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Eighteenth International Specialty Conference on Cold-Formed Steel Structures 

Orlando, Florida, U.S.A, October 26 & 27, 2006 
 
 

Component Stiffness Method to Predict Lateral Restraint 
Forces in End Restrained Single Span Z-Section Supported 

Roof Systems with One Flange Attached to Sheathing 
 

Michael W. Seek, PE1 and Thomas M. Murray, PhD, PE2   
 

Abstract 
 
A method is proposed for the prediction of lateral restraint forces in Z-Section 
supported roof systems with restraints applied at the rafter location.  The method 
incorporates the complex flexural and torsional behavior of the Z-Section and its 
interaction with the sheathing.  The method has been modified using the Finite 
Element method to account for local deformations.  The method shows good 
correlation with the finite element model and test results. 
 
Introduction 
 
The behavior of Z-sections in roof systems is very complex and subject to many 
subtleties.  Z-sections are typically installed with the top flange attached to 
sheathing and the bottom flange located at the top of rafter elevation.  On low 
slope roofs, Z-sections have the tendency to roll “uphill” towards the ridge while 
on roofs with steeper slopes, a Z-section will roll “downhill” towards the eave.  
Restraints are typically installed at or near the top flange of the Z-section to 
resist this tendency to rotate.  Restraint anchorage is often applied at the 
supports location because of the ease in which the force can be transferred out of 
the system.   
 
The prediction of the restraint forces is complex because the principal axes of a 
Z-section are rotated from the orthogonal planes of loading and restraint.  As a 
result, they are subject to the nuances of unsymmetric bending in which an 
applied load in the plane of the web induces a lateral deflection.  The diaphragm 
action in the sheathing resists the tendency of the Z-section to deflect laterally,  
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 (a) Free Body Diagram  (b) Rafter and Sheathing Stiffness 

Figure 1 Forces Acting on Z-section  

but because it is attached to the top flange of the Z-section, it causes rotation of 
the Z-section.  The bending stiffness of the sheathing helps to resist the rotation 
of the Z-section but in the process affects the magnitude of the force in the 
external restraints.  The analysis is further complicated by local deformations of 
the Z-section where large concentrated transverse loads and moments are 
applied to the relatively thin material.  Despite the complexities in analysis, Z-
section supported roof systems remain popular due to their efficiency and 
economy. 

Methodology 
 
The magnitude of the  restraint force can be found from the free body diagram 
of the Z-section shown in Figure 1(a).  The vertical component of gravity load 
acts at an eccentricity, δ, along the width of the flange, b, causing a clockwise 
rotation of the Z-section.  This eccentricity is generally accepted to be 1/3 the 
width of the flange.  The downslope component of the gravity load, w·L·sinθ, 
acting in the plane of the sheathing causes a counter-clockwise rotation of the Z-
section.  Deformation of the Z-section generates moments at the connection 
between the Z-section and the rafter support (MRafter) and the connection 
between the Z-section and sheathing (MSheathing).  Summing moments about the 
base of the Z-section, the lateral restraint force becomes 

( )
h

MMdbwL
R RafterSheathing −−−
=

θθδ sincos
             (1) 

A positive restraint force signifies resistance to upslope translation while a 
negative restraint force signifies resistance to downslope translation. 
 
While the free body diagram is quite simple, determining the magnitude of the 
moments at the sheathing and rafter is not.  A stiffness approach is used to relate 
the restraint force to the rafter and sheathing moments.  Each component of the 
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system (restraint, rafter, sheathing) generates some force or moment relative to 
the displacement of the top flange at the restraint location.  The stiffness of the 
restraint, Krestraint, is the force in the restraint per unit displacement of the top 
flange.  The stiffness of the sheathing, Kshtg, and the stiffness of the rafter, Krafter, 
are the moments in the sheathing or rafter per unit displacement of the top 
flange.  The stiffness of both the sheathing connection and the rafter connection 
is dependent upon whether the Z-section is directly restrained (a “restrained” Z-
section) or restraint is provided indirectly through the sheathing (a “system” Z-
section).  Thus, there are five components that contribute to the total lateral 
stiffness of the system: Krestraint, Kshtg,rest, Kshtg,sys, Krafter,rest, Krafter,sys. 
    
