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Numerical Modelling and Calibration of CFS Framed Shear 
Walls under Dynamic Loading 

 
I. Shamim1 and C.A. Rogers2 

 
 
Abstract 
 
This paper describes the numerical modeling using OpenSees of steel sheathed 
cold-formed steel framed shear wall test specimens under dynamic loading. Two 
modeling phases were carried out; the first phase comprised non-linear models 
calibrated using existing reversed cyclic shear wall test data, and the second 
phase involved more advanced models calibrated using data from dynamic 
shake table tests of single- and double-storey shear walls as well as other 
ancillary test programs. The second phase models incorporated the behaviour of 
the hold-downs, floor framing and blocked bare frame, in addition to the 
sheathing. The final calibrated models were able to accurately predict the 
displacement and force response time histories of the single- and double-storey 
shear wall specimens. These calibrated models will later be relied on for 
Incremental Dynamic Analyses (IDA) of representative building structures to 
evaluate seismic design provisions for cold-formed steel framed shear walls to 
be used in conjunction with the National Building Code of Canada (NBCC). 
 
Introduction 
 
Seismic design provisions for cold-formed steel (CFS) lateral framing systems, 
specifically strap braced walls and wood sheathed shear walls, have recently 
been included in the 2010 National Building Code of Canada (NBCC) (NRCC, 
2010). The Building Code refers to the CSA S136 Standard (2007) for design 
and detailing information, which in turn references the AISI S213 lateral design 
standard (2007). In terms of available design information for CFS lateral
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framing configurations a missing component is the cold-formed steel sheathed / 
framed shear wall. The NBCC and the S213 Standard, at present, do not address 
the design of steel sheathed / CFS framed shear walls for use in Canada. 
Monotonic and reversed cyclic tests of these shear wall assemblies have been 
carried out in the US by Serrette et al. (1996, 1997), Yu et al. (2007) and Yu & 
Chen (2009), as well as in Canada by Ong-Tone & Rogers (2009), Balh & 
Rogers (2010) and DaBreo & Rogers (2012). A design method to be used in 
conjunction with the NBCC has been developed (Balh & Rogers, 2010; El-
Saloussy & Rogers, 2010), however, to justify the inclusion in the Building 
Code and AISI S213 of the proposed Canadian seismic design approach derived 
from the results of static tests it was necessary to investigate the performance of 
representative shear walls by means of dynamic shake table tests and to develop 
nonlinear numerical models capable of capturing their response history under 
dynamic loading. Balh & Rogers (2010) conducted preliminary dynamic 
numerical analyses of representative CFS framed buildings using the Ruaumoko 
software (Carr, 2004) which accounted for the pinching behaviour as well as the 
stiffness degradation in the shear walls’ force-displacement hysteretic response; 
however, these models did not include strength degradation. This paper presents 
a description of improved nonlinear numerical models developed in OpenSees 
(Mazzoni et al., 2009) and a brief description of the corresponding dynamic test 
program. A comparison of the modelling results and test measurements is 
provided to demonstrate the accuracy of the numerical models. 

Dynamic CFS Shear Wall Test Program 
 
Ten full-scale CFS sheathed shear wall specimens were dynamically tested on a 
shake table (Shamim et al., 2012). Five single-storey (1.22 m  2.44 m) and five 
double-storey (1.22 m  5.18 m) walls (Figure 1) were included in the test 
matrix. The double-storey platform framed walls consisted of a 2.44 m high first 
storey wall, on top of which a 0.3 m deep CFS framed floor structure was 
attached followed by another 2.44 high second storey wall. CFS frames were 
assembled of ASTM A653 92.1 mm × 41.3 mm × 12.7 mm C-studs and 
92.1 mm × 31.8 mm channel tracks with two or three rows of blocking, 
equivalent in size and shape to the track members. The steel sheathing panels 
were 1.22 m × 2.44 m in size with either 0.46 mm or 0.76 mm thickness. 
Sheathing screw fasteners were installed at 50 mm, 75 mm, 100 mm or 150 mm 
spacing for the various specimens. The floor structure comprised a rim joist 
supporting standard floor joist members. The walls at the floor and at their base 
were connected with hold-down devices and threaded rods. A 12.5 kN gravity 
load was also applied on top of the test specimen. A comprehensive description 
of this laboratory study can be found in the paper by Shamim et al. (2012). 
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Figure 1: Test set-up of double-storey wall on shake table  

