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Vibration Characteristics and Acceptability of Cold-Formed 
Steel Joists 

 
Y. Frank Chen1 

 
Abstract 
 
Metal building manufacturers have developed proprietary steel joists (e.g., truss purlins) 
made of cold-form steel for use as roof systems in long-bay buildings. The question has 
been raised: Is it reasonable to use such members to support concrete floor systems where 
vibration due to human activity prevails? This study investigated analytically a number of 
steel framed floor systems with cold-formed steel trusses with the dual objectives: (1) To 
gain a better understanding on the vibration characteristics of cold-form steel joists; (2) 
To examine if the floor joist system meets the current vibration acceptability criteria as 
specified in AISC Design Guide 11. The ultimate goal of this study was to provide 
guidelines to the industry and professionals on the proper use of cold-form steel joists in 
vibratory environment and their serviceability requirements. 
 
Introduction 
 
In an effort to achieve long-bay building solutions some metal building manufacturers 
have developed proprietary cold-formed truss purlins. These members are formed of 
chords and webs of cold-formed steel joined together at the panel points with either 
welds, screws, or bolts. Since the truss purlin provides the metal building manufacturer 
with a product that is comparable with K-series bar joist in the roof, it would be 
reasonable to try to use them in floor systems. Design of the truss for gravity loading is 
rather straightforward. However, vibration of floor systems has increasingly become a 
problem over the years. Therefore manufacturers should be aware of this serviceability 
issue and understand whether their product meets current vibration standards. 
 
Traditional methods of limiting floor joist live load-deflection to L/360 or joist depth-to-
span ratios to 24 or less may not adequately address vibration problems. Load and 
resistance factor design, the use of lightweight concrete and lighter design loads have 
allowed designers to increase member spans with lighter weight members further 
increasing the chances of annoying floor vibrations due to human activity. In today’s 
office buildings, lightweight cubicles have replaced heavy steel desks and computers with 
electronic data storage have replaced heavy filing cabinets of paper records. The lack of 
full height partitions and reduction in weight of office equipment reduces the natural 
damping of the floor system thus magnifying potential floor vibration problems.  
___________________________ 
1 Professor, Penn State Harrisburg, Middletown, PA 17057-4898 
In 1997 the American Institute of Steel Construction (AISC) published a design guide1 
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addressing floor vibration due to human activity to provide design engineers the latest 
information regarding dynamic analysis of steel framed floor systems. The design guide 
also provides provisions for dynamic analysis of floor systems consisting of K-series bar 
joist and steel girders. Nevertheless, that document did not specifically address cold-
formed steel joists. This study examined the suitability and adequacy of the AISC 
procedure for floor systems consisting of cold-formed steel trusses and wide flange steel 
girders. The primary objective of this study was to analyze non-composite floor systems 
consisting of cold-formed steel trusses, a cast-in-place concrete slab, and wide flange 
steel girders for floor vibrations due to walking excitation. Variables such as floor slab 
thickness, truss span, and live loads were varied to study the floor system's susceptibility 
to floor vibration. It should be noted that although the floor systems of this study do not 
have shear studs for a full structural composite action, the system does behave as partially 
composite for vibration purposes. 
 
Truss Specimen 
 
The cold-formed steel truss to be analyzed became available in the 1960's. It is a constant 
depth member where both the top and bottom chords are cold-formed hat shapes of 
varying thickness with flange lips (Figs. 1 & 2). The webs are made from continuous 
tubes bent and flattened at 30 in (76.2 cm) on centers where they are welded to the 
chords. The section depth and member profile is fixed with only the material thickness 
varying with the loading. This truss purlin system is capable of supporting typical static 
floor loads at similar spans as K-series bar joists. However, it has never been analyzed for 
the dynamic loads due to human activity that is found in floor systems. 
 
