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Buckling analysis of cold-formed steel members with general 

boundary conditions using CUFSM:  
conventional and constrained finite strip methods 

 
 

Z. Li1 and B. W. Schafer2 
 

Abstract 

 
The objective of this paper is to provide the theoretical background and 
illustrative examples for elastic buckling analysis of cold-formed steel members 
with general boundary conditions as implemented in the forthcoming update to 
CUFSM. CUFSM is an open source finite strip elastic stability analysis program 
freely distributed by the senior author. Although the finite strip method presents 
a general methodology, the conventional implementation (e.g. CUFSM v 3.13 or 
earlier) employs only simply-supported boundary conditions. In this paper, 
utilizing specially selected longitudinal shape functions, the conventional finite 
strip method is extended to general boundary conditions, including the 
conventional case: simply-simply supported, as well as: clamped-clamped, 
clamped-simply supported, clamped-free, and clamped-guided. The solution 
remains semi-analytical as the elastic and geometric stiffness matrices are 
derived in a general form with only specific integrals depending on the boundary 
conditions. An example of the stability solution is provided. The selection of 
longitudinal terms to be included in the analysis is discussed in terms of 
balancing accuracy with computational efficiency. Also herein, the constrained 
finite strip method is extended to general boundary conditions. Both modal 
decomposition and identification can be carried out based on the new bases 
developed for the constrained finite strip method, and illustrative examples are 
provided. This extension of CUFSM is intended to aid the implementation of the 
direct strength method to the case of general boundary conditions.  
 
Keywords: Finite strip method, constrained finite strip method, boundary 
conditions, elastic buckling analysis, CUFSM 
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Introduction 

Cold-formed steel members are thin, light and economically efficient. However, 
this efficiency comes with complication. Engineers must account for cross 
section instability (i.e., local and distortional) in addition to global buckling 
(Euler) of the member. Numerical solutions, such as the finite strip method 
(FSM), are particularly important for addressing this complexity as they take 
into consideration the inter-element interaction and as a result provide far more 
accurate solutions for local and distortional buckling than typical hand formulas.  
 
Conventional FSM, e.g., CUFSM [1], freely available from the senior author’s 
website (www.ce.jhu.edu/bschafer/cufsm), provides a method to examine all the 
instabilities in a cold-formed steel member under uniform longitudinal stresses 
(axial, bending, warping torsion, or combinations thereof). Additionally, the 
newly developed constrained finite strip method (cFSM) is implemented in 
CUFSM. When the signature curve of the conventional FSM is not able to 
provide distinct minima that correspond to local and distortional buckling mode 
[2], cFSM becomes essential for accurately determining the buckling modes and 
greatly eases and generalizes implementation in new design methods such as the 
Direct Strength Method (DSM) [3]. However, existing CUFSM and cFSM 
implementations are applicable to only simply supported end boundary 
conditions. 
 
Recently, extensions of the conventional FSM and cFSM to general end 
boundary conditions, namely: simple-simple (S-S), clamped-clamped (C-C), 
simple-clamped (S-C), clamped-free (C-F), and clamped-guided (C-G), have 
been explored by Li and Schafer [4, 5]. Specially selected longitudinal shape 
functions are employed to represent the specified boundary condition [4, 6] as 
follows: 
simple-simple, Y[m]  sin my /a  (1) 

clamped-clamped, Y[m]  sin my /a sin y /a  (2) 

simple-clamped, Y[m]  sin (m 1)y /a  m 1/m sin my /a  (3) 

clamped-free, Y[m] 1 cos (m 1/2)y /a   (4) 

clamped-guided, Y[m]  sin (m 1/2)y /a sin y / 2 /a  (5) 

where, m indicates the longitudinal term to be summed to form the displacement 
field. These shape functions have been implemented into a new version of 
CUFSM for both conventional and constrained FSM (cFSM). To provide the 
theoretical basis of this solution the underlying elastic and geometric stiffness 
matrices are briefly derived and presented. In addition, stability solutions for 
general boundary conditions are provided against the typical signature curve to 
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illustrate their coherent relationship. The underlying theory and procedure of 
cFSM for general boundary conditions is provided along with related examples. 
Finally, FSM and cFSM for general end boundary conditions are employed for 
use with the DSM design procedure. The coupling between longitudinal terms 
for non-simply supported boundary conditions creates complications and new 
procedures are suggested.  

