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Thirteenth International Specialty Conference on Cold-Formed Steel Structures 
St. Louis, Missouri U.S.A., October 17-18, 1996 

NON-LINEAR BUCKLING ANALYSIS OF THIN-WALLED METAL COLUMNS 

J M Davies' and C Jiang *. 

Introduction 

Unifonnly compressed cold-fonned metal columns are susceptible to instability in a variety 
of modes. In the stability analysis of such a column, using any of the available numerical 
methods with the exception of the eigenvalue method, the perfect geometry of the column 
must be ' seeded' with an imperfection in order to cause it to collapse. If the member buckles 
in a global mode, it is easy to introduce an appropriate imperfection in fonn of a suitable 
displaced shape. However, it is more difficult to define the imperfections for the distortional 
and local buckling modes due to the unknown nature of the critical buckling patterns. 

The eigenvalue method can be used to predict the bifurcation buckling of a perfect member 
and linear solutions of eigenvalue problems have been well developed and documented. 
However, because many members buckle in the nonlinear region, it is necessary to develop 
non-linear solutions for eigenvalues. In the authors' studies, the eigenvectors from linear 
eigen-solutions have been introduced as the imperfections in non-linear finite element analysis 
using ABAQUS version 5.4. However, this may not always be sufficiently accurate because 
the patterns of linear buckling and non-linear buckling could be different. 

Unfortunately, if a problem with a large number of degrees of freedom is analyzed using the 
finite element method, the existing methods are expensive in tenns of either time or memory 
consumption. In this paper, a non-linear solution of eigenvalue problems set up using the 
finite element method is developed. The method has been used to analyze some stability 
problems in the unifonnly compressed uprights of steel pallet racks. The results from 

. analyses and tests agree well [1]. 

Geometric and material non-linearity 

It is well known that geometric non-linearity in degenerate shell elements is caused by the 
second strain derivative tenns [2]: 
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where u I, V I and w I are displacement components in the direction of the . local cartesian 
coordinates x', y' and Zl of the element and Ee and EI are respectively the linear and the non
linear contributions to the strains. The bold symbols denote matrices and column vectors. 
Material non-linearity may be considered as [2]: 

do = Depd& (2) 

with the elastic-plastic matrix Dep given by: 

= D- (3) 

In the above equations, u and E are the stress and strain vectors respectively, D is the general 
elasticity matrix, a is the general displacement vector and H' is the hardening parameter. 
These non-linearities are considered in forming the stiffness matrix K and the geometric 
stiffness matrix Kg. 

Non-linear eigenvalue problems 

In finite element analysis, the second-order behaviour of a structure can be expressed by the 
following equation 

(4) 

The geometric stiffness matrix Kg depends on the stresses u caused by the external forces F. 
In both linear and non-linear stability analyses, the applied load on the structure is regarded 
as a fixed loading pattern multiplied by some factor A. The critical load vector It'CI can be 
defined as the load F multiplied by the smallest value of A at which the displacements of 
structure become indeterminate, i.e. at bifurcation of equilibrium. This condition can be 
written mathematically as: 
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(5) 

This is a problem of determining eigenvalues Ai and corresponding eigenvectors ai (buckling 
patterns) for the pair of matrices K and Kg. 

From the engineering point of view, only the lowest value of the critical load has practical 
significance so that it is only necessary to determine the minimum value of A. However, in 
the case when such a bifurcation has a stable character, a secondary critical load may be of 
importance. This is a consequence of the differences between perfect structures and 
imperfect structures. 

In a linear stability analysis, the matrix K of equation (5) is the global elastic stiffness matrix 
Ke which is independent of the stress and strain levels and Kg is independent of the load 
history. For a nonlinear buckling analysis, the matrix K in equation (5) has to be the global 
elastic-plastic matrix Kep. In this case, the matrix Kep is not constant because the plastic 
property matrix depends on the stress level and specific features of the material models. 
Furthermore, Kg is then dependant on the stress-strain history. 

Existing non-linear solutions of eigenValue problems 

Non-linear solutions of equation (5) can be achieved by an appropriate modification of the 
elasto-plastic stiffness matrices Kep and Kg at each load increment, so as to include suitable 
stress-dependent coefficients that are representative of the state of plasticity in the material. 