Human Activity 
 
Human activity such as walking, jumping, or dancing excites floor systems causing them 
to vibrate. These are transient vibrations, which cannot be isolated; therefore they must 
be controlled by the structure. Excessive floor vibration typically occurs when floor 
systems have inadequate stiffness, low damping and/or low mass.2 However, vibration 
perception is highly subjective and not a well defined or measured phenomena. Vibration 
is not a structural problem, but rather a serviceability issue that generally isn't well 
addressed in building codes or design specifications. 
 
Floor systems can be modeled as a simple mass connected to the ground by a spring and 
damper. A person walking across the floor exerts a vertical sinusoidal force on the floor 
system. Resonance occurs when the frequency of the sinusoidal forces is the same as the 
natural frequency of the floor system. The natural frequency of concrete floor slabs 
supported by structural steel can be close to or match a harmonic forcing frequency, so 
resonant amplification is commonly associated with floor vibration problems. 
Interestingly, floor systems with first natural frequencies between 5-8 Hz correspond with 
natural frequencies of human internal organs which most likely will result in occupant 
discomfort.2  
 
Repeating forces can be modeled by a combination of sinusoidal forces with frequencies, 
f, which are harmonics, or multiples, of the repeating force's basic frequency. Eqn (1) 
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represents the Fourier series of the time-dependent repeating force. 
 
           F = P [1 + Σαicos(2πifstept + φi)]                                                                             (1) 
 
where P = person's weight, αi = dynamic coefficient for the harmonic force, i = harmonic 
multiple (1,2,3.. ..), fstep = step frequency of the activity, t = time, and φi = phase angle for 
the harmonic motion. 
 
The dynamic coefficient typically decreases with increasing harmonics resulting in 
harmonic forces that are smaller than the lowest mode of vibration. Therefore, only the 
lower modes are of interest when considering vibration due to human activity. 
 
Literature Review 
 
The readers are reminded to refer to the available literature for more comprehensive 
review including the research reported by Aswad and Chen.3 
 
Among other researchers, Hanagan and Murray4 conducted several studies on floor 
system vibration which form the basis of the AISC Design Guide 11.1 He reported that 
system frequency, fn (Hz), can be approximated by the Dunkerly relationship: Among 
other researchers, Hanagan and Murray4 conducted several studies on floor system 
vibration which form the basis of the AISC Design Guide 11.1 He reported that system 
frequency, fn (Hz), can be approximated by the Dunkerly relationship:            
 
           1/fn

2 = 1/fj
2 + 1/fg

2                                                                                                   (2) 
 
where fj = the beam or joist panel mode frequency (Hz) and fg = the girder panel mode 
frequency (Hz). 
 
Their research demonstrates the importance of floor damping and recommends a 
minimum damping ratio for floor systems. Their approach was found to be suitable for 
floor systems with natural frequencies between 5-8 Hz, as had been  reported in Aswad 
and Chen.3 
 
The AISC Design Guide presents a procedure where the mode properties of the 
individual components (beams, girders, and columns) including effective panel weights 
and natural frequencies are calculated. The combined mode frequency is calculated using 
eqn (2) and a combined mode weight is established based upon the relationship of the 
deflection of the components to the deflection of the combined mode. The acceleration 
expressed as a ratio of gravity is then compared to allowable maximum values shown in 
Table 1. The peak acceleration due to walking, ap, can be expressed in terms of the 
gravity acceleration (g) as: 
 
                  ap/g = P0e-0.35fn/(βW)                                                                                       (3) 
 
where P0 = a constant force representing the excitation, ƒn = the fundamental natural 
frequency of a structural element or the system, β = modal damping ratio, and W = the 
effective weight of a structural component or the system. 
If the floor system has a natural frequency greater than 9 Hz the floor system stiffness 
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must be greater than 5.7 kips/inch (1.0 kN/mm). 
 