Conventional Finite Strip Method 

A typical strip for a thin-walled member is depicted in Figure 1, along with the 
degrees of freedom (u1,v1,w1,θ1, etc., for the m=1 longitudinal term) applied end 
tractions (T1, T2) and the global/member (X, Y, Z) and local/strip (x, y, z) 
coordinate systems.  
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Figure 1 Coordinates, Degree of Freedom, and loads of a typical strip 

 
The u, v and w displacement fields are approximated with shape functions and 
nodal displacements. These displacement fields are summed for each 
longitudinal term m, up to q, specifically: 
 

 
][

][2

][1

1

)1( m
m

m
q

m

Y
u

u

b

x

b

x
u












  



,  
 m

'
]m[

]m[

]m[
q

m

a
Y

v

v

b

x
)

b

x
(v












  

 2

1

1

1  (6) 

 
][][

1
2

2

3

3

2

2

2

2

3

3

2

2

  )
b

x
-

b

x
x(

2

b

3x
)

b

x

b

2x
-x(1

2

b

3x
-1 mwm

q

m

dY
b

x

b

x
w 










  (7) 

where  ][2][2][1][1][ mmmmmw wwd  and μ[m]=mπ. The shape function of the strip 
in the transverse direction is the same as a classical beam finite element, while 
in the longitudinal direction, Y[m], is employed with trigonometric functions as 
shown in Eq.’s (1)-(5). 

Elastic and Geometric stiffness matrices 

For the elastic stiffness matrices the strain in the strip consists of two portions: 
membrane and bending. The membrane strains are at the mid-plane of the strip 
and governed by plane stress assumptions. The bending strains follow Kirchhoff 
thin plate theory and are zero at the mid-plane, and a function of w alone. For 
each strip, the elastic stiffness matrix ke can be formulated through the internal 
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energy integration, where stress is connected to strain by an orthotropic plane 
stress constitutive relation. See [1] and [4] for full derivation. Matrix ][mn

ek  
corresponding to longitudinal terms m and n is one block elastic stiffness matrix 
of the full elastic stiffness matrix ke, which can be separated for membrane (M) 
and bending (B), 
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The closed-form expressions for the membrane, ][mn
eMk , and the bending, ][mn

eBk , 
elastic stiffness matrices are provided as follows:  
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The geometric stiffness matrix is determined by examining the potential work 
created as the plate shortens, e.g., due to out-of-plane bending (or the 
Lagrangian strain terms), allows the geometric stiffness matrix kg to be 
formulated as well (see complete derivation in [1, 4]). Similar to the elastic 
stiffness matrix, ][mn

gk  corresponding to longitudinal terms m and n is broken 
into membrane, ][mn

gMk  and bending, ][mn
gBk : 
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The explicit expressions are given below: 
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where  mm  ;  nn  ; 

a

nm dyYYI
0

''
][

''
][4

; 
a

nm dyYYI
0

'
][

'
][5

  

The full elastic stiffness matrix ke and geometric stiffness matrix kg can be 
expressed as: 

  qq
mn

ee kk  ][ and  
qq

mn
gg kk


 ][

  (14) 

where each ke
[mn] and kg

[mn] submatrices are 8x8 and q2 such submatrices exist.  

 

Note, I1 through I5 are zero when m≠n for the simple-simple (S-S) boundary 
conditions leaving only a diagonal set of submatrices in ke and kg. It is this 
efficiency that leads to the attractive nature of the classical solution and the 
universality of the buckling half-wavelength vs. buckling load curve (signature 
curve) for the S-S boundary conditions. For all other boundary conditions ke and 
kg have non-zero submatrices off the main diagonal and interaction of buckling 
modes of different half-wavelengths (or longitudinal terms) occur and the 
signature curve loses its special significance. In essence, for all boundary 
conditions other than S-S, FSM has the same identification problems as finite 
element method (FEM), unless other tools such as the constrained FSM are 
implemented. 