The method assumes that the system of Z-sections has a single degree of 
freedom.  That is, there is some rigid connection linking the displacement at the 
top of each Z-section in the system.  For a through fastened system, this link is 
provided by the sheathing, while for a standing seam system that permits lateral 
slip between the sheathing and the Z-section, the rigid link must be provided by 
some external component such as strapping.   As a single degree of freedom, the 
total stiffness of the system, Ktotal, is the sum of the stiffness of the individual 
components, or  

( ) ( )

h

KKKK

KK sysrest

rest

n
sysshtgsysrafter

n
restrshtgrestrrafter

n
resttotal

∑∑
∑

+++

+=

,,,, 22

2   (2) 

where nrest is the number of restrained Z-sections and nsys is the number of 
system Z-sections.  The force generated at the restraint is determined from 
Equation (3) from the relative stiffness of the restraint to the total stiffnes of all 
of the components in  the system.  

total

rest

K
K

h
dbwLR

∑
⋅

−
=

)sincos( θθδ              (3) 

To develop equations for the stiffness of each of the components, a series of 
finite element models was performed.  The model used was a linear-elastic plate 
finite element model as described by Seek and Murray (2004a).  A total of 282 
models were analyzed with three data points taken from each model at roof 
pitches of 0:12, 3:12 and 6:12.  The range of parameters shown in Table 1 was 
investigated in an attempt to represent the most common systems in use today. 
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Table 1 Parameters Investigated in Finite Element Analysis 

 

Restraint Stiffness 
 
The stiffness of the restraint is the combination of two sources of deformation at 
the restraint.  The stiffness of the restraint device, Kdevice, is defined as the force 
at the restraint device relative to the displacement of the device at the height, h, 
at which the restraint is applied.   The configuration stiffness, Kconfig, accounts 
for the deformation of the Z-section top flange relative to the restraint device.  
The combination of the two results in the net stiffness of the restraint, Krest.   

configdeviced
h

configdeviced
h

rest KK

KK
K

+

⋅
=               (4) 

Two basic types of restraint configurations are considered – a discrete restraint 
and an antiroll device.  A discrete restraint is a lateral restraint applied at some 
discrete location along the height of the Z-section and typically accompanied by 
flange bolts as shown in Figure 2(a).  An antiroll device is considered a device 
in which the web of the Z-section is clamped to the device with bolts at multiple 
locations along the height of the Z-section.  Bottom flange bolts may or may not 
be incorporated into an anti-roll device. 
 
To determine the stiffness for a discrete restraint configuration, the web of the 
Z-section at the restraint was represented by a two dimensional beam model bent 
about the thickness of the web.  To account for the effective width of the web 
and sheathing in the model, the representative equation was modified based on  
finite element model results.  The resulting configuration stiffness for a discrete 
restraint per end of restrained Z-section is given in Equation (5). 

Parameter Values Tested 
Purlin Depth, in (mm) 8 (203), 10 (254), 12 (305) 
Purlin Thickness, in. (mm) 0.060 (1.52), 0.097 (2.46), 0.135 (3.43) 
Purlin Span, ft, (m) 20 (6.10), 30 (9.14) 
Rotational Stiffness of Sheathing 
Connection, lb-in/ft (N-m/m) 

500 (2223), 1000 (4445), 5000 
(22,225), 10,000 (44,450) 

Diaphragm Stiffness, lb/in (N,mm) 250 (43.8), 1000 (175), 2500 (438),  
7500 (1313), 27500 (4816) 

Restraint Height d, 3/4d, 1/2d 
Number of Purlins 4, 8 
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Figure 2  Restraint Devices 
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An antiroll device is assumed to provide restraint at the location of the top bolt 
connecting the Z-section web to the antiroll device as shown in Figure 2(b).  The 
stiffness of the configuration for an antiroll device is based on a representative 
2- dimensional beam model with a fixed base located at the elevation of the top 
bolt and a rotational spring at the top flange of the Z-section.  This 
representation is accurate for the case where the antiroll device resists 
“downhill” displacement of the top flange.  For “uphill” displacement of the top 
flange, the extension of the top of the antiroll clip results in increase in stiffness 
relative to the downslope case.  Because antiroll devices were not included in 
the finite element analysis, the lower bound approximation considering the 
downslope case is used.  The effective width of the Z-section is assumed to be 
the width of the antiroll device and the effective width of the sheathing 
rotational stiffness is taken to be the same as for a discrete restraint.  The 
configuration stiffness for an antiroll device becomes 
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Restrained Rafter Stiffness 
 
As there were two restraint configuration stiffness equations to represent the 
differences between discrete braces and antiroll devices, there are two 
corresponding rafter stiffness values for each type of restraint.  The rafter 
stiffness for a discrete brace uses the same representative beam model as the 
discrete restraint configuration with the moment generated at the base of the Z-
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section.  Because of the nature of the displaced shape, an upslope displacement 
(positive) generates a negative moment at the rafter, consequently the rafter is 
assigned a negative stiffness, that is 