Table 1Recommended Values of Parameters in Eqn (3) and Acceleration Limits 
 

 Constant Force 
P0, lbs (N) 

Damping Ratio 
β 

Acceleration Limit 
 

Offices, Residences & 
Churches 

Shopping Malls 
Indoor Footbridges 

65 (289) 
 

65 (289) 
92 (409) 

0.02-0.05 
 

0.02 
0.01 

0.005 g 
 

0.015 g 
0.015 g 

 
Parametric Studies and Analysis Procedures 
 
Floor systems 
 
This study analyzed floor systems with four square grid systems having the following 
sizes of 20 ft (6.096 m), 25 ft (7.620 m), 30 ft (9.144 m), and 35 ft (10.668 m). The floors 
were assumed to be typical interior bays without openings in the floor slab so the 
influence of edge conditions were not included in this study. For each floor system the 
joists are spaced at 2 ft 6 in (76.2 cm) on centers typically. A 28 gage thick floor deck 
was assumed for all floor systems. 
 
The floor slab thickness varies between 2 ½ in (64 mm) and 4 in (102 mm) in ½ in (13 
mm) increments. Both lightweight concrete with the unit weight of 115 pcf (1842.1 
kg/m3) and normal weight concrete with the unit  weight of 145 pcf (2322.7 kg/m3) were 
used. The live loads used in the gravity design of the floor systems are 80 psf (3830 Pa), 
100 psf (4788 Pa) and 125 psf (5985 Pa), respectively. These live loads are typical for 
mezzanines or floors above ground level for offices, schools, light manufacturing or light 
storage.5 See Fig. 3 for the typical floor layout.  
 
Analysis and model 
 
The floor systems were modeled and designed for gravity loads using a commercially 
available software. Both the beams and truss members were designed for L/360 
deflection under live load and L/240 under combined dead load and live load, where L = 
span length. The floor system was then analyzed for vibration according to the 
procedures and criteria outlined in the AISC Design Guide1 using a developed 
spreadsheet.   
 
Seven different cold-formed truss configurations were designed for the various floor 
systems in this study. The chord thickness varies from 0.060 in (1.5 mm) to 0.124 in (3.1 
mm). The web members were neglected in the calculation of the truss center of gravity 
and the moment of inertia (Ix). The truss depth is kept at constant at 29½ in (74.9 cm). Ix 
varies from 183.09 in4 (7620.8 cm4) to 372.17 in4 (15490.9 cm4). 
 
Recommended modal damping ratios for the typical uses of these floor systems ranges 
from 2% to 5%.1 The use of 2% is recommended for floors with few non-structural 
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components such as ceilings, ducts, and partitions. A value of 3% is recommended for 
floors with non-structural components and furnishings, but with only small demountable 
partitions that are typical of many modular office areas. A damping ratio of 5% is 
recommended for floor systems that have full height partitions. A damping ratio of 3% 
was used is this study as there is likely sufficient damping in most uses to justify this 
value while at the same time not being too unconservative. 
 
Joist and girder panel mode properties 
 
The fundamental mode frequency of both the joist and the girder are calculated separately 
and then combined using eqn (2) to calculate the fundamental mode frequency for the 
floor system. The combined fundamental mode frequency is used in eqn (3) to determine 
the floor system's peak acceleration as a percentage of gravity. This value is compared to 
the acceptable values shown in Table 1. 
 
Due to the actual composite action between the concrete slab floor and the joist, a 
transformed moment of inertia may be calculated considering the effective slab width 
supported by the floor joist. The joist fundamental frequency, fj (Hz), is then calculated 
by: 
                                    ____ 
                     fj = 0.18√g/Δj                                                                                                                             (4) 
 
where Δj = the midspan deflection of the member due to the weight supported. 
 
The calculations of the girder mode properties begin with calculating a transformed 
moment of inertia based upon an effective slab width. The transformed moment of inertia 
must then be reduced due to the greater flexibility of the joist ends as compared to the 
rest of the joist per the following equation:1 
 
              Ig = Inc + (Ic - Inc)/4                                                                                (5) 
 
where Ig = girder moment of inertia reduced for joist ends flexibility, Inc = girder non-
composite moment of inertia, and Ic = girder composite moment of inertia. 
 