Assembly and Stability solutions 

After necessary transformation from local to global coordinates based on the 
strip orientation and appropriate assembly over all the strips, the global elastic 
(Ke) and geometric (Kg) stiffness matrices can be obtained. See complete details 
in [1] and [4]. For a given distribution of edge tractions on a member the 
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geometric stiffness matrix scales linearly, resulting in the elastic buckling 
problem: 
  ge KK  (15) 

where,   is a diagonal matrix containing the eigenvalues (buckling loads) and 
  is a fully populated matrix corresponding to the eigenmodes (buckling 
modes) in its columns. Validation of the conventional FSM solution may be 
found in [4]. 

Signature curve and FSM solution of general boundary conditions 
To illustrate the stability solution for general boundary conditions and reveal its 
relationship with the popularized “signature curve” the stability solutions for a 
400S162-68 SSMA stud section [7] under major-axis bending are provided for 
simple (S-S) and clamped (C-C) boundary conditions in Figure 2. Note, the 
signature curve is a special case of the S-S FSM solution where only a single 
longitudinal term (i.e., m=1) is employed. FSM solutions for S-S boundary 
conditions for any m are independent due to the resulting orthogonality in Ke and 
Kg and further the buckling load for any m may be found by performing the 
solution for m=1 at a length equal to a/m. As a result, it has become 
conventional to express FSM solutions of S-S boundary conditions in terms of 
the first buckling load over a series of lengths as opposed to FEM solutions 
where typically a model is solved for many buckling loads at a single length by 
examining higher mode solutions [8]. 
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Figure 2  Signature curve and FSM solution for general boundary conditions 

For FSM with non simply-supported boundary conditions the orthogonality is 
lost, and thus the special meaning of the signature curve (an m=1 solution with 
varying length a) is lost, as shown in Figure 2. Given that many longitudinal (m) 
terms are used the solution should be interpreted as a function of physical 
length, as opposed to half-wavelength. In fact, the FSM solution captures the 
potential interaction of longitudinal terms, and it would be equally valid to use 
the FEM approach and examine higher mode solutions at a given length (e.g., at 
L~100in. as shown), instead of varying a as shown in Figure 2. 
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Longitudinal terms 
Although the signature curve is ineffective for non simply-supported boundary 
conditions, the buckling nature in terms of the inherent half-wavelengths of 
local, distortional, and global buckling from the signature curve still provide 
useful information. For problem size and computational efficiency the total 
number of longitudinal terms included in the analysis should be minimized. 
Accordingly, longitudinal terms for the physical length (L) to be analyzed 
should be wisely selected so that higher modes reported from the FSM solution 
consist of all the three modes (local, distortional and global). Studies in [4] show 
that given that the simply supported half-wavelengths of local (Lcr), distortional 
(Lcrd), and global (Lcre) buckling these represent the three regimes for m of 
greatest interest, i.e. m near L/Lcr, L/Lcrd, and L/Lcre. Note, usually, Lcre is the 
physical length, thus 1, 2, and 3 are chosen around L/Lcre, and 7 longitudinal 
terms are chosen around  L/Lcrand L/Lcrd to include relevant potential 
couplings. 

The critical buckling moments of the first 10 modes at L=108 in. (see Figure 2) 
are listed in Table 1 for both S-S and C-C boundary conditions using the 
suggested longitudinal terms. For the S-S case, modes 1, 4 and 10 are the global, 
distortional, and local buckling modes, respectively, and match exactly the 
signature curve. For the C-C case, critical moments have a negligible difference 
compared with the solution with all longitudinal terms included, e.g., mode 3 
Mcrd is 0.05% lower with all terms. The difference of the participation of 
longitudinal terms is illustrated for the 3rd mode in Figure 3. 

Table 1 Higher modes of FSM solution for S-S and C-C boundary conditions 

Higher 
modes 

Mcr of FSM solution for S-S Mcr of FSM solution for C-C 

1 11.94 
G 

40.90 
G 

2 39.47 
G 

78.63 
G 

3 81.58 
G 

89.86 
D 

4 88.65 
D 

90.01 
D 

… Higher order D modes … Higher order D modes 

10 165.53 
L 

165.58 
L 
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Figure 3 Participations of longitudinal terms for 3rd mode of FSM solution 

Constrained Finite Strip Method 

The concept and theory of the constrained FSM (cFSM) for S-S boundary 
conditions is well established [1, 9-11] and at its heart employs the same 
mechanical assumptions of the deformation modes utilized in Generalized Beam 
Theory (GBT) [12, 13]. In cFSM, the mechanical assumptions provide a means 
to categorize any deformation, including buckling modes into global (G), 
distortional (D), local (L), and other (O, or shear and transverse extension--ST) 
deformation spaces. The key feature of cFSM is that the general displacement 
field d may be constrained to any “modal” deformation space, M, via: 

 
MM dRd   (16) 

where RM is the constraint matrix for the selected modal space(s) (G, D, L, O 
(ST) or any combination thereof) and dM is the resulting deformations within that 
space. 
 
