
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

International Specialty Conference on Cold-
Formed Steel Structures 

(2012) - 21st International Specialty Conference 
on Cold-Formed Steel Structures 

Aug 24th, 12:00 AM - Aug 25th, 12:00 AM 

Active Shear Planes in Block Shear Failure of Bolted Connections Active Shear Planes in Block Shear Failure of Bolted Connections 

Drew D. A. Clements 

Lip H. Teh 

Follow this and additional works at: https://scholarsmine.mst.edu/isccss 

 Part of the Structural Engineering Commons 

Recommended Citation Recommended Citation 
Clements, Drew D. A. and Teh, Lip H., "Active Shear Planes in Block Shear Failure of Bolted Connections" 
(2012). International Specialty Conference on Cold-Formed Steel Structures. 1. 
https://scholarsmine.mst.edu/isccss/21iccfss/21iccfss-session9/1 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in International Specialty Conference on Cold-Formed Steel Structures by an authorized 
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including 
reproduction for redistribution requires the permission of the copyright holder. For more information, please 
contact scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229099593?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/isccss
https://scholarsmine.mst.edu/isccss
https://scholarsmine.mst.edu/isccss/21iccfss
https://scholarsmine.mst.edu/isccss/21iccfss
https://scholarsmine.mst.edu/isccss?utm_source=scholarsmine.mst.edu%2Fisccss%2F21iccfss%2F21iccfss-session9%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/256?utm_source=scholarsmine.mst.edu%2Fisccss%2F21iccfss%2F21iccfss-session9%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/isccss/21iccfss/21iccfss-session9/1?utm_source=scholarsmine.mst.edu%2Fisccss%2F21iccfss%2F21iccfss-session9%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


 
 
 
 

Active Shear Planes in Block Shear Failure of Bolted 
Connections 

 
Drew D. A. Clements1 and Lip H. Teh2 

 
Abstract 
 
In the AISI Specification for the Design of Cold-formed Steel Structural 
Members 2007, there are two types of shear planes used to determine the 
resistance of a bolted connection to block shear failure. When the block shear 
failure occurs by shear yielding and tensile rupture, the shear failure plane is 
taken to be the gross shear plane. Conversely, when the block shear failure is 
deemed to occur by simultaneous shear and tensile ruptures, the shear failure 
plane is assumed to be the net shear plane. Such an approach is not logical since 
the shear failure planes should be unique irrespective of the block shear failure 
mechanism. Through finite element analysis presented in this paper, the shear 
failure plane is shown to be neither the gross nor the net shear plane, and to be 
midway between the two shear planes assumed in design specifications. This 
shear failure plane is termed the active shear plane. The veracity of the active 
shear area is demonstrated in terms of the ability of the resulting block shear 
equation to predict the governing failure modes of test specimens consistently, 
in comparison against the equations assuming the gross and the net shear areas. 
 
Introduction 
 
As described by Teh & Clements (2012), two types of shear planes are used in 
steel design codes worldwide including the North American Specification for 
the Design of Cold-formed Steel Structural Members 2007 (AISI 2010) to 
determine the resistance of a bolted connection to block shear failure. In the 
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current specification, when the block shear failure occurs by shear yielding and 
tensile rupture, the shear failure plane is taken to be the gross shear plane. 
Conversely, when the block shear failure is deemed to occur by simultaneous 
shear and tensile ruptures, the shear failure plane is assumed to be the net shear 
plane. The inconsistent definitions of the shear failure planes give rise to 
unnecessary anomalies that led to repeated amendments to the design provision 
against block shear failures in the AISC specifications (AISC 1978, 1986, 1999, 
2010), from which the AISI provision has been adopted. 
 
In reality, the shear failure planes should be unique as they relate to the same 
failure mode, irrespective of the block shear failure mechanism. Furthermore, 
Teh & Clements (2012) have explained that a conventional block shear failure 
can only occur by the shear yielding and tensile rupture mechanism, as borne out 
by extensive experimental tests (Hardash & Bjorhovde 1985, Seleim & 
LaBoube 1996, Teh & Clements 2012). They have also noted the experimental 
evidence of Franchuk et al. (2003) that suggests the actual shear failure planes to 
lie midway between the gross and the net shear planes, and proposed a design 
equation for determining the block shear capacity using the so-called active 
shear planes. 
 