 
Instrumentation was provided to measure lateral and vertical displacements, 
lateral inertia forces and accelerations: potentiometers were installed in a 
triangulated pattern such that both vertical and lateral displacements could be 
measured; accelerometers were placed at the mass locations as well as on the 
shake table; and load cells were connected to the hold-down anchor rods and to 
the arms linking the shear wall to the seismic weight. Once installed and 
instrumented each wall was subjected to a suite of excitations: impact test to 
measure the linear-viscous damping ratio; harmonic excitation to estimate the 
natural period of vibration of the wall specimens, and ground motions at elastic 
and enhanced levels. Two synthetic records provided by Atkinson (2009) were 
closely matched to the design response spectrum for Quebec and Vancouver 
(Canada) for site class C to represent strong ground motions in eastern (Quebec) 
and western (Vancouver) Canada. These records were than scaled to obtain 
elastic behaviour or inelastic behaviour in the test walls. 
 
Numerical Models 
 
The Open System for Earthquake Engineering Simulation (OpenSees) software 
(Mazzoni et al., 2009) was utilized for all modeling in this study. OpenSees is an 
open source framework for simulating the response of structural (and 
geotechnical) systems subjected to earthquakes. The modeling was conducted in 
two phases: the initial models (Figure 2a) were developed prior to the shake 
table tests in order to predict the hysteretic response of the shear wall specimens 

691



and to establish the level of scaling to use for the ground motions. The CFS 
frame, including the chord studs and the tracks as well as the floor (if 
applicable), was modelled as rigid truss elements; the shear wall including steel 
sheathing and screw connections was modeled with truss elements using the 
Pinching04 material property (Lowes et al., 2004). Pinching04 is a nonlinear 
material which represents a pinched force-deformation hysteretic response and 
exhibits un-loading, re-loading, and strength degradation under reversed cyclic 
loading. Figure 3 shows the parameters required to define the Pinching04 
uniaxial material in OpenSees, which includes a backbone trend line, 
degradation factors, as well as other force and displacement related parameters.  
 

Load

Load

Rigid B-C ele.
B-C ele.
Truss ele.

Hinge node
Moment node

Uplift spring
Rotational spring

Mass

Rigid Truss ele.

Rigid B-C ele.

Truss ele.
Hinge node
Mass

Rigid Truss ele.

Load Load

LoadLoad

a) b)

diagonal brace brace net  
Figure 2: Numerical models in OpenSees: a) initial model (prior to dynamic 

tests), and b) developed model (after dynamic tests) 
 
The seismic mass represented the seismic weight and supporting columns 
(Figure 1a) which was lumped at each storey level. A value of 3502 kg was used 
for the single-storey walls, whereas 3663 kg and 3502 kg were required for the 
double-storey walls at the first and second storey, respectively. The P-delta 
apparatus was made of a fictitious frame comprising a rigid beam-column 
element with Co-rotational Coordinate Transformation capability and a rigid 
truss element linking the fictitious column to the CFS frame, with the gravity 
and seismic mass load exerted on the column at each storey level. 