( ) dhd
hEtK restRafter ⋅−
⋅⋅−

=
3

,
09.0               (7) 

The rafter stiffness for an antiroll device is taken as the moment generated at the 
point at which the antiroll device is assumed to fix the web of the Z-section -  
the restraint height, h.  Because there is no finite element information or test 
information available for antiroll devices, it is desirable to underestimate the 
rafter stiffness.  The rotational stiffness of the connection between the Z-section 
and sheathing is ignored and the effective bending width of the Z-section is 
taken to be the width of the antiroll device.  The rafter stiffness, therefore, for a 
restrained Z-section at an antiroll device is 
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System Rafter Stiffness 
 
Two system Z-section configurations are considered for rafter stiffness.  The 
first is the case for the bottom flange of the Z-section bolted to the top flange of 
the rafter support, referred to as a flange bolted connection.  The stiffness is 
derived from a 2 dimensional beam model fixed at the base and at the top.  The 
rafter stiffness, defined as the moment generated at the base of the Z-section 
relative to the top flange displacement, is given by 

d
EtK sysRafter 2

45.0
3

, =                 (9) 

The second type of system rafter configuration considered was that of a Z-
section with its web bolted to a rafter clip.  A rafter clip is considered a single 
plate extending from the rafter whether the plate is bolted or welded to the 
rafter.  A rafter clip is similar in behavior to an antiroll device although it is not 
explicitly considered a restraint device in this formulation.  The stiffness is 
defined as the moment at the base of the rafter clip relative to the top flange 
displacement.  The deformation is the combination of the lateral displacement of 
the rafter clip at the location of the top bolts and the deformation of the Z-
section above the rafter clip.  The combined stiffness is given by Equation 10. 
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Figure 3 Sheathing Moment – Rigid End Restraints 
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Sheathing Stiffness 
 
The moment generated in the sheathing is a function of many factors – the 
flexural and torsional properties of the Z-section and the diaphragm and bending 
stiffness of the sheathing.  The moment in the sheathing can be quantified using  
the concept of unrestrained and restoring displacements discussed by Seek and 
Murray (2005).  Considering a Z-section rigidly restrained at each end and 
ignoring the the bending stiffness of the sheathing, by equating the mid-span 
lateral unrestrained displacement of the Z-section due to applied forces with the 
horizontal restoring displacement provided by the sheathing, the uniform 
restraint provided by the sheathing, wRestraint, and the final midspan rotation, 
ΦMidSpan, can be calculated. by Equations (11) and (12), respectively. 
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In this formulation, the restraints applied at each end of the Z-section rigidly 
restrain the top flange of the purlin and thus the rotation at each end of the Z-
section is zero.  It is approximated to vary parabolically to the maximum at 
midspan.  If the bending stiffness of the sheathing is considered,  the moment in 
the sheathing is directly proportional to the rotation of the purlin.  The moment 
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in the sheathing therefore has a parabolic distribution.along the length of the Z-
section as shown in Figure 3.  The midspan rotation of a Z-section subjected to a 
parabolic moment distribution along the length is 

GJ
M Maxparabola

κφ =              (13) 

Mmax is the maximum moment at the peak of the parabola (at the Z-section 
midspan).  Because the moment in the sheathing is a function of the rotation, 

MidSpanMDeckMax KM φ⋅−=             (14) 

The net Mid Span rotation becomes 

 ( ) τθδφ ⎟
⎠
⎞

⎜
⎝
⎛ ⋅−=

2
cos int

dwbw restraMidSpan            (15) 

and the uniform restraint provided by the sheathing is 
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         (16) 

The total moment generated in the connection between the Z-section and 
sheathing for a Z-section rigidly restrained at each end is 

MidSpanMDeckShtg KLM φ⋅⋅−= 3
2             (17) 

The sheathing moment in Equation (17) is generated as a result of the 
unsymmetric bending properties of the Z-section.  Additional moments are 
generated if the rigid end restraints are replaced with restraints that permit lateral 
deflection of the top flange of the purlin at the restraint location.  As the restraint 
permits the lateral translation of the top flange, the Z-section rotates relative to 
the sheathing, generating a uniform moment in the sheathing as shown in Figure 
4(a).  Due to the torsional moments along the length of the purlin, there is some 
rotation of the midspan of the Z-section relative to the end rotation.  Similar to 
the case with rigid end restraints, the additional rotation generates a moment that 
varies parabolically along the length of the Z-section as shown in Figure 4(b).  
The resulting displaced shapes and sheathing moment distributions can be 
superposed as shown in the Figure 4(c).   
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Figure 4  Sheathing Moment - Z-section with Flexible End Restraints 

