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IMPACT LOADING OF THIN-WALLED COLUMNS

By Nishikant R, Vaidyul, and Charles G. Culverz

INTRODUCTION

Design problems associated with thin-walled members subjected to
impact loading arise in connection with transportation related equipment.
Several practical examples may be cited; for example, the framework of
railway coaches, farm equipment and highway equipment and in some cases
even in building construction, especially in small scale structures such
as small commercial and manufacturing buildings.

Although the behavior of ordinary hot-rolled shapes subjected to
dynamic loading is fairly well understood, these results cannot, however,
be extended directly to thin-walled members. The behavior of thin-walled
members subjected to impact loading is influenced by local buckling. The
effect of the post-buckling strength of the plate elements comprising the
cross section is an important design consideration for such meéembers. For
computation of the dynamic response therefore, it would be necessary to
investigate the interaction between the response of the individual plate
elements comprising the cross section and the response of the member as
a whole.,

A research study on this general problem has been under way since
1967 (1). Details of experimental and analytical studies of structural
elements such as thin sheets and thin-walled beams have been reported
elsewhere (8,12,13).

The purpose of the present paper is to outline similar work on
thin-walled columns. An analytical model is presented for computing the
dynamic response of thin-walled columns subjected to axial impact loading.
Results obtained from the analysis are compared with experimental values
reported by Logue (7). The scope of this paper is limited to short dura-

tion impact loading which is defined by prescribing the time variation

of the load at the ends of the column.

PROBLEM STATEMENT

Previous investigation of the behavior of columns subjected to
dynamic loads dealt primarily with hot rolled shapes or members not sub-
jected to local buckling. Depending on the form of loading, two classes
of problems may be distinguished. Problems which deal with periodic
loads or loads that are repetitive with time are included in the first
class, Important considerations for this class are fatigue failure e.g.,
bridge structures and the steady state vibration reached after a certain
period of time or the loss of stability under periodic loads e.g., struc-
tures supporting rotating or reciprocating machinery. The second class
of problems includes those that deal with short duration impact loading.
Problems associated with this type ;f loading involve overstressing,
large permanent deformations or failure of structural members. The
present paper is restricted to the second class of problems. A critical
review of both experimental and analytical work pertaining to this class
of problems is available ‘elsewhere (7,11).

Although the dynamic response of ordinary columns subjected to

impact loading has been investigated both in the elastic and inelastic
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ranges, no attempt has been made thus far to study the influence of the
various parameters on the maximum response. In the present investigation
a mathematical model is developed to obtain response spectra or maximum
response curves for conditions of impact loadingin which the time vari-
ation of the load is specified. The response of thin-walled colummns in
both the elastic and inelastic range is computed.

The definition of the problem in this paper is illustrated in Fig.
1, Fig. la shows an initially bent column acted upon by a time varying
load. As noted previously, the conditions of impact are defined by pre-
scribing the load at the ends of the column. The particular case consid-
ered was that of a triangular load pulse superimposed on an already exist-
ing static load. The duration of the load pulses were such that the
effect of axial inertia could be neglected and the axial load assumed
constant over the whole 1gngth of the column., In most structures for
which the application of the results of this investigation is contemplated,
damping contributes a very small part and hence was not considered in the
analysis. Further, shear deformations and rotary inertia have little
effect on the overall lateral response of columns of ordinary proportiens
(3) and therefore were neglected. Small deflection theory was assumed
to apply and the curvatures were proportional to the internal moments.

Fig. 1b shows a freebody of a segment of the column at any instant
of time., Bearing in mind the assumptions pointed out ahove, an equili-
brium equation can be written in the following form

M- P(t)ev - M_ =0 1)

In Eq. 1, M = internal resisting moment, P(t) = time varying axial load,
v = lateral deflection and Me = bending moment due to inertia forces.