This paper examines  the experimental evidence of Franchuk et al. (2003) 
through geometrically and materially nonlinear contact finite element analysis 
using ABAQUS 6.9 (ABAQUS 2009).  The active shear planes will also be 
verified in terms of the ability of the resulting block shear equation to predict the 
governing failure modes of test specimens consistently, in comparison against 
the equations assuming the gross and the net shear areas. 
 
Equations for block shear failure strength 
 
The nominal block shear failure strength of a bolted connection is specified in 
Clause E5.3 of the North American Specification for the Design of Cold-formed 
Steel Structural Members 2007 (AISI 2010) to be the lesser of the following 
 

ntugvyn AFAFR  6.0  (1) 

and 

ntunvun AFAFR  6.0  (2) 

 
in which Fy is the yield stress, Agv is the gross shear area, Fu is the tensile 
strength, Ant is the net tensile area, and Anv is the net shear area. The regions 
corresponding to these areas as defined by the code are shown in Figure 1. 
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Figure 1 Gross and net shear planes 
 

Equation (1) represents the block shear failure by shear yielding and tensile 
rupture, while Equation (2) postulates the simultaneous shear and tensile rupture 
mechanism. Since Teh & Clements (2012) have ruled out the latter possibility, 
Equation (2) will be ignored for the rest of this paper. 
 
Eurocode 3 Part 1.8 (ECS 2005) only provides for the shear yielding and tensile 
rupture mechanism, as reflected in the design equation 
 

ntunvyntu
nvy

n AFAFAF
AF

R  577.0
3

 (3) 

 
which departs from the AISC’s long tradition for the shear yielding planes and 
from the earlier Eurocode (ECS 1992), where the gross shear area was used. 
 

 

(b) Net shear planes

(a) Gross shear planes
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Teh & Clements (2012) have proposed the following equation based on the 
active shear planes defined in Figure 2 
 

avyntun AFp
dAFR 6.01.09.0

2






    (4) 

 
in which variable d denotes the bolt diameter while p2 is defined in Figure 3. 
 

 
Figure 2 Active shear planes 

 

Figure 3 Definitions of geometric variables 
 
Equation (4) incorporates an in-plane “shear lag factor” proposed by Teh & 
Gilbert (2012) in determining the net section tension capacity. The shear lag 
factor accounts for the fact that the tensile stresses are not uniformly distributed 
across the net section, which has a significant effect on the tension capacity of 
bolted connections in cold-reduced sheet steel. 
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Finite element analysis to locate the shear failure planes 
 
The finite element models simulate the inner sheet of double-lap bolted 
connections between steel sheets, an example of which is shown in Figure 4. 
 

Figure 4 Concentrically loaded inner sheet 
 
Due to symmetry, only half of the concentrically loaded sheet was modelled as 
shown in Figure 5 with transverse displacements prevented across the symmetry 
plane. Rotation about the symmetry axis was also prevented. The left end was 
completely restrained (fixed) and only the mid-plane of the sheet, indicated by 
the lines running along the middle of the sheet thickness, was restrained out-of-
plane so that necking through the sheet thickness was not prevented.  

 
 

Figure 5 Conceptual model (one row of bolts) 

Fixed end
Symmetry plane 

bolt

Mid-plane restrained 

557



The hexahedral reduced integration brick element type C3D8R available in 
ABAQUS 6.9 (ABAQUS 2009) was used. An example of the finite element 
mesh is shown in Figure 6. 
 
 

 
Figure 6 Finite brick element (C3D8R) mesh 

 
The analysis was geometrically and materially nonlinear using the true stress-
strain curves shown in Figure 7. The  plasticity of the steel material was handled 
through the von Mises yield criterion and the Prandtl-Reuss flow rule with 
isotropic hardening. The true shear yield stress y of the 1.5-mm sheet steel is 
therefore approximately 355 MPa, and that of the 3.0-mm sheet steel is 320 
MPa. The Poisson’s ratio is assumed to be 0.3.  
 