Note that Eqn (5) was based on steel joist bearings and further study may indicate less 
composite action. The girder fundamental mode frequency is calculated using eqn (4) by 
substituting the girder properties into the equation in lieu of the joist properties. 
 
Combined mode properties and walking evaluation 
 
The fundamental mode properties of the individual components are combined according 
eqn (2) as shown in the following equation: 
                                  _________ 
                  fn = 0.18√g/(Δj + Δg)                                                                         (6) 
 
where Δg = the midspan deflection of the girder member due to the weight supported. 
Columns in tall buildings can have vertical frequencies low enough to create resonance  
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problems. For those cases eqn (6) is modified to include the axial shortening of the 
column due to the supported weight, 
                            _____________ 
            fn = 0.18√g/(Δj + Δg + Δc)                                                                       (7) 
 
where Δc = the axial shortening of the column due to the weight supported. 
 
The effects of columns, generally negligible in most buildings, are not included in this 
study. The equivalent panel weight for the combined mode is calculate using the 
following equation: 
 
   W = (Δj Wj)/(Δj + Δg) + (Δg Wg)/(Δj + Δg)                                                       (8) 
 
where Wj  = the effective panel weight for the joist and Wg  = the effective panel weight 
for the girder. 
 
Using eqn (3), the constant force, Po, and damping ratio, β from Table 1 the floor 
acceleration can be calculated and compared to the limit in Table 1. If the floor 
system fundamental frequency is greater than 9 Hz the floor should have a 
minimum stiffness of 5.7 kip/in (1 kN/mm). 
 
Analysis Results and Discussions 
 
The calculated floor system acceleration was compared to the acceptable values to 
determine whether the floor vibration was satisfactory. 
 
Floor system acceleration 
 
For each floor system, the acceleration, expressed as a percentage of the acceleration of 
gravity is summarized in Tables 5 and 6. The value must be less than or equal to 0.50 to 
be considered acceptable for walking excitation. The tables show only 19 (shown in 
boldface in the tables) out of the 96 floor systems studied meet this vibration acceptance 
criterion. Though the majority of the floor systems are not satisfactory for walking 
excitation, none of them had a fundamental frequency greater than 9 Hz which would 
have required additional analysis of the floor stiffness. 
 

Table 2 Floor System Acceleration with Light-Weight Concrete, ap/g, (%) 
 

Live Load 
80 psf 100 psf 125 psf 

Slab Thk., in. Slab Thk., in. Slab Thk., in. 

Span 
(ft) 

2½-4 2½-4 2½ 3 3½ 4 
20 > 0.50 > 0.50 0.41 0.40 0.39 0.38 

25 > 0.50 > 0.50 0.58 0.56 0.54 0.52 
30 > 0.50 > 0.50 0.66 0.62 0.54 0.51 
35 > 0.50 > 0.50 0.64 0.60 0.56 0.47 

1 ft = 0.3048 m; 1 in = 25.4 mm; 1 psf = 47.88 Pa. 
Table 3 Floor System with Normal-Weight Concrete, ap/g, (%) 
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Live Load 

80 psf 100 psf 125 psf 
Slab Thk., in. Slab Thk. Slab Thk., in. 

Span 
(ft) 

2½-
3½ 

4 2½&3 3½ 4 2½ 3 3½ 4 

20 OK 0.50 OK 0.38 0.60 0.41 0.40 0.39 0.34 
25 OK 0.51 OK 0.52 0.49 0.57 0.54 0.54 0.41 
30 OK 0.67 OK 0.55 0.51 0.57 0.54 0.51 0.45 
35 OK 0.50 OK 0.50 0.49 0.61 0.49 0.49 0.45 

1 ft = 0.3048 m; 1 in = 25.4 mm; 1 psf = 47.88 Pa. 
 