 
The magnitude of the uniform moment in the sheathing is equal to  
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Including the effects of the additional uniform moment to the midspan rotation 
given in Equation (18), the midspan rotation relative to the end rotation becomes 

  ( ) ττθδφ MDeck
restra

MS K
d

dw
bw Δ

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2
cos int           (19) 

Equation (16) is used to approximate wrestraint for use in Equation (19).  A 
parameter study was performed comparing the exact solution for wrestraint 
considering the effects of the deformation at the restraint with the approximate 
solution of Equation (16).  The difference between the two equations was 
negligible, warranting the use of the simpler equation. The net moment in the 
sheathing due to the parabolic distribution becomes 

MSMDeckParabola KLM φ⋅⋅= 3
2             (20) 

Combining the uniform moment and parabolic distribution yields the total 
sheathing  moment 
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The first half of the sum is constant with respect to a given Z-section system 
while the second varies with respect to the displacement of the top flange of the 
Z-section.  The two components are separated, the former applied as constant 
moment to the restraint equation and the latter applied as a stiffness term.  
Considering the second term of Equation (21), the stiffness of the sheathing, 
defined as the total uniform moment developed in the sheathing per unit lateral 
displacement of the sheathing becomes 

 ( )τλ MDeck
MDeck

shtg K
d

KL
K 3

21−
⋅

=            (22) 

The above formulation is derived using the typical bending assumption that 
plane sections remain plane.  Because Z-sections are a relatively thin material, 
they undergo substantial local deformations as they undergo these rotations.  To 
account for these local deformations, the multiplier λ, derived from the results of 
finite element models, is applied.  

The sheathing stiffness for a restrained Z-section follows the same format, 
although the stiffness is increased slightly.  There is a local deformation in the 
region of the restraint that results in a large local rotation between the Z-section 
web and deck.  Consequently there is an increase in the moment in the sheathing 
near the restraint.  The restrained Z-section sheathing stiffness becomes 
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Restraint Force Equation 
 
To include the “constant” sheathing moment, the restraint force in Equation (3) 
is modified to 
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  (24) 

The result of Equation (24) is the force in an individual restraint in a system of 
purlins.  Any number of restraints can be incorporated for any number of 
purlins.  It is assumed that the restraint force between multiple restraints in a bay 
is distributed according to the relative stiffness of each restraint.  Combinations 
of different purlins with different end conditions can be used in the same bay 
with the component stiffness method. 
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A conservative approximation of restraint force for a single restraint in a system 
can be made by setting the ratio Krest/Ktotal equal to 0.5.  For multiple restraints in 
a homogenous system, the ratio Krest/Ktotal should be set to 0.5/nrest.  This 
approximation may be further simplified for low slope roofs where δb·cosθ > 
d·sinθ by approximating wrestraint ~ w·Ixy/2Ix.  For a restraint system that 
effectively restrains the top flange of the Z-section, these approximations will 
result in a slightly conservative result on the order of 10%-30%.  For a system 
with a fairly flexible restraint relative to the stiffness of the system, these 
approximations can lead to an overly conservative approximation of the restraint 
force greater than 100%. 
 
Several other important quantities may be extracted from this method.  The 
required force per unit length that must be transfered between the sheathing and 
the Z-section is wrestraint, given in Equation (16).  Along the length of the purlin, 
this force is nominal.  However, at the restraint location, a significant force must 
be transferred out of the sheathing, through the Z-section and into the restraint.  
The magnitude of this force is 

d
bwLLw

d
hRrceFastenerFo restra

θδ cos
2

45.0 int −+=          (25) 

Note that this fastener force can be significant and must be transferred over a 
small distance – a tributary panel width that this force can be expected to be 
transferred is approximately 12 in. (300 mm) either side of the restraint location. 
 
To check the effectiveness of a bracing system the deformation of the system 
can be calculated.  Based on this method, in general as a Z-section is allowed to 
displace, the calculated restraint force decreases.  The method does not account 
for any second order effects, therefore displacements should be minimized, 
particularly at the restraint location.  The lateral deflection of the top flange of 
the Z-section at the restraint location can be approximated by 
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With a flexible diaphragm, lateral deflection of the Z-section mid-span relative 
to the restraints is expected.  The midspan lateral deflection of the diaphragm 
can be approximated as 
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Lwwrestra '8
sin

2

int θ               (27) 
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The midspan rotation, ΦMS, of the Z-section relative to the end rotation as shown 
in Figure 3(c) can be approximated by Equation (19).    
 