Differentiating Eq. 1 twice with respect to x and recalling that the

axial load is a function only of time gives
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In Eq. 2, azu/axz = the lateral resisting force, 32v/8x2 = curvature of
the column and 3224./312 = distributed lateral force due to inertia. Eq.

2 can be put in a more familiar form as follows,

3% 3%y a%y
—'P(‘)'T""_i'o (3)
3::2 x at

where m = mass per unit length and azvlatz = acceleration., Eq. 3 is not
readily amenable to a solution as it is. In order to simplify it, the

continuous system is idealized by lumped masses and stiffnesses connected
by rigid massless bars. Making use of firet order central finite differ-

ence equations, the following equations result for the 1.th point,
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where 01 equals the curvature at the point i, and h equals the distance

between the mass points, and
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In order to reduce the number of independent parameters the vari-
ables appearing in the equations were nondimensionalized in the following

manner,

(5)

y

where PE = Euler buckling load = WZEI/LZ, I being the moment of inertia
of the original cross section; tn - pel.:iod of the fundamental mode of
natural vibration of an unloaded column assuming no nonlinear behavior;
My = moment which causes yielding in the extreme fibers with no axial
load and assuming that local buckling does not take place; Ve ® center-
line deflection corresponding to My = Hy/PE; tg " pulse duration and L =
the length of the column,

Using these nondimensional quantities the ec.wation of motion at

the 1”' point is
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If a similar equation is written for each mass point a system of simul-
taneous differential equations governing the response results,

If a suitable method of integration and the necessary resistance
functions are available Eq. 6 may be readily solved to obtain the dynamic
response, Numerical integration techniques are commonly used to solve
such equations of motion. These methods essentially consist of reducing
the differential equations to a set of algebraic equations by making a
suitable assumption for the acceleration over a small time step. The
algebraic equations are then solved in each time step and the solution
built up by satisfying compatibility of deflection and velocity. Thus
this method entails discretizing both the time and space variable.

The method of solution presented herein uses an analog/digital
hybrid computer, the integration being performed on the analog and the
necessary loading and resistance functions being generated on the digital.
The digital computer is used advantageously in high speed computation and
generation of arbitrary loading and resistance functions. Performing the

integration continuously on the analog overcomes the need for making any

kind of approximation for the acceleration thus avoiding truncation errors
associated with numerical integration, Since parallel computation is
possible on the analog by the use of several components working together,
the solution time is at least an order of magnitude smaller than that for
an all digital solution, Moreover, insight into the problem is easily

gained since there is a direct correspondence between the physical system

and its analog. Hence, a more judicious selection of the parameters affect-

ing the solution is possible. Apparently the only major disadvantage offered

by the analog computer is its limited equipment capacity. The amount of
equipment available permitted a solution of a5 degree of freedom system.
On the basis of the findings of previous investigators (2) this was con-

sidered an adequate lumped mass idealization for the continuous system.

Further, comparisons with test results and available solutions substantiated

this fact.

The task of building an electronic analog for the physical system
involves the application of modern analog techniques (4). Interfacing
the digital computer with the analog computer is achieved by using such
standard equipment as high speed digital to analog and analog to digital
converters, operation control lines and sense lines. The analog and logic
circuit diagrams are available elsewhere (11).

In order to solve Eq. 6 however, one would require the relation
between the internal resisting moments and the curvature which i1s a func-
tion of the deflections at the mass points which are in turn functions of
time, In the linear elastic range this relation is proportional to the
stiffness, EI, of the column, For the nonlinear range however, this
relation is not simple, Nonlinearity may arise either from local buckling
which would affect the moment of inertia or from yielding which would
change the modulus of elasticity of the yielded portion of the cross sec-
tion. 1In both the elastic and inelastic ranges, the relation further
depends upon the magnitude of the axial load. 1In the present analysis
the two causes of nonlinearity are considered separately. Thus if local
buckling occurs in the elastic range no inelastic behavior is considered
and the solution is terminated when the stress at any point in the column

reaches the yield stress. This ption is r

ble since the thin

walled members of interest in this study possess very little inelastic
postbuckling strength (6). If the plate elements do not locally buckle,
the relation between the internal moments and curvatures is extended

into the inelastic range.

