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Direct Strength Method for Lipped Channel Columns and 
Beams Affected by Local-Plate/Distortional Interaction 
 

Nuno Silvestre1, Pedro B. Dinis1 and Dinar Camotim2

 

Abstract 

This paper reports the results of an investigation on the use of the Direct 
Strength Method (DSM) to estimate the ultimate strength of lipped channel 
cold-formed steel columns and beams affected by interaction phenomena 
involving local-plate and distortional buckling modes. Initially, one briefly 
presents the DSM approaches to safety check columns and beams against 
local-plate and distortional failures, and some attention is also devoted to a 
recently proposed extension aimed at accounting for the above buckling 
mode interaction. Next, one describes the results of a parametric study, 
carried out in code ABAQUS, to determine the “exact” ultimate strengths of 
108 columns and 90 beams displaying various cross-section dimensions and 
lengths, all selected to ensure the occurrence of relevant mode interaction 
effects. Then, these ultimate strength data are compared with the estimates 
provided by the existing DSM equations and, on the basis of this comparison, 
one identifies some features that must necessarily be included in a DSM 
approach that properly accounts for local-plate/distortional interaction. 

Introduction 

The Direct Strength Method (DSM) was originally proposed by Schafer & 
Peköz (1999) about six years ago and has been continuously improved ever 
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since, mainly due to the efforts of Schafer (2002, 2003a,b). Moreover, note 
the very recent inclusion of the DSM in the NAS and AS/NZS cold-
formed steel design specifications − it already appears in the current (new) 
versions of these codes (AISI 2004, SA-SNZ 2005). The method provides an 
elegant, efficient and consistent approach to estimate the ultimate strength of 
cold-formed steel columns and beams (i) exhibiting global (flexural, torsional 
or flexural-torsional), local-plate or distortional collapses, or (ii) failing in 
mechanisms that involve interaction between local-plate and global buckling 
modes. Indeed, the most recent DSM version prescribes the need to perform 
two independent safety checks, regardless of the member critical buckling 
mode nature: (i) one against a pure distortional collapse and (ii) another 
against failure in a pure local-plate mode (laterally braced members) or due to 
local-plate/global mode interaction. In the latter case, the DSM is a very 
efficient alternative to the classical “effective width method”. 

However, as pointed out by Schafer (2002, 2003b, 2005), further research is 
needed before the DSM approach can be successfully applied to members (i) 
under compression and bending (Duong & Hancock 2004, Rasmussen & 
Hossain 2004) or (ii) affected by interaction phenomena involving distortional 
buckling modes (Yang & Hancock 2004, Kwon et al. 2005). Since it has been 
recently shown that coupling between local-plate and distortional buckling 
modes may strongly influence the post-buckling behavior and ultimate 
strength of commonly used lipped channel cross-sections (Dinis et al. 
2005a,b), it would be obviously convenient to have this mode interaction 
phenomenon also covered by the DSM. 
The aim of this work is to contribute towards extending the current DSM 
domain of application, by making it possible to predict ultimate strengths of 
lipped channel columns and beams affected by local-plate/distortional 
buckling mode interaction. To achieve this goal, one begins by carrying out 
an extensive parametric study involving the evaluation of the elastic-plastic 
failure loads/moments of lipped channel columns/beams with distinct cross-
section dimensions, lengths and yield stresses, and containing critical-mode 
small-amplitude initial geometrical imperfections − the member geometries 
were carefully selected to ensure the occurrence of local-plate/distortional 
interaction. All second-order elastic-plastic analyses were carried out in the 
finite element code ABAQUS (HKS 2002), adopting 4-node shell elements to 
discretize the members. These ultimate strength values then provide a “data 
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bank” enabling the proposal and validation of preliminary recommendations 
on the use of a DSM approach to estimate the ultimate strength of lipped 
channel columns and beams against local-plate/distortional mode interaction. 

The Direct Strength Method (DSM) 

Compared with the classical “effective width approach”, the DSM exhibits 
three major innovative features, all due to the fact that the cross-section is 
treated as a whole: (i) wall-restraint effects are always taken into account, (ii) 
no effective width calculations are needed and (iii) strength estimates are 
provided for member distortional collapses. Moreover, the DSM provides a 
rational and systematic approach to design thin-walled members with arbitrary 
cross-sections, loadings or failure modes − of course, a given application must 
be properly calibrated and validated (comparison with experimental and/or 
numerical results). Finally, note that the DSM and effective width approaches 
share one basic assumption: the member ultimate strength can be accurately 
predicted solely on the basis of its elastic buckling and yield stresses. 

The current DSM approach adopts “Winter-type” design curves, which were 
calibrated against a large number of experimental and/or numerical results 
(Schafer 2003a). It was shown that, when a given member fails in pure local-
plate or distortional modes, safe and accurate ultimate strength estimates can 
be obtained on the basis of elastic buckling and yield stress values only. Thus, 
the DSM stipulates that the nominal strengths, against local-plate and 
distortional failure, of laterally braced columns (Pnl and Pnd) and beams (Mnl 
and Mnd) are yielded by the expressions (Schafer 2002, Hancock et al. 2001) 
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where (i) one has λl=(Py/Pcrl)0.5 or λl=(My /Mcrl)0.5 and λd=(Py/Pcrd)0.5 or 
λd=(My/Mcrd)0.5, (ii) Py and My are the squash load and plastic moment, (iii) 
Pcrl (Mcrl) and Pcrd (Mcrd) are the local-plate and distortional critical buckling 
loads (moments). In order to capture the local-plate/global interaction (in 
laterally unbraced members), the DSM approach replaces Py by Pne in eqs. (1) 
and My by Mne in eqs. (3), where Pne and Mne are the column/beam buckling 
strengths associated with global failure (Hancock et al. 2001). Note that it 
is important to predict accurately the column (beam) distortional failure load 
(moment), since (i) the distortional post-critical strength is considerably 
lower and more imperfection-sensitive than its local-plate counterpart (e.g., 
Dinis & Camotim 2004) and (ii) there is clear (numerical) evidence that 
columns and beams buckling in local-plate modes often exhibit distortional 
failure mechanisms (Schafer & Peköz 1999, Dinis & Camotim 2004). 