More advanced numerical models were developed (Figure 2b) after running the 
dynamic tests and additional ancillary component testing. The data obtained 
from these tests were used to calibrate the second phase models. The chord studs 
were modeled with elastic beam-column elements whose properties were 
representative of the members used for the tested walls; elastic truss elements 
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Figure 3: Definition of Pinching04 uniaxial material model 
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Figure 4: Bare frame test and corresponding model: a) test set up, b) OpenSees 

model 
 
were used to model the floor having an in-plane lateral stiffness equal to that 
measured during dynamic testing ranging from 3.5 kN/mm to 4.5 kN/mm; linear 
uplift springs were installed at the bottom of the floors to represent the hold-
down anchor rods in order to capture the wall lateral displacement due to anchor 
rod elongation. The uplift spring stiffness, obtained from the dynamic tests, 
ranged from 17.6 to 30.4 kN/mm and from 8 to 17.6 kN/mm for the 1st and 2nd 
floors, respectively. The stiffness value was first estimated from the shear 
strength-uplift lateral displacement hysteresis of the tested walls and then 
determined such that the test shear strength-measured shear displacement and 
the shear strength-computed shear displacement provided a reasonable match, 
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assuming the anchor rod behaviour was linear. Rotational springs were placed at 
the CFS frame joints to represent the lateral stiffness provided by the gravity 
frame and horizontal blocking. 

To determine the stiffness of the rotational springs, four 1.22 m  2.44 m CFS 
bare frames made of 92.1  41.3  12.7 double chord studs, 92.1  31.8 tracks 
and three rows of blocking were assembled and tested under monotonic lateral 
load (Figure 4a). The CFS bare frames differed in nominal thickness; 1.09 mm, 
1.37 mm and 1.73 mm for studs and tracks, and 1.09 mm and 1.37 mm for 
blocking. The bare frames were then modeled as a simple beam-column frame 
with a rotational spring at each corner joint (Figure 4b). The rotational spring 
stiffness was then calibrated so that the test and the model lateral stiffness 
matched. An average rotational spring stiffness of 114,965 Nm was used in all 
the advanced models since the stiffness values of the bare frame test specimens 
were fairly close. 

The shear wall was modeled with Pinching04 truss elements. The backbone 
trend line was drawn for shear strength-shear displacement response hysteresis 
of each dynamic test and directly used to define the Pinching04 backbone trend 
line in the models (Figure 6). The Pinching04material could be assigned two 
separate backbone trend lines each representing the positive or negative 
response excursions. Since the hysteretic response of the tested walls was almost 
symmetric (Shamim et al., 2012), the same trend line was used for both 
excursions in the model. The degradation factors were first approximated from 
the force-displacement hysteresis results of the dynamic tests and then 
systematically changed along with the rDisp, rForce, and uForce factors, which 
were pre-measured from the test response hysteresis, until a reasonable fit 
between the test and the numerical model strength as well as displacement 
response histories was observed. 
 
Comparison of Numerical Models and Test Results 
 
Initial Models 
 
Prior to the dynamic shake table testing the wall specimens’ response histories 
and strength-displacement hystereses were predicted using the simplified 
numerical models. Since the anchor rods were not included, the models did not 
account for the rigid rotation of wall caused by anchor rod elongation. In this 
fashion, the displacement of the wall in the initial models was that resulting 
from wall shear deformation alone. Diagonal truss elements with Pinching04 
material property were used to represent the combined sheathing and screw 
connection behaviour since the Pinching04 material was deemed to provide an 
appropriate representation of the steel sheathed shear walls’ shear deformation. 
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Figure 5: Comparison of strength-drift hysteresis of test ST1-c with the initial 

numerical model: a) dynamic test, b) initial model 
 
The results of previous reversed cyclic tests performed by Ong-Tone & Rogers 
(2009) and Balh & Rogers (2010) were used to calibrate the Pinching04 
material. Once the dynamic tests had been carried out and the data compared 
with the model's prediction it was concluded that the initial models were not 
accurate in capturing the strength and displacement response under dynamic 
load (Figure 5). 
 