NUMERICAL RESULTS

For sections in which local buckling does not occur in the elastic
range the derivation of the relations between moments and curvatures
involves direct application of the principles outlined by Ketter et al.,
(5). 1In the present case the cross section is assumed to be free of any
residual stress and the yield stress is assumed constant over the whole
cross section. Briefly, the methodology used in deriving the moment-
curvature relations is to assume an axial load exists on the column then
apply a moment and compute the corresponding curvatures assuming that
plane sections remain plane. Table 1 shows the dimensions of the cross
section which were considered for the development of the M-P-¢ relations.
When the width-to-thickness ratios of the plate elements comprising these
cross sections are such that local buckling does not occur, one obtains
for the static case a from factor, Q, equal to one (9). The M-P-¢ rela-
tion for sections with Q = 1, for bending about the strong axis match those
derived for a hot-rolled shape without residual stress (5). For bending

about the weak axis however, they differ somewhat. This is due to the fact



TABLE 1
DIMENSIONS OF SECTIONS CONSIDERED FOR

DEVELOPING THE M-P-¢ RELATIONS

——

UNIFORM STRAIN
b 0'" P/A"'
t’l by 0. AXIAL LOAD P>P; y AND P, , ,M=0
?
B D P e | wio
SECTION| (1vy | (™ | (v | Famce| wes | @

1 | 1.5 | 1.50 | 0.068 | 8.7 | 17.3 |1.0 dy | LINEARLY VARYING STRAIN

2 2,75 3.00 0,015 | 10.3 23.0 | 1.0 : {

3 3.00 | 5.00 | 0.135| 8.7 | 32.3 | 1.0 "'d/'w

4 3.00 4,00 0.068 | 19.6 54.0 | 0.790 b. AXIAL LOAD P’PrL. AND P'Ll JM#O{ASSUMED

5 5.00 | 5.00 | 0.060 | 39.1 | 78.2 [o0.391 mn ' .

6 6.00 8.00 0.075 37.8 |102.3 | 0.405 mq {VALUES FOR EFFECTIVE WIDTHS OF

dy Ea WEB AND BOTTOM FLANGE)
that for the section considered here the web contributes appreciably to the
internal moment. Its effect was considered in developing the moment-curva=- LINEARLY VARYING STRAIN
ture relations herein whereas Ketter, et al. neglected the web. gl ]
Sections in which local buckling takes place in the elastic range fno'rl

are characterized by a form factor Q < 1 (9). Table 1 shows the dimensions
of such sections considered for developing the M-P-¢ relations. For these c. AXIAL LOAD P> P'L. AND P"-. ' M#0 (CORRECT VALUES
sections two distinct stress conditions can exist; one where the total FOR EFFECT'VE W|DTHS OF WEBS AND BOTTOM FLANGE )

Fig. 2 Stress and Strain Distribution Over Cross Section

stress on the elements is less than their buckling stress and the other P > Local Buckling Load

where the stress is above that which causes these elements to buckle. In tion, for bending about the strong axis. The flanges have a width-to-

the former condition, the moments and curvatures are linearly related by thickness ratio of 39.1 and the webs, 78.2. This section is characterized
. . .2,

the stiffness, EI, of the column. For the latter condition, the concept by a form factor, Q = 0.391. For low values of axial load the M-¢ curves
of effective width is used where a stress above the local buckling stress start off linear with a slope equal to the original stiffness, EI, of
1s allowed to exist and effective widths computed on the basis of the the column. This trend continues until the stress on the compression

width-to-thickness ratios of the elements (9,10). The flanges are assumed flange equals the buckling stress for that element. Beyond this value

to have one edge simply supported and the other edges free, whereas the of stress the section properties such as area and moment of inertia are

webs are assumed to be simply supported on both longitudinal edges. The reduced. This is reflected in a change in the slope of the M-¢ curve.