Parametric Study: Scope, Numerical Analysis and Results 

Scope. In order to be able to carry out a rather large parametric study on the 
ultimate strength of lipped channel columns and beams affected by local-
plate/distortional interaction, their geometries had to be carefully selected: it 
was necessary to find sets of cross-section dimensions and lengths making it 
possible to “control” the closeness between the column/beam local-plate 
and distortional critical buckling stresses (σcrl and σcrd − in beams, σ is the 
uniform flange applied stress). This goal was achieved through a trial-and-
error approach to find 12 “basic cross-section shapes” (6 for the columns 
and 6 for the beams) with commonly used dimensions and ensuring that 
σcrl and σcrd coincide. The search led to the following columns and beams: 
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(i) Three slender columns (1.4 ≤ λd ≤ 2.6), 
(i1) bw=100, bf=50, bs=5 and t=1.0mm, L=270mm. 
(i2) bw=120, bf=80, bs=10 and t=1.3mm, L=550mm. 
(i3) bw=95, bf=80, bs=10 and t=0.95mm, L=600mm. 
Three stockier columns (0.6 ≤ λd ≤ 1.4), 
(i4) bw=180, bf=100, bs=20 and t=3.4mm, L=650mm. 
(i5) bw=110, bf=78, bs=30 and t=2.8mm, L=800mm. 
(i6) bw=100, bf=100, bs=26 and t=2.0mm, L=950mm. 

(ii) Three slender beams (1.4 ≤ λd ≤ 2.6), 
(ii1) bw=180, bf=70, bs=15 and t=1.1mm, L=750mm. 
(ii2) bw=400, bf=150, bs=26 and t=2.0mm, L=1400mm. 
(ii3) bw=390, bf=100, bs=12 and t=1.4mm, L=750mm. 
Three stockier beams (0.6 ≤ λd ≤ 1.4), 
(ii4) bw=120, bf=75, bs=24 and t=1.8mm, L=770mm. 
(ii5) bw=160, bf=80, bs=23 and t=1.7mm, L=820mm. 
(ii6) bw=80, bf=50, bs=10 and t=0.8mm, L=450mm. 
Note that all these columns/beams satisfy the cross-section dimension 
requirements (“pre-qualified columns”) adopted in the DSM approach. 

(iii) Subsequently, the closeness between σcrl and σcrd was slightly altered, 
by just changing a single basic cross-section dimension: flange width bf, 
web width bw or stiffener width bs. This procedure made it possible to 
identify various members with (iii1) cross-section dimensions generated 
from the basic shapes and (iii2) very close (but not necessarily equal) 
σcrl and σcrd values − they are all such that 0.85 ≤ σcrl /σcrd ≤ 1.20. 

The member lengths considered always correspond to single distortional half-
waves associated with the buckling stresses σcrd and were obtained through 
finite strip analyses. The steel behavior is characterized by E=210 GPa 
(Young’s modulus), ν=0.3 (Poisson’s ratio) and fy=250-350-550 MPa 
(columns), and fy=250-350-450 MPa (beams) − these yield stresses meet 
the DSM limit for “pre-qualified columns and beams”. Finally, it is worth (i) 
noting that no residual stresses have been accounted for and (ii) addressing the 
criterion adopted to select the initial geometrical imperfections included in 
the non-linear analyses that provide the column and beam ultimate strengths: 
(i) Regardless of their critical stress ratios σcrl /σcrd, all the columns and 

beams analyzed contained initial geometrical imperfections with a 
single-wave distortional buckling mode shape, having an amplitude 
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(mid-span compressed flange-stiffener corner displacement) equal to 
10% of the wall thickness t and involving either outward (columns) or 
inward (beams) flange-stiffener assembly motions − recent studies, 
involving lipped channel columns and beams with σcrl=σcrd, showed 
that these imperfection shapes are the most detrimental ones, since they 
correspond to the lowest post-buckling strength and collapse loads and 
moments (Dinis et al. 2005, Martins 2006). 

(ii) The slender columns (i1-i3) (not the beams) with σcrl /σcrd < 1.0 (i.e., that 
buckle in local-plate modes with several half-waves) were also analyzed 
in the presence of critical-mode initial imperfections, again with 
amplitude 0.1 t − now the mid-web flexural displacement at mid-span. 

A total of (i) 66 slender and 45 stocky columns, and (ii) 45 slender and 45 
stockier beams were analyzed, corresponding to all possible combinations of 
16 (column) and 15 (beam) different cross-section shapes and 3 yield stress 
values. All the cross-section dimensions (bw, bf, bs, t), length values (L), yield 
stresses (fy) and initial imperfection shapes (D, LP), considered in this work, 
as well as the corresponding critical stresses (σcrl, σcrd), are given in tables 
1A-C (columns) and 2A-C (beams) and will be addressed further ahead. 