For non-linear buckling analysis, the critical state of stress is reached when A in equation (5) 
is equal to unity. One way of solving this problem is the method adopted by Pifko and 
Isakson [3], in which a process of trial and error was used employing a bisection strategy. 
In this method, the stress state is calculated, the matrices Kep and Kg are then computed 
based on these stresses at a trial loading level, and the corresponding lowest eigenvalue is 
then determined. If the eigenvalue so determined is sufficiently close to one, then the trial 
loading is critical. If it does not equal one, the current trial loading has to be increased or 
decreased for the next trial. This procedure is repeated until A equals one or the convergence 
criterion is satisfied. Obviously, this method is simple and easy to programme. However, 
it is rather inefficient because it involves repeatedly solving the eigenvalue problem at every 
trial loading level. 

Gupta presented a method [4-6] which was based on the Sturnl sequence property [7,8] also 
employing the bisection strategy. The most useful consequence of the Sturm sequence 
property is that for any guessed value of A, the number of sign changes in the determinant 
of (Pi - AI) for i = 0, 1, 2, ... n is equal to the number of eigenvalues of (P - AI) which are 
less than A. The matrix I is the unit matrix and the matrix P results from the standard form 

(P - H)x = 0 (6) 

of the general eigenvalue equation (5). Gupta's method avoids the computation of the 
eigenvalue itt each trial loading level which makes the method more efficient. However, the 
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method involves a triangularization process at each trial load level and needs core to store 
the upper symmetric half of both of the matrices Kep and Kg. When a problem with a large 
number of degrees of freedom is dealt with, much memory and computation time are 
consumed. This method was used by Lau and Hancock in combination with the spline finite 
strip method [9]. 

An improved solution for eigenvalues 

The method proposed in this paper [1] is based on the inverse shift iteration technique in 
combination with a finite element analysis using degenerate shell elements. 

The stiffness matrix Kep can be obtained from the normal procedures for stress analysis using 
the finite element method. The geometrical stiffness matrix Kg depends on the values of the 
stresses in the elements as well as on the assumed displacement field. In special cases, the 
stresses in the elements may be known exactly. However, this is usually not usually the case 
so that a stress analysis by the finite element method, using the same element discretization 
as the subsequent buckling analysis, seems natural. 

Since an iteration scheme is used to solve a nonlinear problem, the load is gradually 
increased by increasing the load factor A. If the inverse shift iteration technique is used to 
compute the eigenvalue, the lowest eigenvalue Ai can be always obtained at each load level 
(Ai should be kept small in order to prevent the load from reaching the higher buckling 
modes). Based on the eigenvalue Ai at tlle last load level, the current load factor Ai+! can 
be predicted to make the current eigenvalue equal one. The load factor Ai+! for next 
eigenvalue solution is then suggested as: 

if\>1 (7) 

if\<l (8) 

where the factor 'fJ (0 < 'fJ < 1) can affect the convergence speed of the eigenvalue 
solution. The optimum value of 'fJ depends on the problem being analyzed and the 'gold 
division coefficient' 0.618 is suggested for general use. 

Figure 1 is the flow-chart that shows how the subroutine is connected to a progranIDle of 
normal stress analysis. 

Optimization of the computation 

If. a normal solution method is adopted to solve equation (5), for example the Gaussian 
elimination method, for a relatively simple problem with (say) 150 nodes using a PC-486DX 
with a 6.75-megabyte memory, many hours of computation would be needed. It follows that 
it is practically impossible to analyze stability problems of this type on a PC with a normal 
equation solution method. However, the matrix Kep is symmetrical and its coefficients have 
a 'banded' structure as shown in Figure 2. 



Figure 1 

Figure 2 
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Flow-chart for improved eigenvalue solution 
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Banded structure of a typical finite element analysis 
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This means that the coefficients are clustered around the diagonal stretching from the top left 
hand comer of the matrix Kep to the bottom right-hand comer. In this case, there are never 
more than B non-zero coefficients on either side of the leading diagonal in any row, where 
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B is the half band width: 

B = (d + l)f (9) 

where d is the maximum difference in the node numbers for all of the elements of the 
assemblage and f is the number of degrees offreedom at each node. Since the displacements 
u, v and w of the ninth node of the 9-node Heterosis element used in the authors' analysis 
are restrained, the half band width B for this case is: 

B = (d + 1) f - 3 (10) 

Therefore, only the leading diagonal tenns and B-1 additional coefficients per row need to 
be stored for calculation and a great deal of memory and computation time can be saved. 
The most economical method of storage is to store the lower band of the matrix in a 
rectangular array by shifting the rows in order to align the band structure. With this half 
banded array, equation (5) for the typical problem discussed above can be solved by 
Cholesky's method [7] using only 0.786 megabytes of memory and about 5 minutes 
computation time. 

If may be noted that, in each iteration i, Kgai = 3 i+! has to be computed and Kg is a very 
large array. In order to save further memory, an efficient method is to compute kgai for each 
element and to add the products to ai+! simultaneously without assembling and storing Kg. 

