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Seventeenth International Specialty Conference on Cold-Formed Steel Structures 
Orlando, Florida, U.S.A., November 4-5, 2004 

Introduction to the Theory and Finite Element Implementation 
of (Steel) Plasticity 

Dr. H.(Henn) Hofmeyerl 

Abstract 

This paper tries to enlighten the subject of (numerical) plasticity by presenting 
fundamental theory and some very practical examples. For a two-dimensional 
plain stress state, a Hubert-Henky yield criterion is derived. The flow rule is 
discussed, including an explanatory numerical example. The yield criteria and 
flow rule are theoretically applied in a four node finite element. This element is 
used to show some of the conditions and limitations of a plastic calculation in 
the finite element method. Finally, a real finite element calculation is made for 
illustrating the theory derived. 

Introduction 

An overwhelming amount of books is available on the subject of (steel) 
plasticity. However, structural engineers -and even scientists in the field of 
structural steel design- do often know not more than that a yield stress exists, 
and that it is influenced by hardening and residual stresses. Starting than with 
finite element simulations including plastic steel behavior, it is not unlikely that 
the simulations do not predict structural behavior well. Using the information in 
this article, plastic finite element calculations can be carried out on (thin-walled) 
steel stmctures, see figure 1 [HofmOOa], having basic understanding of theories 
used. 

I Assistant professor Applied Mechanics, Technische Universiteit Eindhoven, 
The Netherlands and specialist-project manager ABT consulting engineers, 
Arnhem, The Netherlands 
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1 Elastic stresses 

For a plane stress state, normal stresses and shear stresses can be defined for a 
coordinate system x-yo 

Figure 1, plastic analysis of a thin-walled structure [HofmOOaJ. Are these results 
trustworthy? 

For a positive angle a rotated coordinate system Q-17, stresses can be determined 
as follows [Verr99a]: 

[ ;~ 1 =[ :~:~: ;~:~ : _2;:~naac:;;a j[;: 1 (1) 

0"';11 -sinacosa sinacosa cos2 a-sin 2 a O"xy 

If the stresses for a given location are known, elastic strains can be calculated if 
Young's modules E and Poison's constant v are known: 

EX -v -v 0 0 0 O"X 

Ey -v -v 0 0 0 O"y 
Ez 1 -v -v 0 0 0 O"z 

=- (2) 
Eyz E 0 0 0 I+v 0 0 O"yz 

Exz 0 0 0 0 I+v 0 O"xz 

Exy 0 0 0 0 0 I+v O"xy 



141 

We define an average stress crtll'g and deviator stresses Sn SY' and Sz: 

cr avg 0= -i (cr x + cry + cr z) (3) 

Si =ai -cravg,i x,Y,z (4) 

The average stress indicates whether a volume change of the material occurs. 
The deviator stresses indicate a shape change of the material. Using formula 2 
and the knowledge that =0, deviator strains ei can be determined: 

e;, =;~ 0 I+v 0 Sy (5) [
ex] [1+V 0 0 -[sx] 
ez 0 0 1+1'_ sz .. 

Although this paper presents two-dimensional plane stress problems, in the 
above presented formulae 2 to 5 the third dimension is taken into account. This 
because even if stress oz is zero for formula 4, deviator stress Sz will still have a 
value. 

2 Yield condition (Henky) 

In this paper, we assume that we know yield strength h [N/mm2] for the steel 
tensile test, a (modeled) one-dimensional stress state. Now we are puzzled with 
defining yielding for a two-dimensional, plane-stress situation. Reference 
[Prag51a] beautifully explains how mankind has find solutions for the above 
mentioned problem, by comparing simple developed material models with 
experiments, and giving explanations afterwards for the corrections made. We 
will use the model of Hencky here [Henc24a]. For the elastic state of a material, 
the mechanical work during deformation can be regarded as consisting out of 
two parts: one part of work that is needed to generate a change of volume (1) 
and one part of work needed to change the shape of the material (2). Hencky 
showed that if steel yields, for this yielding always the same amount of 
mechanical work of type 2 is needed, regardless of the observation of a one
dimensional or a two-dimensional state of stress. If for a work equation the 
deviator stresses and strains are used, only the work associated with a shape 
change of the material is predicted (mechanical work of type 2). Index "1" 
stands for the simple tension test: 
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(6) 