Numerical analysis. This subsection deals with the numerical evaluation 
of the “exact” column and beam ultimate strengths, which are subsequently 
used to assess the merits of the DSM approach described before. These 
ultimate strengths were obtained by means of finite element analyses (FEA) 
carried out in the code ABAQUS (HKS 2002), discretizing the members into 
shell elements. As far as the performance of these FEA is concerned, the 
following aspects deserve to be mentioned here (Dinis & Camotim 2006): 
(I) Discretization. The member mid-surfaces were discretized into S4 

finite elements (ABAQUS nomenclature: isoparametric 4-node shell 
elements with the shear stiffness yielded by a full integration rule), 
which were found to be the most adequate to carry out this task. One 
considered 20-30 elements along the cross-section mid-line (width of 
about 10 mm) and previous convergence/accuracy studies showed that 
the element length-to-width ratio should be comprised between 1 and 2. 

(II) Support Conditions. All member end sections are locally and globally 
pinned and can warp freely. Concerning the first aspect, these support 
conditions were modeled by imposing null transverse membrane and 
flexural displacements at all end section nodes − in order to preclude 
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the occurrence of a spurious longitudinal rigid-body motion, the axial 
displacement was prevented at one mid-span cross-section node. 

(III) Column Loading. Compressive forces, equivalent to a uniform normal 
stress distribution, are applied at the nodes of the column end-sections. 
Since the reference value of the load parameter p is t N/mm (t − wall 
thickness), which corresponds to a 1 MPa uniform stress distribution, 
the value of p yielded by ABAQUS is numerically equal to the average 
stress acting on the column (expressed in MPa). 

(IV) Beam Loading. Compressive and tensile forces p=σ t, equivalent to the 
linearly varying normal stress distribution due to a bending moment, 
were applied at the nodes of the beam end-sections. Since the reference 
value of the load parameter p corresponds to a 1 MPa flange stress, the 
value of p yielded by ABAQUS is numerically equal to the average 
stress acting on the beam flanges (expressed in MPa). 

(V) Material Modeling. The member (carbon steel) material behavior, 
deemed isotropic and homogeneous, was modeled through (i) linear 
elastic (bifurcation analysis) and (ii) elastic/perfectly-plastic (post-
buckling analysis) stress-strain laws. In the latter case, the well-known 
Prandtl-Reuss model (J2-flow theory), combining Von Mises’s yield 
criterion with the associated flow rule, was adopted. These stress-strain 
laws are readily available in the ABAQUS material behavior library and 
one just needs to provide the values of E, ν and fy. 

(VI) Initial Imperfections. All initial geometrical imperfections, defined 
earlier (buckling mode shapes with amplitude 0.1 t) are included in the 
analyses through a specific ABAQUS command. In columns/beams that 
buckle in local-plate modes (σcrl <σcrd), the single-wave “distortional” 
imperfection is, effectively, the column higher-order buckling mode 
most resembling it, which means that it is not possible to guarantee the 
“purity” of the distortional shape − e.g., the small participation of a 
multiple half-wave local-plate mode is virtually undetectable. 

Numerical results. The numerical results included in tables 1A-C (columns) 
and 2A-C (beams) consist of (i) local-plate and distortional bifurcation 
stresses and (ii) average stresses at collapse (σu). In order to better convey the 
meaning of these results, they are illustrated in figure 1(a), which shows the 
post-buckling equilibrium paths (σ/σcr vs. v/t) of columns with (i) σcrl=σcrd 
(≡σcr), (ii) identical outward distortional imperfections and (iii) four distinct 
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yield stress values: fy/σcr≈ 1.2, 2.0, 3.5, 5.5. It is worth noting that the onset of 
yielding, always taking place in the stiffener free ends (see figure 1(b1)), 
occurs at the equilibrium points A and may or may not trigger the column 
failure − it depends on the fy/σcr ratio. Indeed, for large enough fy/σcr values 
failure occurs at a limit point B, following (i) a “snap-through” phenomenon 
and (ii) the yielding of the column central regions located around the web-
flange corners − see figure 1(b2) (Dinis et al. 2005a,b). As for figure 1(c), it 
shows the corresponding (predominantly distortional) failure mechanism. 
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Fig. 1: (a) Post-buckling equilibrium paths, (b) plastic strain distributions 

and (c) failure mechanism 

Assessment of the DSM Estimates 

The numerical and DSM results concerning the 108 columns and 90 beams 
analyzed, which are presented in tables 1A-C and 2A-C, make it possible to 
compare the “exact” ultimate strengths (σu) with their DSM estimates 
(σnd and σnl). The observation of these results prompts the following remarks: 
(i) The column σu values concerning the local-plate imperfections (their 

varying dimensions exhibit the superscript LP − tables 1A-B) are never 
below their distortional counterparts, thus confirming the assertion made 
earlier: the distortional imperfections are the most detrimental ones 
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Table 1A. Comparison between the “exact” ultimate strengths and their DSM 
estimates (σnl, σnd and σnld) for 42 (out of 108) columns 

   FEA DSM 
 bf fy σcrl σcrd σu σnl σnl/ σu σnd σnd/ σu σnld σnld/ σu

55 250 101 91 94 156 1.66 117 1.24 95 1.01 
55 350 101 91 110 193 1.75 138 1.25 106 0.96 
55 550 101 91 131 258 1.97 171 1.31 121 0.92 