Comparison of Prediction Method with Tests and Finite Element Models 
 
In Figure 5, the restraint force predicted using the component stiffness method is 
plotted on the vertical axis relative to the restraint force from finite element 
model analysis plotted on the horizontal axis.  The solid diagonal line represents 
an exact 1 to 1 correlation between the prediction method and finite element 
model while each dashed line represents a 20% deviation from exact correlation.  
The data points represent all of the finite element models from which the 
method was derived as discussed in the methodology section.  
 
The equations are compared to full scale laboratory tests by Seek and Murray 
(2004b) in Figure 6 .  The testing program consisted of full scale tests of Z-
section roof systems with two, four and six Z-section lines with both through 
fastened and standing seam sheathing.  The Z-sections were tested on pitches  
 

Finite Element Model vs Prediction Equation
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Figure 5 Comparison of Prediction Method with Finite Element Results 
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Laboratory Tests vs Prediction Equation
Through-Fastened Sheathing
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Laboratory Tests vs Prediction Equation
Standing Seam Sheathing
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     (a) Through Fastened Sheathing                  (b) Standing Seam Sheathing 

 
Figure 6 Comparison of Prediction Equation with Laboratory Tests 

 
ranging from 0:12 to 4:12.  Restraint was applied by a ½ in. diameter rod 
attached to the web at 2.25 in. from the top of the Z-section. 
 
The prediction method is compared to the results of the through fastened tests in 
Figure 6 (a).  The results of the two and four Z-section line tests correlate well 
with the prediction method, falling almost exactly on the predicted line.  For the 
six Z-section line tests, the force predicted by the equations is less than that of 
the test.  In the test, a backing plate was placed between the anchorage and the 
Z-section to reduce local deformations.  This backing plate effectively increases 
the stiffness of the restraint, which would lead to higher restraint forces than 
predicted.  In the case where an unconventional system such as the backing plate 
is used, a simple test of the configuration could be used to determine the actual 
stiffness of the configuration. 
 
Comparison of the prediction method with the results of the standing seam tests 
by Seek and Murray (2004b) are shown in Figure 6 (b).  The tests show greater 
deviation from the prediction equations although the deviation is consistently 
conservative.  Because a standing seam system with an articulating clip was 
used for the test,  1/2 in diameter rods connected each purlin at the restraint 
location provide a means to transfer the restraint force through the system,.  The 
prediction method assumes this system to be rigid when in reality it has some 
flexibility.  Consequently, the actual restraint stiffness of the test (or any real 
system) is less than rigid and the prediction method will always predict the 
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restraint force conservatively, although in this case the deformation will be 
underestimated.   
 
Conclusions 
 
The component stiffness method for the determination of lateral brace forces in 
single span Z-purlin roof systems outlined here is a complex solution to the 
complex problem of Z-purlin behavior.  The method approximates the behavior 
of Z-section roofs as a single degree of freedom system and attempts to quantify 
the contribution of all of the components of the system that resist the tendency 
of the Z-section to rotate and deflect laterally.  While complex, the methodology 
has the ultimate flexibility to accommodate a wide array of system 
configurations.  Because the method is based on stiffness principles, actual 
stiffness values of components not explicitly quantified herein may be 
determined from tests and substituted for the equations provided.  
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Appendix – Notation 
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b = width of Z-section top flange (in)  (mm) 
bar = width of anti-roll clip (in) (mm) 
bpl = width of single plate rafter clip (in) (mm) 
d = depth of Z-section (in) (mm) 
E = modulus of elasticity (29,500,000 psi) (203,400 MPa) 
G = shear modulus (11,200,00 psi) (77,200 MPa) 
h = height of applied restraint measured from base of Z-section parallel 

to web (in) 
KMDeck = combined rotational stiffness of sheathing and the connection  
               between the Z-section and sheathing (lb-in/ft) (N-m/m) 
L = span of Z-section (ft) (m) 
LFast = Spacing between fasteners connection  Z-section to Sheathing  
nsys = number of system Z-sections 
nrest = number of restrained Z-sections 
t = thickness of Z-section (in) 
tpl = thickness of single plate rafter clip (in) (mm) 
w = uniform loading on Z-section (lb/ft) (N/m) 
Width = Tributary width of diaphragm (perpendicular to Z-Section Span) per  
    Z-section.(in) (mm) 
δ = load eccentricity on Z-section top flange (1/3) 
θ = angle between the vertical and the plane of the web of the Z-section 
               (degrees) 
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