Representative floor system acceleration percentages are summarized in Tables 4 to 7. In 
general, the floor system acceleration ratio decreases between 5% and 34% as the floor 
slab thickness increased for a given uniform live load and span. These changes are to be 
expected due to the additional dead load of the thicker floor slab which increases the total 
equivalent panel weight, W in eqn (3). 
 
The floor acceleration tends to increase by as much as 56% with increasing span lengths 
for the same slab thickness and live load.  Interestingly the acceleration percentage often 
appears to peak between 25 ft (7.62 m) and 30 ft (9.144 m) spans.  This may indicate that 
trusses at those spans may be more likely to experience annoying vibration.  As the 
frequency decreases, such as it does with increasing floor slab thickness and truss span 
length, the value of this term increases thereby increasing the acceleration ratio. 
 

Table 4 Acceleration Percentage of C-Series Floors (Light-weight Conc; LL = 125 psf) 
 

Acceleration Percentage, a0/g Span 
(ft) 2½-in slab 3-in slab 3½-in slab 4-in slab 
20 C1 0.41 C2 0.40 C3 0.39 C4 0.39 
25 C5 0.58 C6 0.56 C7 0.54 C8 0.52 
30 C9 0.66 C10 0.62 C11 0.54 C12 0.51 
35 C13 0.64 C14 0.60 C15 0.56 C16 0.47 

1 ft. = 0.3048 m; 1 in. = 25.4 mm; 1 psf = 47.88 Pa. 
 
Table 5 Acceleration Percentage of D-Series Floors (Normal-weight Conc; LL = 80 psf) 

 
Acceleration Percentage, a0/g Span 

(ft) 2½-in slab 3-in slab 3½-in slab 4-in slab 
20 D1 0.66 D2 0.54 D3 0.52 D4 0.50 
25 D5 0.70 D6 0.66 D7 0.54 D8 0.51 

30 D9 0.70 D10 0.65 D11 0.67 D12 0.52 
35 D13 0.69 D14 0.64 D15 0.59 D16 0.50 

1 ft. = 0.3048 m; 1 in. = 25.4 mm; 1 psf = 47.88 Pa. 
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Table 6 Acceleration Percentage of E-Series Floors (Normal-weight Conc; LL = 100 psf) 
 

Acceleration Percentage, a0/g Span 
(ft) 2½-in slab 3-in slab 3½-in slab 4-in slab 
20 E1 0.56 E2 0.55 E3 0.43 E4 0.38 
25 E5 0.60 E6 0.57 E7 0.52 E8 0.49 
30 E9 0.63 E10 0.58 E11 0.55 E12 0.51 
35 E13 0.65 E14 0.60 E15 0.50 E16 0.49 

1 ft. = 0.3048 m; 1 in. = 25.4 mm; 1 psf = 47.88 Pa. 
 
Table 7 Acceleration Percentage of F-Series Floors (Normal-weight Conc; LL = 125 psf) 
 

Acceleration Percentage, a0/g Span 
(ft) 2½-in slab 3-in slab 3½-in slab 4-in slab 
20 F1 0.41 F2 0.40 F3 0.39 F4 0.34 
25 F5 0.57 F6 0.54 F7 0.54 F8 0.41 
30 F9 0.57 F10 0.54 F11 0.51 F12 0.45 
35 F13 0.61 F14 0.49 F15 0.48 F16 0.45 

1 ft. = 0.3048 m; 1 in. = 25.4 mm; 1 psf = 47.88 Pa. 
 
Floor system frequency 
 
The fundamental frequencies of the trusses, floor beams and system as a whole are shown 
in Figs. 4-9. Initially, the truss fundamental frequencies are much greater than both the 
floor beam and overall floor system frequencies. Then they trend down toward the overall 
system fundamental frequency. The frequencies of the floor beams do not exhibit the 
same range as the trusses. Generally, the line representing floor beam frequencies is 
parallel to the line representing the overall floor system frequency.   
 