52.5 250 101 96 97 156 1.61 121 1.25 97 1.00 
52.5 350 101 96 114 194 1.70 143 1.25 108 0.95 
52.5 550 101 96 137 258 1.88 176 1.28 124 0.91 
50 250 102 102 102 156 1.53 125 1.23 99 0.97 
50 350 102 102 120 194 1.62 147 1.23 110 0.92 
50 550 102 102 147 259 1.76 182 1.24 127 0.86 

47.5 250 102 108 107 157 1.47 128 1.20 101 0.94 
47.5 350 102 108 127 194 1.53 151 1.19 113 0.89 
47.5 550 102 108 156 259 1.66 187 1.20 130 0.83 
45 250 103 113 115 157 1.37 131 1.14 103 0.90 
45 350 103 113 136 195 1.43 155 1.14 115 0.85 
45 550 103 113 168 260 1.55 193 1.15 132 0.79 

47.5LP 250 102 108 118 157 1.33 128 1.08 101 0.86 
47.5LP 350 102 108 127 194 1.53 151 1.19 113 0.89 
47.5LP 550 102 108 157 259 1.65 187 1.19 130 0.83 
45LP 250 103 113 128 157 1.23 131 1.02 103 0.80 
45LP 350 103 113 142 195 1.37 155 1.09 115 0.81 

b w
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, b
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 t=
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0,
 L

=2
70

m
m

 

45LP 550 103 113 168 260 1.55 193 1.15 132 0.79 
 bw fy σcrl σcrd σu σnl σnl/ σu σnd σnd/ σu σnld σnld/ σu

130 250 100 110 105 155 1.48 129 1.23 101 0.96 
130 350 100 110 107 193 1.80 153 1.43 113 1.06 
130 550 100 110 123 257 2.09 189 1.54 130 1.06 
125 250 107 113 107 159 1.49 131 1.22 104 0.97 
125 350 107 113 109 198 1.82 155 1.42 116 1.06 
125 550 107 113 123 264 2.15 192 1.56 134 1.09 
120 250 115 115 109 163 1.50 133 1.22 108 0.99 
120 350 115 115 111 203 1.83 157 1.41 120 1.08 
120 550 115 115 124 271 2.19 194 1.56 139 1.12 
115 250 125 118 112 168 1.50 134 1.20 111 0.99 
115 350 125 118 114 209 1.83 159 1.39 124 1.09 
115 550 125 118 122 278 2.28 197 1.61 143 1.17 
110 250 135 121 114 172 1.51 136 1.19 115 1.01 
110 350 135 121 116 214 1.84 161 1.39 129 1.11 
110 550 135 121 121 287 2.37 199 1.64 149 1.23 
100 250 157 127 119 182 1.53 139 1.17 123 1.03 
100 350 157 127 122 226 1.85 164 1.34 138 1.13 
100 550 157 127 126 303 2.40 204 1.62 159 1.26 

125LP 250 107 113 119 159 1.34 131 1.10 104 0.87 
125LP 350 107 113 120 198 1.65 155 1.29 116 0.97 

b f
=8

0,
 b

s=
10

, t
=1

.3
, L

=5
50

m
m

 

125LP 550 107 113 122 264 2.16 192 1.57 134 1.10 
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Table 1B. Comparison between the “exact” ultimate strengths and their DSM 
estimates (σnl, σnd and σnld) for 36 (out of 108) columns 

   FEA DSM 
 bs fy σcrl σcrd σu σnl σnl/ σu σnd σnd/ σu σnld σnld/ σu

11 250 92 100 94 150 1.60 123 1.31 95 1.01 
11 350 92 100 95 187 1.97 145 1.53 106 1.12 
11 550 92 100 99 249 2.52 180 1.82 122 1.23 

10.5 250 91 96 91 150 1.65 121 1.33 94 1.03 
10.5 350 91 96 92 187 2.03 142 1.54 104 1.13 
10.5 550 91 96 97 249 2.57 176 1.81 120 1.24 
10 250 91 91 86 150 1.74 118 1.37 92 1.07 
10 350 91 91 87 187 2.15 139 1.60 103 1.18 
10 550 91 91 92 249 2.71 171 1.86 118 1.28 
9.5 250 91 87 83 150 1.81 115 1.39 91 1.10 
9.5 350 91 87 84 187 2.23 135 1.61 101 1.20 
9.5 550 91 87 91 248 2.73 167 1.84 116 1.27 
9 250 91 83 78 150 1.92 112 1.44 89 1.14 
9 350 91 83 79 186 2.35 132 1.67 99 1.25 
9 550 91 83 84 248 2.95 162 1.93 114 1.36 

10.5LP 250 91 96 109 150 1.38 121 1.11 94 0.86 
10.5LP 350 91 96 109 187 1.72 142 1.30 104 0.95 
10.5LP 550 91 96 109 249 2.28 176 1.61 120 1.10 
11LP 250 92 100 114 150 1.32 123 1.08 95 0.83 
11LP 350 92 100 114 187 1.64 145 1.27 106 0.93 

b w
=9

5,
 b

f=
80

, t
=0

.9
5,

 L
=6

00
m

m
 

11LP 550 92 100 114 249 2.18 180 1.58 122 1.07 
 bf fy σcrl σcrd σu σnl σnl/ σu σnd σnd/ σu σnld σnld/ σu