Loading of the connection was simulated by displacing the bolt away from the 
fixed end as indicated by the dashed arrow in Figure 5, which would be resisted 
by the contact surface between the bolt and the bolt hole at the downstream end. 
The bolt was modelled as a 3D analytical rigid body revolved shell, and the bolt 
hole had a diameter that was 1 mm larger than the bolt, as was the case with the 
laboratory test specimens. 
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Figure 7 Modelling of material behaviour  
 
Figure 8 shows the two basic bolting configurations studied in the present work, 
which were tested by Teh & Clements (2012). The measured material properties 
of the specimens are given in Table 1, while their nominal geometric dimensions 
as defined in Figure 3 are given in Tables 2 and 3, which also list the 
professional factors of the finite element analysis results. The variable Pt in the 
tables denotes the ultimate test loads obtained in the experiment of Teh & 
Clements (2012). It can be seen that the finite element models were able to 
estimate the block shear failure loads with reasonable accuracy. 
 
 

Figure 8 Bolting configurations of Series A and B specimens 

 

 

(b) Series B(a) Series A 
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Table 1 Measured engineering properties 

 
tbase 

(mm) 
Fy 

(MPa) 
Fu 

(MPa) 
Fu / 
Fy 

15 
(%) 

25 
(%) 

50 
(%) 

uo 
(%) 

1.5 mm 1.48 605 630 1.04 21.3 18.0 12.0 6.8 

3.0 mm 2.95 530 580 1.09 29.3 22.0 15.3 8.1 

 

 

Table 2 Professional factors for Series A specimens (with 17 mm bolt holes) 

Spec 
W 

(mm) 

p2 

(mm) 

t 

(mm) 

e1 

(mm) 
Pt/FEA 

CPD14 100 33 1.5 50 1.10 

CPD16 100 33 3.0 50 1.05 

CPD18 120 40 1.5 50 0.99 

CPD20a 120 40 3.0 50 0.98 

CPD20b 120 40 3.0 50 0.98 

CPD22a 100 26 1.5 50 1.14 

CPD22b 100 26 1.5 50 1.11 

CPD24a 100 26 3.0 50 1.05 

CPD24b 100 26 3.0 50 1.04 

CPD26a 120 26 1.5 50 1.06 

CPD26b 120 26 1.5 50 1.07 

CPD28a 120 26 3.0 50 1.03 

CPD28b 120 26 3.0 50 1.05 

CPD36 130 45 3.0 30 1.03 

    Mean 1.05 

    COV 0.044 
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Table 3 Professional factors for Series B specimens (p1 = 30 mm) 

Spec 
W 

(mm) 

p2 

(mm) 

t 

(mm) 

e1 

(mm) 

dh 

(mm) 
Pt/FEA 

CQ2a 120 26 1.5 50 17 1.09 

CQ2b 120 26 1.5 50 17 1.07 

CQ3 120 26 3.0 50 13 1.03 

CQ4 120 26 3.0 50 17 1.03 

CQ5a 130 40 1.5 30 13 1.02 

CQ5b 130 40 1.5 30 13 1.04 

CQ6a 130 40 1.5 30 17 1.07 

CQ6b 130 40 1.5 30 17 1.06 

CQ7 130 40 3.0 30 13 1.00 

CQ8 130 40 3.0 30 17 1.04 

CQ9b 130 55 1.5 30 13 1.07 

CQ10a 130 55 1.5 30 17 1.06 

CQ10b 130 55 1.5 30 17 1.05 

CQ11 130 55 3.0 30 13 0.99 

CQ12 130 55 3.0 30 17 1.04 

     Mean 1.04 

     COV 0.027 

 
Figure 9(a) shows the longitudinal true normal stress contours of Specimen 
CPD14. It is evident that the tensile stresses are not uniform across the net 
section between the two bolt holes (the symmetry plane is on the left-hand side). 
 
Figure 9(b) shows the longitudinal true in-plane shear stress contours 
corresponding to the normal stress contours in Figure 9(a). It can be seen that 
the largest shear stresses take place along a shear plane that is midway between 
the gross and the net shear planes indicated in Figure 1. The active shear planes 
depicted in Figure 2 represent the FEA results most closely. 
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Figure 9 Longitudinal normal stresses and in-plane shear stresses of CPD14 
 
It can also be seen from Figure 9(b) that the largest shear stresses only take 
place within a short portion of each active shear plane, with the shear stresses 
approaching zero towards the downstream end. As shown in Figure 2, the active 
shear area Aav in Equation (3) is calculated by ignoring a portion of each active 
shear plane over a length equal to a quarter of the bolt hole diameter. This 
neglect is supported by the shear stress contours in Figure 9(b). 
 