Recently, the authors extended FSM and cFSM to the case of general end 
boundary conditions [4, 5] and this paper summarizes that work as implemented 
in CUFSM. cFSM provides the ability to perform modal decomposition of 
stability solutions as well as quantitative modal identification. Extension to 
general boundary conditions is an important step towards cFSM’s application in 
general purpose design situations. 

Buckling mode definition 

The essential feature of cFSM is the separation of general deformations into 
those deformations consistent with G, D, L, and ST/O deformation spaces. The 
deformation spaces are defined by the mechanical assumptions inherent within 
each space. The criteria are provided below in Table 2 and implemented for each 
space, as is typical in the cFSM literature [1, 4, 5, 9-11]. 
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Table 2 Mechanical criteria of mode definition 

 

Base definition 
Although Table 2 defines the deformation spaces, there are some subtleties in 
the implementation which do influence the resulting modal decomposition or 
identification. Full details of the basis definitions are provided in [5] and a 
summary of the bases utilized in CUFSM’s implementation of cFSM are 
provided in Table 3. The simplest application of the Table 3 definitions are 
embodied in the “Natural basis” which is defined by explicitly following the 
mechanical criteria (see [4]). The natural basis, which separates the 
deformations into the G, D, L, O/ST spaces may be transformed to a true 
“modal” basis (similar to GBT) by performing an auxiliary eigen problem 
within each space either for a unit axial stress, or for the actual applied stresses. 
For non-simply supported boundary conditions due to the loss of orthogonality 
of the stiffness matrices between longitudinal terms, whether the constrained 
eigenvalue problem is solved inside each longitudinal term or over all the 
longitudinal terms results in the uncoupled and coupled bases, respectively. 
Finally, two alternatives exist for defining the O/ST space. Either the O space 
can be built up as the union of the shear and transverse extensions (generally 
preferred) or the space may be defined as the null of the GDL subspace, either 
with respect to elastic stiffness matrix Ke (eRO), geometric stiffness matrix Kg 
(gRO), or in vector sense (vRO) as detailed in [5]. 

Table 3 Summary of defined bases 

Uncouple  basis Coupled basis Uncouple basis Coupled basis
GD
G
D
L

(a) G modes may be defined about principle axes or about geometric axes. Also pure torsion mode does not have to
      be about shear center, though CUFSM (and GBT) does choose to do this.
(b) S and T may be formed from strip-wise shear and transverse extension, e.g. +1,-1 for v in a strip, or +1,0 for v 
     in a strip leading to different S and T spaces.
(c) Uncoupled basis means the null space of GDL space or the orthogonalization is performed inside each longitudinal term m. 
       The resulted basis is a block diagonal matrix.  

Subs
paces

ST/O

(a)

Orthogonalization in the subspace
Natural basis (not orthogonal) Modal basis (orthogonal)

Axial uniform force Applied force

Shear + Transerse extension
(b)

Null of GDL

Uncoupled basis (c) Coupled basis

 
Also, note, for the purpose of performing modal identification the base vectors 
in the basis have to be appropriately normalized. Normalization can be done in 
various ways. Three options are available and each column φi in bases must 
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satisfy the following condition: (1) vector norm 1i ; (2) strain energy norm 
1ie

T
i K  ; and (3) work norm 1ig

T
i K  . 

Modal decomposition 
The constrained eigenvalue problem may be expressed by introducing Eq. (16) 
into the FSM eigenvalue problem for mode or modes M as: 
 

MMgMMMe KK  ,,
 (17) 

where, Ke,M and Kg,M are the elastic and geometric stiffness matrix of the 
constrained FSM problem, respectively, and defined as Ke,M=RM

TKeRM and 
Kg,M=RM

TKgRM; ΛM is a diagonal matrix containing the eigenvalues for the given 
mode or modes, and ΦM is the matrix of corresponding eigenmodes (or buckling 
modes) in its columns. 
 