90 250 361 399 240 239 1.00 221 0.92 220 0.92 
90 350 361 399 298 301 1.01 276 0.93 256 0.86 
90 550 361 399 361 406 1.12 360 1.00 306 0.85 
95 250 358 377 231 239 1.03 218 0.94 217 0.94 
95 350 358 377 287 300 1.05 270 0.94 252 0.88 
95 550 358 377 341 405 1.19 351 1.03 300 0.88 
100 250 355 355 222 238 1.07 213 0.96 213 0.96 
100 350 355 355 276 299 1.08 264 0.96 247 0.89 
100 550 355 355 323 404 1.25 342 1.06 294 0.91 
105 250 353 338 217 238 1.10 210 0.97 210 0.97 
105 350 353 338 267 298 1.12 259 0.97 243 0.91 
105 550 353 338 307 403 1.31 334 1.09 289 0.94 
110 250 350 321 211 237 1.12 206 0.98 206 0.98 
110 350 350 321 256 298 1.16 253 0.99 239 0.93 

b w
=1

80
, b

s=
20

, t
=3

.4
, L

=6
50

m
m

 

110 550 350 321 292 402 1.38 326 1.12 284 0.97 
 
 (Silvestre et al. 2005a,b). Since the DSM cannot capture the initial 

imperfection effect, its estimates should preferably approximate well 
the σu values related to distortional imperfections. If this is the case, then 
the DSM underestimates σu for columns with local-plate imperfections. 
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Table 1C. Comparison between the “exact” ultimate strengths and their DSM 
estimates (σnl, σnd and σnld) for 36 (out of 108) columns and overall results 

   FEA DSM 
 bw fy σcrl σcrd σu σnl σnl/ σu σnd σnd/ σu σnld σnld/ σu

100 250 736 656 249 250 1.00 247 0.99 247 0.99 
100 350 736 656 345 350 1.01 324 0.94 324 0.94 
100 550 736 656 508 514 1.01 442 0.87 442 0.87 
105 250 680 641 249 250 1.00 246 0.99 246 0.99 
105 350 680 641 344 350 1.02 322 0.94 322 0.94 
105 550 680 641 503 501 1.00 438 0.87 429 0.85 
110 250 630 625 248 250 1.01 246 0.99 246 0.99 
110 350 630 625 344 350 1.02 320 0.93 320 0.93 
110 550 630 625 499 489 0.98 434 0.87 416 0.83 
115 250 581 611 248 250 1.01 245 0.99 245 0.99 
115 350 581 611 342 350 1.02 318 0.93 318 0.93 
115 550 581 611 493 476 0.97 430 0.87 403 0.82 
120 250 538 596 248 250 1.01 244 0.98 244 0.98 
120 350 538 596 341 342 1.00 316 0.93 316 0.93 

b f
=7

8,
 b

s=
30

, t
=2

.8
, L

=8
00

m
m

 

120 550 538 596 489 464 0.95 426 0.87 391 0.80 
 bs fy σcrl σcrd σu σnl σnl/ σu σnd σnd/ σu σnld σnld/ σu

22 250 317 285 226 230 1.02 197 0.87 195 0.86 
22 350 317 285 262 288 1.10 241 0.92 224 0.85 
22 550 317 285 276 388 1.41 308 1.12 265 0.96 
24 250 317 299 227 230 1.01 201 0.89 198 0.87 
24 350 317 299 270 288 1.07 246 0.91 227 0.84 
24 550 317 299 287 388 1.35 315 1.10 268 0.93 
26 250 317 314 230 229 1.00 205 0.89 200 0.87 
26 350 317 314 279 288 1.03 251 0.90 230 0.82 
26 550 317 314 300 388 1.29 323 1.08 273 0.91 
28 250 316 331 232 229 0.99 208 0.90 202 0.87 
28 350 316 331 288 288 1.00 257 0.89 233 0.81 
28 550 316 331 316 388 1.23 331 1.05 277 0.88 
30 250 315 350 234 229 0.98 212 0.91 205 0.88 
30 350 315 350 297 287 0.97 263 0.89 237 0.80 b w

=1
00

, b
f=

10
0,

 t=
2.

0,
 L

=9
50

m
m

 

30 550 315 350 337 387 1.15 339 1.01 281 0.83 
      Av. 1.52 Av. 1.20 Av. 0.97 
      Sd. 0.482 Sd. 0.268 Sd. 0.129 
 
(ii) The ratios between the predicted and “exact” column ultimate strength 

values σnl /σu and σnd /σu are often much higher than 1.0. In fact, the 
DSM provisions for local-plate and distortional failure yield estimates 
52% and 20% higher than the “exact” values (in average). Moreover, 
the σnl /σu and σnd /σu values are also very scattered (standard deviations 
of 0.48 and 0.27) − i.e., σnl and σnd considerably overestimate σu in 
columns affected by local-plate/distortional mode interaction. 
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Table 2A. Comparison between the “exact” ultimate strengths and their DSM 
estimates (σnl, σnd and σnld) for 30 (out of 90) beams 

   FEA DSM 
 bf fy σcrl σcrd σu σnl σnl/ σu σnd σnd/ σu σnld σnld/ σu

55 250 898 889 253 250 0.99 250 0.99 250 0.99 
55 350 898 889 344 350 1.02 350 1.02 350 1.02 
55 450 898 889 419 450 1.07 437 1.04 437 1.04 
65 250 692 677 249 250 1.00 250 1.00 250 1.00 
65 350 692 677 327 350 1.07 338 1.03 338 1.03 
65 450 692 677 393 439 1.12 403 1.03 403 1.01 
75 250 535 542 239 250 1.05 249 1.04 249 1.04 
75 350 535 542 311 341 1.10 316 1.02 316 1.00 
75 450 535 542 370 405 1.09 375 1.01 357 0.94 
85 250 423 454 230 250 1.09 237 1.03 237 1.03 
85 350 423 454 296 316 1.07 299 1.01 284 0.94 
85 450 423 454 347 375 1.08 352 1.02 318 0.90 
95 250 341 389 223 235 1.05 226 1.01 219 0.97 
95 350 341 389 282 295 1.05 283 1.00 256 0.90 

b w
=1

20
, b

s=
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, t
=1

.8
, L

=7
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m
m

 