 

Figure 10  Longitudinal normal stresses and in-plane shear stresses of CQ5  

  Symmetry 
plane 

Symmetry 
plane 

(b) Longitudinal shear stress (a) Longitudinal normal stress 

 

(b) Longitudinal shear stress (a) Longitudinal normal stress 

Symmetry 
plane 

Symmetry 
plane 
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Figures 10(a) and 10(b) show the longitudinal true normal stress and the true in-
plane shear stress contours of Specimen CQ5. It can be seen that the active shear 
planes are still best represented by Figure 2. The shear stress contours also 
support the formula for determining the active shear area Aav shown in Figure 2. 
 
Further verification of the active shear planes 
 
Teh & Clements (2012) have shown that Equation (4), which makes use of the 
active shear planes defined in Figure 2, is significantly more accurate than 
Equations (1) and (3) in estimating the block shear failure loads. Hypothetically, 
an incorrect equation may give more accurate estimates than a correct equation 
does if the material and/or geometric properties used in the calculations are not 
accurate representations of the actual specimens. In fact, if the nominal material 
properties of the G450 sheet steels are used in the calculations, then Equation (1) 
would be found to give more accurate results than Equation (4). In theory, it is 
possible, for example, that the measured tensile strengths used in the 
calculations were too high, skewing the results in favour of Equation (4) against 
Equation (1). 
 
The veracity of the active shear planes defined in Figure 2 is demonstrated by 
checking the ability of Equation (4) to predict the governing failure modes of 
test specimens consistently, in comparison against Equations (1) and (3). The 
governing failure mode is identified by comparing the block shear capacity 
against the net section tension capacity, both computed using the same measured 
material and geometric properties. 
 
Each of the competing block shear capacity equations is compared against the 
net section tension capacity given by 
 

 










 





  

22
05.09.01.09.0 e

dAp
dAFR noniun  (5) 

 
in which Ani refers to a net section between bolt holes, and Ano refers to either of 
the two net sections flanking the group of bolts. The variables p2 and e2 are 
defined in Figure 3.  Equation (5) has been demonstrated by Teh & Gilbert 
(2012) to predict the net section tension capacity of bolted connections in the 
present steel materials with very high accuracy. 
 
All the specimens in Tables 4 and 5 failed in block shear. A cross sign “×” in a 
cell of these tables indicates that the equation wrongly predicts the governing 
failure mode to be net section fracture. Equation (1) missed the block shear 

563



failure mode of most specimens as it overestimates the shear yielding resistance 
to block shear failure due to its use of the gross shear planes depicted in Figure 
1(a), especially for the specimens with multiple rows of bolts. 
 

Table 4 Predicted failure modes for Series A specimens failing in block shear 

Spec 
W 

(mm) 

p2 

(mm) 

t 

(mm) 

e1 

(mm) 

dh 

(mm) 

With Equation (5) 

(1) (3) (4) 

CPD14 100 33 1.5 50 17 × √ √ 

CPD15 100 33 3.0 50 13 ×  √ √ 

CPD16 100 33 3.0 50 17 ×  √ √ 

CPD18 120 40 1.5 50 17 × √ √ 

CPD19 120 40 3.0 50 13 √ √ √ 

CPD20a 120 40 3.0 50 17 √ √ √ 

CPD20b 120 40 3.0 50 17 √ √ √ 

CPD22a 100 26 1.5 50 17 × √ √ 

CPD22b 100 26 1.5 50 17 ×  √ √ 

CPD23a 100 26 3.0 50 13 ×  √ √ 

CPD23b 100 26 3.0 50 13 × √ √ 

CPD24a 100 26 3.0 50 17 × √ √ 

CPD24b 100 26 3.0 50 17 ×  √ √ 

CPD26a 120 26 1.5 50 17 √ √ √ 

CPD26b 120 26 1.5 50 17 √ √ √ 

CPD27 120 26 3.0 50 13 √ √ √ 

CPD28a 120 26 3.0 50 17 √ √ √ 

CPD28b 120 26 3.0 50 17 √ √ √ 

CPD36 130 45 3.0 30 17 √ √ √ 

     Misses 10 0 0 
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Table 5 Predicted failure modes for Series B specimens failing in block shear 