computation of the section properties such as area and moment of inertia Any additional increment in stress on the compression flange entails

i reflec
involve an iterative procedure since the stress condition must reflect computation of a new value of the effective area, the moment of inertia
the reduced sectional area and moment of inertia. Fig. 2a shows the and the position of zero bending strain. Consequently the relation be-

stress condition under an axial load which produces local buckling in both tween the moments and curvatures is no longer linear. For values of i

the web and the flanges. An iterative procedure is used to obtain the - P/Py greater than 0.3 the M=¢ curves are nonlinear from the beginning

true magnitude of the uniform stress under this axial load alone. After of loading and the initial slope is different from the original stiffness

this is done the stress on the compression flange is incremented by a of the column. This 1s due to the fact that the column locally buckles

certain amount, fI Correspondingly, a new effective width of the

NCR®

compression flange results. Keeping the total stress on the compression

under the axial load alone. As may be expected the extent of deviation

from linearity is influenced by the width-to-thickness ratios of the

flange constant, the effective widths of the web and bottom flange are plate elements i.e., the flanges and web.

adjusted by an iterative procedure. After the correct effective widths The M~P-¢ relations for sections with Q < 1 not only depend upon

are obtained, the moments and curvatures are computed by satisfying the the value of the form factor but also the width-to-thickness ratios of’

following relations the plate elements. This fact was borne out by comparison of the M-¢

relations for two sections which have approximately the same value of

P = |odA H M = loydA form factor, Q, computed by the method outlined in the AISI Specification

Aaff )Aoff (9). An M=¢ relation was developed for each section for a value of P
A more detailed description of the development of the moment-axial load- equal to 0.6, As shown in Fig. 4, the M-¢ relations for the two sections
curvature relations is given elsewhere (11). Fig. 3 shows the M-P-¢ »’ differ substantially. Hence no conclusion can be drawn as to the general
curves derived in the manner explained above for a 5" x 5" x 16 ga, sec- applicability of the M-P~¢ relations for cross sections with Q < 1, even

9
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when the value of the form factor is the same.

The M-P-¢ relations thus derived are stored in the digital computer
and used in the solution of Eq. 6 to obtain the internal moments from
known curvatures. As pointed out above these relations depend upon the
magnitude of the axial load on the column. Thus at any instant of time
the internal moment is a function of two variables, one the curvature and
the other the axial load. Since the axial load on the column varies in
a continuous fashion the moment-curvature relations used to compute the
jinternal moments would have to vary continuously to include the whole
spectrum of values of axial loads encountered, However, it is difficult
if not impossible to express the moment-axial load-curvature relations

in a continuous fashion, Since these were computed only for discrete

values of the axial load, an interpolation sch was Yy to e

the moment-curvature relations for intermediate values of axial load.
This procedure entailed discretizing the loading function. To facilitate
the computation of moment-curvature relations for intermediate values

of axial loads, the triangular load pulse is approximated by a series

of step pulses. In each step the magnitude of the applied axial load
being constant, the corresponding relation between moment and curvature
is defined, Eq. 6 can therefore be readily solved. This is done for
each step separately using as the initial conditions the deflections and
velocities at the end of the preceding step. Convergence of the solution
thus obtained was insured by comparing it with a solution for a true

triangular pulse,

To check the validity of the model developed herein, the solutions

obtained from it were checked with some existing solutions. For the
94



elastic case, the solution for a constant magnitude force pulse obtained
from the hybrid model was compared with a normal mode superposition solu-
tion. Also the inelastic response of a particular column investigated
by Hartz and Clough (2) was compared with their test results. Very good
correlation was obtained for both these cases (11).