In practice, at each load level, the nodal displacements are substituted for the eigenvector a, 
instead of an identity vector as generally adopted in equation (5), in order to accelerate 
convergence. By this method, for a problem which will be described later, the estimated 
eigenvalue could be obtained with only 20 iterations while, if the identity vector is used, 
more than 70 iterations would be needed in order to achieve the same accuracy in the 
estimated eigenvalue. The· computer codes for the developed method can be found in 
reference [1]. 

Analyses of uniformly compressed columns 

A total of 68 channel sections of different sizes and shapes, thicknesses and steel grades were 
tested in the fixed-ended condition under unifonn compression by Lau and Hancock [9] and 
analyzed using the finite strip method. These sections and lengths are typical of those used 
in practical pallet rack construction. The sections RA17, RA24, RL17 and RL24, as shown 
in Figure 3, have been analyzed using the developed method with 9-node Heterosis shell 
elements. 

The mean stress-strain curves of HR340 and G450 steel from which the columns were made, 
as shown in Figures 4(a) and (b), were detennined from tests. These were assumed to be 
reasonably representative for the specimen material and therefore they were used by Lau and 
Hancock in their inelastic finite strip analysis. The nonlinear range of the stress-strain curves 
is highly significant since the majority of members failed in this range. Because of the cold
fonning operation, strain hardening and age hardening would be caused at the comers of the 
member and these should be taken into account in the analysis. Figures 4(a) and (b) show 
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the mean stress-strain curves obtained by tests and these were reduced to analytical curves 
for inclusion in the analysis. 

76.2 80.3 

~1 "'1 
26.41 28.21 

86.1 81.2 

381 28'1 2.1 2.386 
RL24 

22.1 I 26.4 I 
~ ~ 

Figure 3 Dimensions of sections RA17, RA24, RL17 and RL24 

An analysis to evaluate the accuracy of the Heterosis element mesh was performed for the 
RA24-300 section (the suffix 300 is the specimen length in mm). The two meshes used are 
shown in Figure 5(a) for 18 x 15 elements and in Figure 5(b) for 14 x 8 elements and the 
resulting buckling stresses may be compared. It was found that the mesh shown in Figure 
5(b) is sufficiently accurate and that the buckling stress computed with this arrangement is 
only approximately 2.6% higher than is obtained using the more refined mesh shown in 
Figure 5(a). In order to economise on computation, 14 x (L134) elements, where L is the 
length of the member, were adopted in the authors' analyses. The maximum aspect ratio of 
the length b to the thickness t of the elements was less than 18.5. 

Results and comparison with tests 

The results given by a number of alternative analyses, such as the finite element method 
(FEM) with the developed eigenvalue method, the 'Generalized Beam Theory' (GBT) [10] 
and the spline finite strip method (SSM) [9] are compared with the test results in Figures 6-9 
and in the Appendix. The subscript 'in' donates the nonlinear analysis and Fy is the yield 
stress of the material. A typical buckling configuration, which is plotted from the computed 
eigenvectors obtained using FEM, is shown in Figure 10. 
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Figure 4 Mean stress-strain curves (a) HR340 steel (b) G4S0 steel 
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L· 300 mm 

(a) 18x25 mesh (b) 14x8 mesh 

Figure 5 Two mesh options for finite element analysis 

It is interesting to note the following phenomena: 

1. The buckling mode given by FEM can be different from that given by the spline finite 
strip method. For specimen RAI7-800, both the elastic and inelastic buckling modes 
from the finite element method are local modes while those from the finite strip 
method are distortional. For RA24-1500, the inelastic, buckling mode from finite 
element method is a flexural mode, which agrees with the test, while that predicted 
by the finite strip method is distortional. For these sections, the results obtained 
using finite strip methods are slightly lower than those using finite element methods. 

2. In the non-linear analysis of the section RA24-300 using FEM, an eigenvalue A equal 
to one could not be achieved. This meant that the member failed in compressive 
yield before buckling could occur. This case can often be met in the analysis of a 
stub column. 

3. The wave lengths ·of distortional buckling of sections RA17 1300-1900 and RL17 
1300-1900 are so long that the number of buckling half waves could not be 
determined though they are evidently much longer than those of local buckling. 

4. Fixed end conditions have a great influence on torsional buckling. In the analyses 
using FEM, the torsional buckling mode does not appear to occur due to the boundary 
condition where the three displacement components u, v and wand the two rotation 
components ex and (3 of nodes are restrained. 
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Conclusions 

The method of non-linear eigenvalue solution discussed in this paper is worthy of recognition 
because it produces an accurate prediction of the buckling stresses using a relatively simple 
procedure which requires much less memory and computing time in order to determine the 
eigenvalue. 