The floor system fundamental frequency decreases by up to a maximum of 9.2% with 
increasing floor slab thickness, under a given uniform live load and span. The floor 
system fundamental frequency decreases between 41.1 % and 48.3% with increasing 
span lengths given a uniform live load and floor slab thickness. This change is primarily a 
function of the span length alone and is an indication of decreasing floor stiffness with 
span. This is to be expected since eqn (4) can be re-written by substituting Δj = 
5wL4/(384EsIT) as: 
                         __________ 
         fn = (π/2)√gEsIT/(wL4)                                                                                (9) 
 
where Es = Young’s modulus,  IT = transformed moment of inertia, w = loading, and L = 
span length. 
 
As noted, fn is inversely proportional to w and L. 
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Conclusions and Recommendations 
 
Overall floor system evaluation 
 
Further investigation of floor systems that failed the walking vibration criteria shows that 
increasing the truss chord thicknesses does very little to improve the system acceleration 
percentages. Typically those values only come down by 1-3% points. Combining the 
heavier trusses with reduced truss spacing may reduce the overall system acceleration 
between 1-8% points. Using heavier floor beams appears to be the most effective at 
significantly reducing the system acceleration. This indicates the floor system 
acceleration is more influenced by the beams than the truss, as shown in Figs. 4-9. This is 
in line with the AISC recommendation which states that stiffening the structural 
components with the lowest fundamental frequency are the ones which should be 
stiffened to remedy floor vibration problems.1  
 
Since the cold-formed trusses have a higher fundamental frequency than the supporting 
beams, the trusses can be used in floor systems provided the vertical acceleration is 
computed and compared to the procedures and criteria as described in the AISC Design 
Guide1. According to the Steel Joist Institute, few steel joist-concrete slab floors exhibit 
annoying vibrations. The Steel Joist Institute also notes multiple sizes and types of joist 
will not improve the vibration characteristics of floor systems and recommends 
increasing the floor slab thickness as an effective way of improving the floor system's 
dynamic response.6  
 
It is worth repeating that vibration perception is highly subjective and not a well defined 
or measured phenomenon. The evaluation criterion of 0.5 g is not an absolute value. 
Sound engineering judgment combined with the procedures and criteria as specified in 
the AISC Design Guide1 will aid engineers in the design of an acceptable floor system. 
 
Suggestions for further research 
 
• Further parametric studies of these floor systems to compare the floor system 
performance with those floors with K-series bar joist to determine if there is a structural 
advantage for using either type of floor secondary members. 
• In this study, the sections were assumed fully effective since the assumed load for 
vibration was less than 18% of the total design live load. However, the section properties 
of cold-formed steel sections vary with the stresses in the individual plate elements that 
make up the section. A more refined method such as the finite element analysis would be 
necessary to validate the assumption that the sections are fully effective. 
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Appendix- Notation 
 
ap = the peak acceleration due to walking 
Es = Young’s modulus 
fj = the beam or joist panel mode frequency 
fg = the girder panel mode frequency 
fn = the fundamental natural frequency of a structural element or a system 
fstep = step frequency of the activity 
g = the gravity acceleration 
i = harmonic multiple (1,2,3.. ..) 
Ig = girder moment of inertia reduced for joist ends flexibility 
Inc = girder non-composite moment of inertia, and Ic = girder composite moment of inertia 
IT = transformed moment of inertia 
Ix = moment of inertia about x (strong) axis. 
L = span length 
P = weight or force 
P0 = a constant force representing the excitation 
t = time 
w = loading 
W = the effective weight of a structural component or a system 
Wg  = the effective panel weight for the girder 
Wj  = the effective panel weight for the joist 
yc = centroid of truss section measured from the top chord 
αi = dynamic coefficient for the harmonic force 
β = modal damping ratio 
φi = phase angle for the harmonic motion 
Δc = the axial shortening of the column due to the weight supported 
Δj = the midspan deflection of the member due to the weight supported 
Δg = the midspan deflection of the girder member due to the weight supported 
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