The validity of the model developed herein was further checked by
comparing the analytical results with experimental values obtained during
a series of dynamic tests performed by Logue (7). Table 2 shows this
comparison. Note that the dynamic deflections measured during the tests
were fairly small. This was attributed to the small initial imperfections
existing in the test specimens. This fact, i.e., the small dynamic deflec-
tions, substantiated the analytical results since the computed values of
dynamic deflections, 6DY‘N were also small, Fairly good correlation was

obtained between analytical and experimental results. The analytical

TABLE 2
COMPARISON WITH TEST RESULTS

1%" x 1%" SECTION

TEST RESULTS | ANAL. RESULTS % GREATER

SLENDER- THAN TEST
SPECIMEN | NESS TSST 5 s
RATIO : DYN | A DYN A 8 A
(M) DEF | 1y DEF DYN DEF

1 0.0010 | 1.12 (0.0 12} 1,3119 |+20.0 |+17.10
B-40-D 48.56 2 0.0007 | 1.26 | 0.0007 | 1,2447 0.0 |- 1.22
3 0.0020 | 1.04 | 0.0023 | 1,1914 |+15.0 |+14.57

1 0.0006 | 1.49 | 0.0007 | 1,6414 |+16.67[+10.16
B-60-D 58.93 2 0.0009 | 1.32 (0.0008 | 1.2969 |-11.11(- 1.75

3 0.0004 | 1.02 | 0.0004 | 1.0142 0.0 (- 0.57
1 0.0007 | 1.80 {0.0008 | 1.9739 [+14.30!+ 9.65
2 0.0014 | 1.75|0.0014 | 1.6974 0.0 |- 3.02
B-80-D 86.18 3 0.0028 | 1.53 | 0,0030 | 1.6064 |+ 7.15({+ 5.00
4 0.0033 | 1,23 [ 0.0036 | 1,3390 |+ 9.10(+ 8.7
5 0,0048 ;1,07 | 0.0052 | 1.1586 |+ 8.34|+ 8.23
L
1 0.0059 | 1.64 | 0.0067 | 1.8625 |+13.58|+13.58
2 0.0055 [ 1.96 | 0.0062 | 2.2306 |+12.71|+13.80
B-120-D | 125.58 3 0,0080 | 1.54 [ 0.0083 | 1.5907 |+ 3.75(+ 3.30
4 0.0125 | 1.49 | 0.0129 | 1.5350 |+ 3.20(+ 3.02
5 0.0163 | 1.46 | 0.0158 | 1.4176 |- 3.07}|- 2.90
6 0.0175| 1,28 | 0.0195| 1.4223 |+11.41]+11.12

results were, in most cases, greater than those obtained experimentally.
Similar comparisons with test results for columns with Q < 1 are pre-
sented elsewhere (11).

The model developed herein was used to obtain the dynamic response,
i.e. the centerline deflection of a column. Previous studies indicated
that the following parameters affect the dynamic response of simple struc-
tures subjected to impact loading: shape of loading pulse, load magnitude
and load duration. In view of the scope of the present study it was
deemed necessary to include the following additional parameters: static
preload, initial imperfection, and dimensions of the cross section. As
pointed out earlier the only form of impact considered was that of a tri-
angular load pulse. No attempt was made to investigate the effect of

the shape of the loading pulse.

The deflection resp of a pinned-end column subjected to impact

loading is shown in Figs. 5 through 8. The deflection at the midpoint of
the column is plotted as a function of the nondimensional time, These
plots were recorded directly'from the analog computer,

Results from the dynamic response calculations indicated that the

deflection lags the applied dynamic load, i.e. the maximum deflection

occurs after the load has reached its maximum and is decreasing. This is
due to the fact that in the initial stages of loading the lateral inertia
forces tend to make the column "stiffer" thereby resisting its outward
movement. The time lag between the maximum applied load and the maximum
response depends upon the rate of application of the load. As the rate
increases this time lag becomes larger. In the extreme case of static
loading which can be simulated by a very low rate of loading, the deflec-
tions keep up with the load and consequently the time lag between the
maximum load and miximum deflection reduces to. zero., In the present
investigation the rate of loading is represented by the nondimensional
pulse duration B.