95 450 341 389 304 349 1.15 333 1.09 285 0.93 
 bs fy σcrl σcrd σu σnl σnl/ σu σnd σnd/ σu σnld σnld/ σu

19 250 410 345 226 249 1.10 218 0.96 218 0.96 
19 350 410 345 281 313 1.11 272 0.97 264 0.90 
19 450 410 345 315 371 1.18 318 1.01 294 0.89 
21 250 410 368 227 249 1.10 222 0.98 222 0.98 
21 350 410 368 285 313 1.10 278 0.98 268 0.91 
21 450 410 368 323 371 1.15 326 1.01 299 0.89 
23 250 409 394 228 249 1.09 227 1.00 227 0.99 
23 350 409 394 289 313 1.08 285 0.99 272 0.92 
23 450 409 394 331 371 1.12 334 1.01 304 0.89 
25 250 408 423 229 249 1.09 232 1.01 232 1.01 
25 350 408 423 292 313 1.07 292 1.00 276 0.93 
25 450 408 423 338 370 1.10 343 1.02 309 0.90 
27 250 406 455 230 248 1.08 237 1.03 237 1.03 
27 350 406 455 296 312 1.05 299 1.01 281 0.94 

b w
=1

60
, b

f=
80

, t
=1

.7
, L

=8
20

m
m

 

27 450 406 455 345 370 1.07 352 1.02 314 0.90 
 
(iii) The ratios between the predicted and “exact” beam ultimate strength 

values σnl /σu and σnd /σu are also often quite higher than 1.0 − however, 
the differences are smaller than for the columns. Indeed, the DSM 
local-plate and distortional strength estimates are now, 28% and 15% 
higher than the “exact” values (again in average) − the σnl /σu and σnd /σu 
standard deviations are also less pronounced: 0.24 and 0.17. Even then, 
σnl and σnd overestimate σu by a fair amount in beams affected by local-
plate/distortional mode interaction. 
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Table 2B. Comparison between the “exact” ultimate strengths and their DSM 
estimates (σnl, σnd and σnld) for 30 (out of 90) beams 

   FEA DSM 
 bw fy σcrl σcrd σu σnl σnl/ σu σnd σnd/ σu σnld σnld/ σu

60 250 241 256 203 210 1.03 197 0.97 178 0.86 
60 350 241 256 222 262 1.18 243 1.09 206 0.91 
60 450 241 256 228 309 1.36 283 1.24 228 0.99 
70 250 239 242 200 209 1.05 193 0.96 176 0.86 
70 350 239 242 215 262 1.22 238 1.11 203 0.92 
70 450 239 242 223 309 1.38 277 1.24 224 0.99 
80 250 237 231 197 209 1.06 189 0.96 173 0.86 
80 350 237 231 223 261 1.17 233 1.05 199 0.87 
80 450 237 231 229 308 1.34 271 1.19 221 0.94 
90 250 234 220 193 208 1.08 186 0.96 171 0.86 
90 350 234 220 210 260 1.24 229 1.09 196 0.91 
90 450 234 220 215 307 1.43 266 1.24 217 0.98 
100 250 231 211 190 207 1.09 183 0.96 168 0.86 
100 350 231 211 203 259 1.27 225 1.11 193 0.92 

b f
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 b

s=
10

, t
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, L
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50
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100 450 231 211 210 305 1.45 262 1.25 213 0.99 
 bf fy σcrl σcrd σu σnl σnl/ σu σnd σnd/ σu σnld σnld/ σu

60 250 210 252 207 201 0.97 195 0.94 170 0.82 
60 350 210 252 240 251 1.04 241 1.01 196 0.82 
60 450 210 252 252 295 1.17 281 1.12 217 0.86 
65 250 204 221 196 198 1.01 186 0.95 163 0.82 
65 350 204 221 219 248 1.13 229 1.05 187 0.85 
65 450 204 221 223 292 1.31 267 1.20 207 0.92 
70 250 194 196 184 195 1.06 178 0.97 156 0.83 
70 350 194 196 195 244 1.25 219 1.12 179 0.90 
70 450 194 196 200 287 1.44 254 1.27 198 0.97 
75 250 182 176 173 191 1.10 171 0.99 148 0.84 
75 350 182 176 180 238 1.32 210 1.16 170 0.92 
75 450 182 176 185 281 1.52 243 1.31 187 0.99 
80 250 167 160 154 185 1.20 165 1.07 141 0.89 
80 350 167 160 160 231 1.44 201 1.26 161 0.98 

b w
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, t
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, L

=7
50
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m

 

80 450 167 160 164 272 1.66 233 1.42 177 1.06 
 
Finally, the variation of σnd /σu with the distortional slenderness λd is shown in 
figures 2(a) (columns) and 2(b) (beams). It is clear that the DSM distortional 
failure expressions yield fairly accurate and mostly safe ultimate strength 
estimates for the stockier columns and beams (λd ≤1.2). However, these same 
expressions perform poorly for moderate-to-slender columns and beams 
(λd≥ 1.2), i.e., their predictions are inaccurate and mostly unsafe − moreover, 
the error grows with λd. This means that the presence of local-plate buckling 
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Table 2C. Comparison between the “exact” ultimate strengths and their DSM 
estimates (σnl, σnd and σnld) for 30 (out of 90) beams and overall results 