Advanced Models 
 
After conducting the shake table tests, the models were improved in a variety of 
ways: the rigid truss-made frame was replaced with elastic beam-column 
elements as the chord stud; the anchor rods were included using linear uplift 
springs to include uplift displacement due to anchor rod elongation; the 
rotational springs were installed at the frame joints to provide lateral stiffness 
produced by the blocking; the rigid floor was replaced with a flexible floor; and 
the Pinching04 material was calibrated based on the dynamic test data. The 
Pinching04 material properties were extracted from the shear strength-shear 
displacement hysteresis of the dynamically tested walls and used to calibrate the 
sheathing elements. To perform calibration from the test data, first the shear 
displacement (lateral displacement due to wall shear deformation) and uplift 
displacement (lateral displacement due to anchor rod elongation) were separated 
from each other. The shear strength-shear displacement hysteresis was then 
drawn for the dynamically tested walls, from which the Pinching04 backbone 
trend line was obtained (Figure 6).  
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Figure 6: Extracting the backbone trend line from shear strength-shear 
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Figure 7: Synthetic ground motion records closely-matched to UHS for a) 

Vancouver and b) Quebec (site class C) 
 
The pre-measured Pinching04 degradation factors were systematically changed 
along with the rDisp, rForce, and uForce factors (Figure 3) as well as the 
Rayleigh linear viscous damping ratio until an adequate match between the test 
and model was obtained. The displacement and strength response histories were 
determined using the advanced numerical models with the ground motion 
records illustrated in Figure 7 and were compared with the test measurements. A 
good agreement between the tests and numerical models were observed for both 
the single and double-storey walls (Figures 8-10). The test and model response 
time histories were in phase, and the numerical model was able to capture the 
strength as well as displacement response peak points especially well before the 
wall failure point. Inclusion of the linear uplift springs and defining the 
backbone trend line from the dynamic test data significantly improved the 
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Figure 9: Comparison of shear strength time history response of the enhanced 
dynamic models with test results for specimens; a) ST1-a, b) ST1-b, c) ST1-c, d) 
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Figure 10: Comparison of the results from testing and the advanced numerical 

model for specimen ST2-a; a) strength-drift hysteresis of the 1st and the 2nd 
floor, b) time history of the 1st floor, and c) time history of the 2nd floor 
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Figure 11: Strength-drift hysteresis of elastic dynamic test and corresponding 

numerical model for specimens; a) ST1-a, b) ST1-b, c) ST1-c, d) ST1-d and e) 
ST1-e 

 
capability of the numerical model to capture the dynamic response of the tested 
shear walls. The ratio of the test to the model inertia energy was obtained equal 
to 1.18 on average, ranging from 0.81 to 1.47. 

In addition, the wall test specimens were modelled at the elastic level of ground 
motion to match the shake table loading protocol. A Rayleigh damping ratio of 
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the tested walls at the elastic level was determined by matching the elastic 
dynamic tests with the numerical model results. The Rayleigh damping ratios 
obtained from the calibrated numerical models of the elastic dynamic tests 
(average=14%) were higher compared with those obtained from numerical 
modelling of the dynamic tests (average=5%), as was expected. The average 
Rayleigh damping ratio measured from the shear wall tests was 7.6%, excluding 
the second mode damping ratio (double-storey walls) in the averaging. The 
strength-drift hysteresis of the single-storey tested walls is shown in Figure 11. 
The hysteretic shape illustrates that a damping force is involved in the strength 
of the tested wall specimens even at elastic levels of loading. 
 
Conclusions 
 
Numerical models of steel sheathed / CFS framed shear walls were developed 
and calibrated using measurements of displacement, force and acceleration of 
dynamic shear wall tests and other ancillary component tests. The advanced 
numerical OpenSees models were able to adequately simulate the steel sheathed 
shear wall behaviour under dynamic load. The models were found to be accurate 
in capturing the response strength and displacement time histories as well as 
strength-displacement hysteresis of the single- and double-storey tested walls. 
Based on the accuracy of the advanced numerical models they are considered 
adequate to be used in the incremental dynamic analyses of representative 
buildings implementing FEMA P695 methodology (2009), the results of which 
will be used to evaluate the adequacy of the steel sheathed shear wall design 
methods developed in previous studies. 
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