Fig. 5 shows the effect of the pulse duration on the dynamic
response of an initially bent column. The particular case considered is
a column with a slenderness ratio of 120,0 carrying a static preload
equal to 51% of the Fuler buckling load, Es = 0.51. The impact load is
in the form of a triangular load pulse with the maximum dynamic load
being equal to 30% of the Euler load, £ = 0.30. The peak dynamic load
occurs at t/cd = 0.5. As seen from Fig. 5 the time lag between the max-
imum deflection and the maximum load decreases as the magnitude of the
pulse duration increases. Also the maximum dynamic deflection reached
by the column is a function of the load duration. For short durations of
the loading pulse (B < 1.0) the maximum amplitude of the lateral vibra-
tions on the second and third cycles is approximately equal to the maxi-
mum deflection recorded during the first cycle during load application.
The column eventually vibrates about its equilibrium position under the
axial load with a frequency equal to the natural frequency of the column
carrying a static load. For larger values of B, however, the maximum
amplitudes on the second and third cycle fall below the maximum deflection
recorded during the first cycle.

Fig. 6 shows the effect of the magnitude of the maximum dynamic
load on the lateral response of the column. Note that the time at which
the maximum deflections occur are not identical for the three values of
£ considered. As the magnitude of £ increases the peak deflection occurs
later in time. Although the difference is very small, this fact gives an
indication of the nonlinearity introduced due to the applied load. As in
the above case, after the dynamic load is off the column it eventually
vibrates about its equilibrium position under the static load.

The influence of the magnitude of the static preload is shown in
Fig. 7. The response for a particular column subjected to a maximum dy-
namic load equal to 30Z of the Euler buckling load and a ratio of load
pulse duration to the natural period of the unloaded column equal to 4.0
is shown. Three different values of static loads are considered. The
initial deflections for the three loads were the same and are those present
under the static load alone. The ensuing free vibrations after the dynamic
load equals zero differ in both their amplitude and frequency. The response
curves in this time range reflect the amount of static load present on the
column, As the magnitude of the static preload increases the nonlinearity
introduced by it increases. This is due to the fact that the static load
deflection curve of a column is more nonlinear for higher loads. As the
nonlinearity becomes greater the time lag for deflections increases and
the lateral response for columns supporting larger static loads temds to
peak at a later time.

It is interesting to note that for small initial deflections the
time lag between the peak response and the maximum dynamic load is greater

than for larger values of initial deflections. This fact can be observed
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in Fig. 8 which shows the effect of the initial imperfections on the lat-
eral response of a column. Three values of initial imperfections are
considered, the shape of this initial deflection being the same for all
three cases, viz,, a sine curve. The peak response is greatest for the
largest value of the initial imperfection, The frequency of the ensuing
free vibrations, however, is identical for all the three cases since this
depends only on the magnitude of the static load present.

The maximum response reached during the lateral motion of the
column is of primary interest to the designer. Response spectra were
therefore plotted by recording the maximum deflections obtained for
several loading cases. The influence of the various parameters such as
the static load, the dynamic load, pulse duration and the initial imper-
fection on the response spectra was investigated,

Fig. 9 shows the elastic response spectra for a column with cross
sectional dimensions of 1%" x 1%" x 16 ga. The static preload in this
case equals the design load for the column with a slenderness ratio of
120 (9). Note that since the loading parameters are nondimensionalized
with respect to the Euler buckling load the slenderness ratio does not
enter directly as a parameter affecting the solution., In other words,
for any other length of the column, the response spectra with a static
preload of 51% of the Euler buckling load would be identical provided
the column remained elastic. As seen from Fig. 9 for larger magnitudes
of peak dynamic load the maximum response is obtained for greater values
of the nondimensional pulse duration B. This reflects the nonlinearity
introduced due to the nonlinear load-deflection relation. Note that as
the magnitudes of the peak dynamic load increase, the value of the nondi-
mensional maximum dynamic deflection decreases. The incremental dynamic

deflection, § is nondimensionalized with respect to & which is

STAT

the incremental static deflection produced if the peak dynamic load is

DYN’

applied statically. Similar response spectra were obtained for several

other loading cases (11).
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B=tg/t,
Fig. 9 Response Spectra for Deflection