   FEA DSM 
 bs fy σcrl σcrd σu σnl σnl/ σu σnd σnd/ σu σnld σnld/ σu

22 250 131 115 126 171 1.36 144 1.14 119 0.91 
22 350 131 115 130 212 1.63 175 1.35 135 1.01 
22 450 131 115 133 250 1.88 202 1.52 148 1.08 
24 250 132 123 131 171 1.30 148 1.13 121 0.90 
24 350 132 123 134 213 1.59 180 1.35 138 1.00 
24 450 132 123 138 250 1.81 208 1.51 152 1.07 
26 250 132 132 137 171 1.25 152 1.11 123 0.88 
26 350 132 132 140 213 1.52 186 1.33 141 0.99 
26 450 132 132 143 250 1.75 214 1.50 155 1.07 
28 250 132 142 142 171 1.21 157 1.11 126 0.88 
28 350 132 142 146 213 1.46 192 1.31 144 0.98 
28 450 132 142 149 250 1.68 221 1.49 158 1.05 
30 250 132 163 147 171 1.16 166 1.13 131 0.89 
30 350 132 163 153 213 1.39 203 1.33 149 0.98 

b w
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30 450 132 163 156 250 1.60 235 1.51 164 1.06 
 bw fy σcrl σcrd σu σnl σnl/ σu σnd σnd/ σu σnld σnld/ σu

350 250 91.1 83.9 104 150 1.44 126 1.22 96 0.90 
350 350 91.1 83.9 113 186 1.65 153 1.35 109 0.94 
350 450 91.1 83.9 121 219 1.81 176 1.45 120 0.97 
370 250 82.7 80.0 102 145 1.42 124 1.21 92 0.88 
370 350 82.7 80.0 111 180 1.62 150 1.35 104 0.92 
370 450 82.7 80.0 120 211 1.76 172 1.43 114 0.94 
390 250 75.3 76.5 101 140 1.39 121 1.20 88 0.86 
390 350 75.3 76.5 110 174 1.58 147 1.33 99 0.90 
390 450 75.3 76.5 118 204 1.73 169 1.43 109 0.92 
410 250 68.1 72.3 99.1 135 1.37 119 1.20 84 0.84 
410 350 68.1 72.3 109 168 1.54 143 1.31 95 0.86 
410 450 68.1 72.3 117 197 1.68 164 1.41 103 0.88 
430 250 61.9 68.3 97.5 131 1.34 116 1.19 80 0.82 
430 350 61.9 68.3 107 162 1.51 140 1.30 90 0.84 
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430 450 61.9 68.3 115 190 1.65 160 1.39 98 0.86 
      Av. 1.28 Av. 1.15 Av. 0.95 
      Sd. 0.241 Sd. 0.167 Sd. 0.069 
 
effects leads to a substantial erosion of the column or beam ultimate strength 
associated with the distortional failure. In addition, this erosion grows as 
the yield-to-critical distortional stress ratio fy /σcrd increases. Therefore, the 
influence of the local-plate/distortional mode interaction phenomenon on the 
ultimate strength of columns or beams (distortional failure) must be taken into 
account whenever their slenderness value λd is moderate-to-high. 
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Fig. 2: Variation of σnd /σu with λd for (a) columns and (b) beams 

 

DSM for Local-Plate/Distortional Interaction 

Following a strategy similar to the one adopted to develop a DSM approach 
to estimate the ultimate strength of columns and beams exhibiting a local-
plate/global interactive buckling behavior, it becomes possible to propose 
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expressions that are applicable to columns and beams experiencing local-
plate/distortional mode interaction effects. For the columns, this can be done 
by replacing either (i) Py by Pnd in eqs. (1) or (ii) Py by Pnl in eqs. (2) − Pnd and 
Pnl are the distortional and local-plate buckling strengths given by eqs. (1) 
and (2). Then, one obtains ultimate load estimates Pnld and Pndl, respectively. 
Yang & Hancock (2004) have recently adopted the first approach, which 
is schematically presented in the flowchart of figure 3(a) − the “role” of the 
overall strength Pne is now played by the distortional strength Pnd. Finally, 
note that the approach just outlined involves the knowledge of accurate 
local-plate and distortional buckling loads (Pcrl, Pcrd), which can be readily 
determined through finite element, finite strip or generalised beam theory 
(GBT) analyses. The same methodology can also be applied to the beams, as 
illustrated in the flowchart of figure 3(b) − one then obtains a Mnld value, 
which estimates the corresponding beam ultimate strength. 
 

 Py 

Pcrd 
λd Pnd 

Py=Pnd

Pcrl 
λld Pnld 

eqs. (2) eqs. (1) 

COLUMNS 
(a) 

 
 My 

Mcrd 
λd Mnd 

My=Mnd

Mcrl 
λld Mnld 

eqs. (4) eqs. (3) 

BEAMS 
(b) 

 
Fig. 3: Flowcharts concerning the application of the DSM to (a) columns 
(Pnld) and (b) beams (Mnld) under local-plate/distortional mode interaction 

After comparing the ultimate strength estimates provided by their DSM 
approach with the results of a series of experimental tests involving 
lipped channel columns with “v-shaped” web and flange intermediate 
stiffeners (Yang 2004), which provided clear evidence of an adverse local-
plate/distortional interaction, Yang & Hancock (2004) concluded that (i) the 
above estimates were safe and reasonably accurate (differences in the 10-
20% range), and also that (ii) further investigation was required concerning 
the design of columns with nearly coincident local-plate and distortional 
buckling stresses. On the other hand, Silvestre et al. (2005), in the context of 
simply supported “plain” lipped channel columns experiencing local-
plate/distortional mode interaction, compared the two aforementioned DSM 
approaches (Pnld and Pndl − LD and DL approaches) and concluded that 
they lead to very similar ultimate strength estimates. In view of these facts, 
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it was decided to adopt the “LD approach” and employ it to estimate the 
ultimate strength of the columns and beams addressed in this work. 