Spec 
W 

(mm) 

p2 

(mm) 

t 

(mm) 

e1 

(mm) 

dh 

(mm) 

With Equation (5) 

(1) (3) (4) 

CQ2a 120 26 1.5 50 17 ×  √ * 

CQ2b 120 26 1.5 50 17 ×  √ * 

CQ3 120 26 3.0 50 13 ×  √ √ 

CQ4 120 26 3.0 50 17 ×  √ √ 

CQ5a 130 40 1.5 30 13 ×  √ √ 

CQ5b 130  40 1.5 30 13 ×  √ √ 

CQ6a 130  40 1.5 30 17 ×  √ √ 

CQ6b 130  40 1.5 30 17 ×  √ √ 

CQ7 130  40 3.0 30 13 √  √ √ 

CQ8 130  40 3.0 30 17 ×  √ √ 

CQ9b 130  55 1.5 30 13 × √ √ 

CQ10a 130  55 1.5 30 17 ×  √ √ 

CQ10b 130  55 1.5 30 17 ×  √ √ 

CQ11 130  55 3.0 30 13 ×  √ √ 

CQ12 130  55 3.0 30 17 ×  √ √ 

CQ17 120 45 1.5 30 13 ×  √ √ 

CQ18 130 50 1.5 30 13 ×  √ √ 

CQ19 120 55 3.0 25 13 ×  √ √ 

CQ20 120 55 3.0 25 17 ×  √ √ 

     Misses 18 0 0 

 
If the shear lag factor is applied to the tensile resistance term of Equation (1), the 
total number of misses would decrease by six to 22. If the shear lag factor in 
Equation (4) is neglected, reducing the equation into the conventional net 
section tension capacity where the net section is assumed to be fully effective, 
the number of misses would decrease by ten to 18. 
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All the four specimens in Table 6 failed in net section fracture. A cross sign “×” 
in a cell indicates that the equation wrongly predicts the specimen to fail in 
block shear. Equation (3) missed the net section tension fracture mode of all 
specimens as it underestimates the shear yielding resistance to block shear 
failure due to its use of the net shear planes depicted in Figure 1(b).  
 
Table 6 Predicted failure modes for specimens failing in net section fracture 
 

Spec 
W 

(mm) 

p2 

(mm) 

t 

(mm) 

e1 

(mm) 

dh 

(mm) 

With Equation (5) 

(1) (3) (4) 

CQ1a 120 26 1.5 50 13 √ ×  √ 

CQ1b 120 26 1.5 50 13 √ ×  √ 

CQ14 130 65 1.5 30 17 √ ×  √ 

CQ16 130 65 3.0 30 17 √ ×  √ 

     Misses 0 4 0 

 
The only equation that never predicted an incorrect failure mode is Equation (4). 
For Specimens CQ2a and CQ2b in Table 5, the block shear capacity given by 
the equation is the same as the net section tension capacity given by Equation 
(5). 
 
Conclusions 
 
This paper uses geometrically and materially nonlinear contact finite element 
analysis to confirm that the active shear planes in block shear failure of bolted 
connections lie between the gross and the net shear planes, as indicated by the 
experimental evidence obtained by other researchers. The finite element analysis 
results also indicate that the in-plane shear stresses approach zero towards the 
downstream end of the connection. 
 
The use of the active shear planes is shown to correctly predict the governing 
failure modes of all test specimens, whether block shear failure or net section 
fracture, in contrast to the use of the gross or the net shear planes. The present 
work resolves the hypothetical uncertainty whether the measured material (and 
geometric) properties used in the calculations of the block shear capacities, 
which were significantly different from the nominal values, unduly favour the 
equation proposed by the authors in comparing the professional factors. 
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The block shear equation previously proposed by the authors, which makes use 
of the active shear planes, is supported by the present finite element analysis 
results and the present comparison against alternative equations in predicting the 
correct failure modes, in addition to independent experimental evidence and the 
authors’ previous demonstration of the equation’s accuracy in estimating the 
block shear failure loads of laboratory test specimens. 
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