SUMMARY AND CONCLUSIONS

A mathematical model was presented for the solution of the dynamic
response of thin-walled columns subjected to impact loading defined by
prescribing the load at the ends of the column., The particular form of
impact loading considered was that of a triangular load pulse superimposed
on an already existing static load. Nonlinearity due to local buckling
was accounted for by using nonlinear moment-axial load-curvature relations
derived with the aid of the effective width concept. The equations of
motion were solved using an analog/digital hybrid computer,

The effect of various parameters such as the peak dynamic load,
pulse duration, static preload and initial imperfection on the dynamic
response was investigated. For design purposes the maximum response
reached during the lateral motion of the column or failure of the column
are important considerations. Response spectra or maximum response curves
and failure envelopes were also obtained (11). These will be discussed

in subsequent publications.
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Fig. 8 Effect of Initial Deflection on the Dynamic Response
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APPENDIX II - NOTATION

Aeff = Effective area of cross section, in.z;

B = Overall width of cross section, in.;

bf = Fffective width of flanges, in.;

b, = Effective width of web, in.;

ey = Distance of centroid from top of cross section, in.;

o = Distance of the point of zero bending strain from top of

cross section, in.;
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Overall depth of cross section, in.;

Effective width at bottom of web, in.;

Effective width at top of web, in.;

Elastic modulus, K/in.z;

Average stress on bottom portion of web, Ksi;
Stress increment at extreme fiber, Ksi;

Average stress on top portion of web, Ksi;
Distance between mass points, in.;

Moment of inertia of original section;

Mass point designation;

Column length, in.;

Internal moment K-in.;

Moment due to inertia forces, K-in.;

Internal moment at the 1Ch point, K-in.;

Yield moment with zero axial load on column, K=-in.;
Ratio of internal moment to yield moment, H/Hy;
Mass of column per unit length, lbs.-sec.zlin./ln.;
Maximum dynamically applied load, Kips;

Euler buckling load = ﬂzEI/Lz, Kips;

Axial load which initiates local buckling in flanges =
UFLB A, Kips;

Static preload, Kips;

Axial load which initiates local buckling in web = OuLB A, Kips;

EFF’
Ratio of total axial load to yield load = P/Py;

Yield load = oy A Kips;

Stress and/or area factor to modify allowable axial stress;
Time in sec.;

Pulse duration in secs.;

Thickness of plate elements, in,;

Natural period of vibration of an unloaded column, sec./cy.;
Ratio of the total lateral deflection to v ;
Ratio of initial deflection to Vi

Nondimensionalizing parameter for lateral deflection, = My/PE, in,;
Lateral deflection at the ith point, in.;

Initial deflection of the column, 1in.;

Flat width of plate element, in.;

Distance along the length of the column, in.;

Ratio of pulse duration to the natural period of unloaded column;

Maximum deflection under P

DYN applied dynamically and P,
applied statically, K-in.;

STAT

Deflection due to PDYN and pS‘l‘A’l‘ applied statically, in.;

Yield stress, Ksi;

Curvature, in./in.;

Curvature at the 1th

point, in./in,;

Curvature corresponding to Hy, in./in.;

Ratio of curvature to yield curvature, O/@y;

Ratio of the distance between mass points to the total length

of column;
Spun/ Ssars

Ratio of maximum dynamic load to Euler load;
Ratio of static preload to Euler load;

Ratio of time to the pulse duration;
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