To illustrate the capability of cFSM for general boundary conditions, the G, D, 
and L modes are decomposed from the FSM solution using the natural basis 
(ST) of Table 3 and the critical moments are plotted in Figure 4 against the FSM 
solution for the 400S162-68 SSMA stud section under major-axis bending with 
C-C boundary conditions. The longitudinal terms employed are the previously 
recommended terms. In general, the results are consistent with the observations 
in previous cFSM analyses for S-S boundary conditions. 
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Figure 4 Modal decomposition of cFSM 

Modal decomposition may also be used to search the participation of 
longitudinal terms for pure local and distortional buckling, and then use these 
longitudinal terms to force the member to buckle in local or distortional 
buckling mode as described in the application with DSM section at the end of 
this paper. 
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Modal Identification 

Using the defined cFSM bases, natural or modal, any nodal displacement vector, 
d, (deformed shape or buckling mode) may be transformed into the basis 
spanned by the buckling classes, via 
 dRc 1  (18) 
where the coefficients in c represent the contribution to a given column of basis 
R. The participation of each mode class is calculated as: 

              





4

/,,,
22

/
OSTLDGM

MMM ccp   (19) 

where cM is column vectors of the contribution coefficients of each mode class 
(G, D, L, ST/O) in c. Eq. (19) uses the L2 norm to calculate the participation of 
each mode class other than the absolute sum as previously used. The attraction 
of formal identification of the buckling modes is not just a theoretical one, as 
design methods such as the DSM directly utilize this information to select 
buckling modes and then predict ultimate strength. 
 
To illustrate the capacity of modal identification of cFSM, modal participations 
for the higher modes of Table 1 are provided in Table 4. The basis employed is 
the uncoupled axial modal basis (ST) with vector normalization. The 
classification of buckling modes (G, D, L) provide in Table 1 is completed 
empirically, simply by visualizing the 2D (or 3D) buckling mode. That highly 
subjective process can be replaced by the quantitative results of Table 4. For 
example the 9th mode (Figure 5) when using visual identification only may 
credibly be identified as distortional, but cFSM model identification shows it to 
be dominated by global deformations with only a modest distortional 
contribution. 
 

Table 4 Modal classification of higher 
modes of FSM solution 

G D L O
1 40.90 98.3 1.6 0.0 0.0
2 78.63 92.0 7.7 0.2 0.1
3 89.86 4.0 92.4 3.4 0.2
4 90.01 3.8 91.8 4.1 0.2
5 94.60 3.9 90.8 5.1 0.2
6 94.78 5.1 91.4 3.3 0.2
7 102.02 3.6 91.1 5.0 0.3
8 106.17 6.3 90.6 2.9 0.2
9 140.69 82.0 17.5 0.4 0.1
10 165.58 0.8 6.5 91.9 0.8
11 165.58 0.8 6.4 92.0 0.8
12 165.75 0.8 6.4 92.0 0.8

Participation (%)Higher 
modes Mcr

 
Figure 5 2D buckling 

shapes of 9th mode  
of FSM solution 
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Application with Direct Strength Method 

Together with the Direct Strength Method (DSM), an FSM solution can prove to 
be a powerful tool in member design. FSM application for S-S boundary 
conditions, through the signature curve, has been well studied while the 
application for non-simply boundary condition is still a work in progress. 
However, basic ideas for non-simply supported boundary conditions are 
explored here for the intention of developing consensus. 

Application for simply supported boundary condition 
Traditionally, the two local minima and the descending branch at longer lengths 
in the signature curve provide the necessary information for the local, 
distortional, and global buckling loads for design [1, 14-15]. However, studies 
on SSMA sections [2] demonstrate that the signature curve often fails to 
uniquely identify the modes, as illustrated in Figure 6. Although cFSM can 
uniquely identify the buckling modes, two basic issues remain: (1) DSM’s 
strength expressions are calibrated to the conventional FSM minima instead of 
pure mode solutions from cFSM (which are generally a few percent higher), and 
(2) cFSM can not handle rounded corners. To address these issues a two-step 
procedure has been adopted for determining the elastic buckling loads and 
moments. First, in step 1, the analyst develops a rounded corner model of the 
section and runs a conventional FSM model. If unique minima exist the analysis 
is complete. If not, step 2 is completed where: the analyst develops a straight-
line model of the section and runs constrained FSM pure mode solutions for 
local and distortional, only for the purpose of determining the length (Lcr) at 
which the modes occur. The elastic buckling load (or moment) is determined 
from the conventional FSM with round corners, Step 1 model, at the Lcr 
identified in the Step 2 model. A shorthand for this solution method is 
FSM@cFSM-Lcr, which is detailed in [2], and illustrated for an 550S162-43 stud 
section under axial compression in Figure 6. 
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Figure 6 Signature curve augmented with pure mode cFSM solution and 

