warping coordinate 0, we may start from any (arbitrarily 
chosen) initial point. The convenient choice of this point may nevertheless facilitate the calculation. Let 
remark that in this case there is no shear stressing between the member and the support, since the 
relationship (28) implicitly ensures the nUllity of the integral of the sectorial static moment on the section: 

Sm = JrodA=O 
A 

A.2. - Displacement of the axis of rotation 
Let consider any thin-walled member in the y - z system of reference (Fig. A.l). It is a matter of defining 

the relationship between the warping constants (sectorial inertia moments) lroA and lroB, of the section when 
the centre of rotation get displaced from A to B. 

z 

z 

B YA Y2 Y\ Y 

Figure A.I- Displacement of the centre of rotation of the section 
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The warping coordinates of the infinitesimal element i 1-2, calculated with regard to the centres of rotation 

AandBare: dCDA =dY(Z-ZA)-dz(Y-YA) (A.2) 

dCDB =dY(Z-ZB)-dz(Y-YB) (A.3) 

from which: dCDB=dCDA-dy*ez-dz*ey (AA) 

ey and ez: see Figure A.I 

By substituting (A.4) in (A.I) and knowing that CDB = fdCD, we get: 

1mB = f( CD i + e~y2 + e~z2 - 2ez(\) AY + 2ey(\) A Z - 2eyezYZ)dA (A.S) 

A 
after having "normalized" the warping coordinates. If the point A coincides with the centroid of the section, 

we obtain: 1mB = ImA + eilz + e;ly - 2ezl mz + 2eyl my - 2eyezl yz (A.6) 

If the point A does not coincide with the centroid G of the section, we may write by referring at first to the 
centroid G: 

2 2 2 ImA = ImG +ezAlz +eYAly -2ezAlmz + eyAlmy -2eyAezAl yz 

2 2 
1mB = ImG + ezBlz + eYBly - 2ezBlmz + 2eyBlmy - 2eyBezBl yz 

where: IOlG = sectorial inertia with regard to the centroid G 
eyA=YC-YA, ezA=zc-zA, eyB=YC-YB, ezB=zc-zB 

The formula is obtained by defining the relationship between the sectorial inertias of the section lOlA and 

I"B, when the centre of rotation is displaced from A to B: 

1mB = ImA + (ek - eiA )Iz + (e~B - e;A )Iy - 2( ezB - ezA)lmz + 2( eyB - eyA )Imy 

-2(eYBezB -eYAezA)lyz 

Should the point A be placed at the centroid, we have: 

1mB = ImA + zklz + y~ly - 2ZBlmz + 2yBl my - 2YBZBl yz 

When the centroid coincides with the shear centre, the formula is: 
2 2 

1mB = ImA + zBlz + YBly - 2YBZBl yz 

For a symmetrical section, this is: 

It ensues from the equations (A.l 0) that: 

for a finite distance ZB , there is: 

and for an infinite distance ZB , we get: 

1mB I -2-> z 
zB 

1mB - I 
2 - z 

ZB 

(A.7.a) 

(A.7.b) 

(A.7.c) 

(A.7.d) 

(A.8.a) 

(A.8.b) 

That means that the equations (A.7) check up the unequivocal limit condition: the stiffness in non-uniform 
torsion becomes equal to the bending one, when the distance of the point of rotation tends to infinity. It is 
interesting to remark that the left term of the equalities (A.8) intervenes in a similar way in the equations that 
define the torsional strain energy of the members (see, for instance, the equations (lO), (14», leading to the 
notion of efficient inertia (equation (16». 

The demonstration has thus been made that the sectorial inertia moment and the axial inertia moment are 
tightly related and that more especially: 
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• in the case where the centre of rotation is placed in finite distance, the stiffness in non-uniform torsion is 
higher than that in lateral bending; 

• in the case where the centre of rotation is placed in infinite distance, the stiffness in non-uniform torsion 
is equal to that in lateral bending. 

More generally, one may come to the conclusion that the stiffness to non-uniform torsion is a more 
general notion than that of the bending stiffness, as the latter is only a particular case of the first one. 

As an example, for the section defined on figure A.2, the results displayed in the table A.l show that 
when increasing the distance of the centre of rotation, the ratio IcoR / zR 2 tends to Iz . 

I ~ 
, I 

ZR : ! 
: ! 

t=2mm 
a= 15 mm 
b=60mm 
Iz = 90 000 nun' 

l
~R ~z 

--.l!l.-.-)-.-.J~.-
i b y 1 mm=0.3937 in. 

Figure A.2 Data relative to the section 

zR(mm) lcoR / zR 2 (mm4) 
50 98775 

100 93544 
500 90574 

1000 90278 
5000 90054 

10000 90027 
100000 90003 

Table A.I Computational results 

A.3. - Potential energy of the load in case of torsional buckling 
Let consider a simply supported member on a longitudinal cylindrical hinge, submitted to compression by 

a pressure a= Const. acting upon the end section; the resultant of this is P=aA. The rotation of this member 
due to the torsional buckling occurs about the imposed axis of rotation R (Fig. A.3). 

The potential energy of the load is then: 
Ep = -±* lil(:~r tdP}X 

Rotation 
axis 
R 

Figure A.3 - Torsional buckling of a member under constant pressure 

where: u=p6 

f(:~r tdp= f(:~)\2dP=(:~r ftP2dP=(:~)\R 
A A A 

loR = Iy + Iz + A * zi = moment of polar inertia, 

ly, Iz = axial inertia moments with regard to the y and z axes respectively, 
zR = distance between the centroid of the section and the centre of rotation R. 

(A.9) 

(A. 10) 

(A.J1) 

(A.l2) 
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Should the rotation 6 in (A.15) be interpreted in lateral displacement "u" of the centroid of the section 

according to the relationship 6 = ~, we obtain: 

Ep = _1.. PIoR Lr( d6)2 dx 
2 Azi J~dx 

zR 

Let note that by taking count of (A.12), we have: Io~ > 1. 
AzR 

(A.l3) 

This means that the computational parameter C in the equation (26) may be taken equal to 1; this does 
not only simplify the calculation but also put on the safe side. Moreover, this simplification leads to the 
accurate solution for the case where the load P acts upon the member as a normal concentrated force at the 
centroid of the section. 
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Appendix. -- Notation 

E Yonng's modulus 
G shear modulus 
1 inertia moment 
10 polar inertia moment 
L span length 
M moment 
P concentrated load 
q distributed load 

(3 elastic constant 

X buckling coefficient 

A. slenderness 

e rotation 
(J stress 

ro warping coordinate ( sectorial area) 

Subscripts: 

ro warping (sectorial) property 
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