The analysis used for the uniformly compressed columns is slightly more accurate for shorter 
wave-length local and distortional modes than for the longer wave-length flexural-torsional 
modes, probably as a result of geometric imperfections which would have a greater effect 
on the longer wave-length modes and which were not accounted for in the eigenvalue 
analysis. Another reason is presumably the number of elements used which can, of course, 
also affect the accuracy of the solution. 

Greater attention should be given to the distortional buckling mode by the designers of cold
formed sections. For columns with cross-sections and lengths commonly used in practice, 
distortional buckling may be more critical than either local buckling or torsional flexural 
buckling. 

It may be noted that the effect of imperfections can be great for imperfection sensitive 
structnres and an eigenvalue solution can over estimate the maximum load capacity of a 
structnre. In this sitnation, the eigenvectors from the non-linear eigen-solution may be 
introduced as an imperfection pattern. This method is preferred if the post-buckling 
behaviour is accompanied by a secondary path. 

Figure 10 A typical buckling configuration obtained using FEM 
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Appendix Analytical results 

Section RA17 (E = 185 kN/rrun2 , Fy = 406.2 N/rrun2) 

Length SSM SSMin GBT FEM FEMin TEST 
(mm) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 
300 416.3L 329.1 L 419.3 409.1 L 341.9 L 350.5 L 
800 403.9D(l) 318.9D(l) 410.9 394.8 L 321. 0 L 320.7D(l) 

1300 348.9D(2) 285.4D(2) 353.5 364.7 D 311.6 D 304.3D(2) 
1500 342.5D(3) 280.5D(3) 337.1 347.3 D 308.1 D 302.2D(3) 
1700 323.8D(3) 274.0D(3) 324.9 340.3 D 297.6 D 292.4D(3) 
1900 316.3D(3) 272.3D(3) 322.1 338.2 D 296.2 D 289.1D(3) 

Section RA24 (E = 200 kN/rrun2, F y = 478.8 N/rrun2) 

Length SSM SSMin GBT FEM FEMin TEST 
(mm) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 
300 855.1L 457.2L 874.4 860.0L 456.0L 
800 661. 7D (2) 407.1D(2) 650.1 652.9D(l) 416.7D 412. 5D (1) 

1100 577. 7D (2) 399.4D(2) 593.2 596.3D(2) 393.5D 382.0D(2) 
1500 534.0D(3) 391.7D(3) 551.7 588.7D(3) 392.3FT 367.0 FT 
1700 528.5D(4) 383.6FT 537.5 570.8FT 389.0FT 367.0 FT 
1900 519.1 FT 365.3FT 480.9 562.4FT 366.7FT 335.2 FT 

Section RL 17 (E = 185 kN/nm12, F y = 406.2 N/rrun2) 

Length SSM SSMin GBT FEM FEMin TEST 
(mm) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 
300 336.5L 293.6L 351. 3 351.8L 293.9L 337.0L 
800 321. 6L 287. 9D (1) 326.3 324.2L 288.0L 306.5D(l) 

1300 319.5D(2) 285.4D(2) 355.2 322.6D 286.6D 288.0D(2) 
1500 319.5D(2) 279.7D(3) 340.7 320.0D 280.1D 286.9D(3) 
1700 320.5D(3) 276.6D(3) 328.6 320.3D 277.6D 280.4D(3) 
1900 315.2D(3) 269.6D(3) 315.5 318.2D 276.0D 262.0D(3) 

Section RL24 (E = 200 kN/rrun2, Fy = 478.8 N/rrun2) 

Length SSM SSMin GBT FEM FEMin TEST 
(mm) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 
300 830.8L 464.9L 867.8 857.1L 466.1L 450.5L 
800 807.9L 430.2D(2) 819.4 801. 8L 406.7D 410.2D(l) 

1100 702.6D(2) 418.7D(2) 702.7 719.6D 393.5D 393.9D(2) 
1500 645.0D(3) 393.7 FT 617.2 633.7D 386.9FT 380.0 FT 
1700 572.9FT 376.8 FT 534.6 589.5FT 369.1FT 354.9 FT 
1900 484.1FT 357.6 FT 447.2 502.4FT 336.7FT 311.5 FT 

In the table, the numbers in parentheses are the numbers of distortional buckling half waves 
revealed by the analyses and: 

L = local mode 
D = distortional mode 
FT = torsional-flexural mode 
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