illustration of the proposed FSM@cFSM-Lcr solution  
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Application for general boundary conditions 
Modal identification of an FSM solution for general boundary conditions is 
similar to FEM: at a physical length, L, the higher modes provide the most direct 
manner for finding the G, D, and L buckling load or moment. The first identified 
modes (in ascending buckling values) of G, D, and L can be used as the needed 
inputs in DSM. For example, critical moment of the 1st, 3rd, and 10th modes in 
Table 1 may be used as Mcre, Mcrd, and Mcr respectively, and thus as the DSM 
inputs to predict the bending strength at L=108 in. Moreover, if cFSM is 
applicable (no round corners), modal identification can be performed by cFSM 
as shown in Table 4. Thus, the engineer can pick the first identified G, D, and L 
modes, or the modes having the highest individual G, D, and L participation 
(e.g., the 11th or 12th modes have more L participation than the 10th L mode 
though the difference in this case is negligible). 
 
Modal decomposition in cFSM has the ability to decompose the deformation 
field into individual mode or combined modes of interest. Though the critical 
loads of pure modes in cFSM can not be used directly with DSM, the 
longitudinal terms contributing most to the pure modes can be determined and 
these terms then used in the conventional FSM solution to force the member to 
buckle in the desired local or distortional buckling mode. These buckling loads 
may then be used as DSM inputs to predict the ultimate strength in design. To 
illustrate consider again the 400S162-68 SSMA stud section at L=108 in. and C-
C boundary conditions. The participations for the longitudinal terms in pure 
local and distortional buckling from cFSM are provided in Figure 7.  
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Figure 7 Participation of longitudinal terms of pure local and distortional 

buckling 

Similar to the two step-procedure for simply supported boundary conditions, 
first, the pure local and distortional buckling modes are solved by cFSM (first 
two columns in Table 5) and the contributed longitudinal terms for each mode 
are identified (Figure 7). Then, second, the conventional FSM solutions are 
calculated by using the identified longitudinal terms for each mode (3rd  and 4th 
columns in Table 5).  The conventional FSM solution is successfully restrained 
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to the desired mode by the identified longitudinal terms, and the critical 
moments show excellent agreement with those by higher modes of the FSM 
solution (5th and 6th columns in Table 5).  Hence, these Mcr, Mcrd, together with 
Mcre (critical global buckling moment) can be used as DSM inputs to predict the 
ultimate strength. 
 

Table 5 Critical moment of pure and FSM solution with cFSM suggested 
longitudinal terms 

 
cFSM solution FSM solution (1st mode) 

FSM solution (higher 
modes) 

Local Dist. Local Dist. Local Dist. 

Mcr(kips-in) 170.44 95.90 165.56 89.86 165.58 89.86 

Mode 
shapes 

Longitudinal 
terms 

45, 47, 
49, 51 

7, 9, 11 
cFSM suggested 
(45, 47, 49, 51)

cFSM suggested 
(7, 9, 11)

All 
suggested

All 
suggested  

Conclusion 

The conventional finite strip method combined with the constrained finite strip 
method provides a powerful tool for exploring cross-section stability in cold-
formed steel members. Extensions of the conventional and constrained finite 
strip method to general boundary conditions are important for their application 
to general purpose design. The elastic and geometric stiffness matrices are 
formulated based on new shape functions (series) that correspond to general 
boundary conditions. The constrained finite strip method for general boundary 
conditions is briefly described with a summary of the bases available. Examples 
are provided for conventional as well as constrained finite strip method 
solutions. The discussed algorithms of both conventional and constrained finite 
strip method are implemented in the open source stability analysis program: 
CUFSM. The strength of this new extension to general boundary conditions is 
demonstrated through the application with the direct strength method in member 
design. 
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