Assessment of DSM Estimates for LP/D Interaction 

Besides the predictions yielded by the individual local-plate and distortional 
DSM failure expressions, tables 1A-C and 2A-C also include DSM σnld 
estimates. Their observation leads to the following remarks: 
(i) Although the column σnld estimates are reasonably accurate in average 

(mean of σnld /σu equal to 0.97), there are well scattered: the σnld /σu 
standard deviation is 0.13. Among the whole set of σnld estimates, 1 is 
exact, 38 are safe and accurate (σnld /σu ≥ 0.9), 36 are excessively safe 
(0.79≤ σnld /σu < 0.90), 16 are slightly unsafe (σnld /σu≤ 1.10) and 17 are 
very unsafe (1.10 <σnld /σu ≤ 1.36). 

(ii) The beam σnld estimates are also reasonably accurate in average (mean 
of σnld /σu equal to 0.95). However, unlike in the columns, the scatter is 
now quite low: σnld/σu standard deviation of 0.069. Out of the whole set 
of σnld estimates, 3 are exact, 44 are safe and accurate (σnld /σu ≥ 0.9), 28 
are too safe (0.82≤ σnld /σu < 0.90) and 15 are accurate but slightly 
unsafe (σnld /σu ≤ 1.10). 

The variation of the stress ratios σu /fy and σnld /fy with the distortional 
slenderness λd=(fy /σcrd)0.5 are shown in figures 4(a) (columns) and 4(b) 
(beams). Also included are the “Winter-type” curves defined by eqs. (1)-(2) 
(columns) and (3)-(4) (beams), which provide the DSM local-plate and 
distortional ultimate strength estimates. From the joint observation of all 
these results, the following comments can be drawn: 
(i) The proposed DSM predictions (black dots) always (i1) lie well below 

both the local-plate and distortional curves, for the slender members 
(λd >1.2), and (i2) are located near the distortional curve, for the stockier 
members (λd <1.2). This means that, at least for the critical stress ratio 
range considered (0.90 ≤ σcrd /σcrl ≤ 1.10), the local-plate/distortional mode 
interaction always causes a substantial strength erosion in the slender 
members (w.r.t. the individual local-plate and distortional values). 

(ii) Regardless of the member distortional slenderness values, the black dots 
(ii1) always remain quite “aligned” and (ii2) lie in a fairly close vicinity 
of the “exact” ultimate strength values (white dots), in spite of their 
“vertical dispersion” − they lie mostly below (particularly in the beams). 
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Fig. 4: Variation of σnld/fy and σu/fy with λd for (a) columns and (b) beams 

Design Recommendations 

All the members analyzed (a total of 198) display distortional slenderness 
values falling inside the range for which the individual local-plate and 
distortional DSM curves were experimentally calibrated. If the column or beam 
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σcrl and σcrd values are less than 15% apart, it seems fair to say that: 
(i) In members with a low slenderness (λd ≤ 1.2), the σnd values accurately 

predict the ultimate strength σu under local-plate/distortional mode 
interaction − thus, the current DSM provisions for distortional failure 
can be satisfactorily employed. 

(ii) In members with a moderate-to-high slenderness (λd ≥  1.2), the current 
DSM provisions yield unsatisfactory results, while the σnld approach 
yields mostly accurate predictions of the ultimate strength σu under 
local-plate/distortional mode interaction − however, for wide-flange 
columns with high yield stresses, σnld may provide unsafe ultimate 
strength estimates (see Silvestre et al. 2005 for more details). 

(iii) Regardless of the member slenderness, the σnld values provide fairly 
accurate predictions of the ultimate strength of member prone to local-
plate/distortional mode interaction (with the exception mentioned in the 
previous item) − such an achievement cannot be reached through the 
use of the current DSM (local-plate and distortional) provisions. 

Conclusion 

Results of an ongoing investigation on the use of the Direct Strength Method 
to estimate the ultimate strength of lipped channel columns and beams 
affected by local-plate/distortional interaction were presented and discussed. 
On the basis of the results of a FEM-based parametric study involving 
108 columns and 90 beams, it was possible (i) to obtain numerical evidence 
of the severe member strength erosion caused by the local-plate/distortional 
interactive and (ii) to reveal the inability of the DSM individual (local-plate 
and distortional) expressions to predict such erosion in arbitrary lipped channel 
columns and beams. However, it was shown that a DSM approach based on 
those individual expressions (recently proposed by Yang & Hancock 2004 for 
columns) predicts quite well the strength reduction caused to lipped channel 
columns and beams by local-plate/distortional mode interaction − even so, it 
was also possible to identify a number of features that must be included in 
a more elaborate DSM approach, specifically developed to take into account 
this type of interactive behavior. Finally, the paper closed with some design 
recommendations about the application of the DSM approach dealt with here 
to lipped channel members exhibiting nearly coincident local-plate and 
distortional buckling stresses. 
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