The elastic work (only for shape changes for a random two-dimensional plane 
stress state (index "2") equals: 

I+v 2 2 2 
we'2 =--(CTx -CTxCTy +CTy +3CT xy ) (7) , 3E .. . 

Setting the elastic mechanical work for the one-dimensional case (formula 6) 
equal to the work for a random two-dimensional case (formula 7), yields the 
following: 

For the condition presented above, the material in a random two-dimensional 
plane-stress state is yielding. The above function can simply be defined as yield 
function/, and then yielding is defined when/equals zero: 

For plastic deformations, d/ (the change of yield function / for changing 
variables) should be zero, because if d/ is smaller than zero, this indicates that 
for furtber deformations function/will be smaller than zero. If/is smaller than 
zero, no plastic deformations will occur. Furthermore, d/ cannot be larger than 
zero, because tbis indicates that the function / will be larger than zero, which is 
physically impossible. 

3 Plastic flow 

If material yields, the constitutive equations should be determined, in other 
words, the relation between (plastic) strains and stresses should be derived. For 
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the elastic state we have this information given by equation 2. Reference 
[Kali89a] gives a good overview on how to find the constitutive equations for 
the plastic state, and this overview will be used here rewritten for a plane-stress 
case and avoiding the rather complex tensor-notations. For plastic states, more 
strain values can be linked to one stress value: there is no direct connection 
between strains and stresses. To work around this, increments instead of total 
values will be used. This means a function will be derived between strain 
increments and stress increments, for a specific stress state. We assume that 
strains can be decomposed into elastic and plastic strains, and this implies that 
also strain increments can be decomposed: 

de; def +def, i x,y,xy (10) 

See figure 2. A three-dimensional stress space (O'x, oy, O'xy), for a plane-stress 
situation, is presented schematically in a two-dimensional figure. Yield function 
f = 0 is given schematically by the oval: this is the yield surface. From the 
origin, a stress state is given by vector d; point A represents the stress values 
(O'x, oy, O'Xy). As mentioned functionf cannot be larger than zero physically, this 
means that stress vectors like d cannot reach the outside of the yield surface. 
Assume that due to a external load, the stress at one location in the material will 
change from point A to point B, then to point C, and fmally back to point A. The 
additional work (the work due to d is not regarded) during this load can be 
written as: 

B 

c 

Figure 2, plastic yield criterion in stress space, stress space is for a plane stress 
situation three-dimensional. Here, only two dimensions are drawn. 
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Equation 11 can be rewritten because of the following items. The stability 
postulate of materials [Druc52a] defines that the additional work cannot be 
negative for perfectly plastic materials (I). Total strains can be decomposed in 
elastic and plastic strains (2). Elastic energy is restored for a complete load cycle 
(starting from A and return to A). Thus, the sum of these terms equals zero and 
can be deleted (3). Assume that point Band C are closely together, making the 
plastic work between Band C infinite small (4). No plastic work will be 
generated once traveling back from C to A (5). Assume that the path from A to 
B is linear (6): 

( 0' B -0' A)dc P +(0' B -0' A)dC P +(0' B -0' A)dC P >0<::> x x x y y y xy xy xy-

(dO'x)ticf +(dO'y~c§ +(dO'xy~ci;,~o (12) 

The stress increments in equation 12 can be written as a vector da(dax, day, 
dcr.<y) and the strain increments also as dc(dcx, dcy, dcxy)' If the strain vector is 
drawn in a three-dimensional strain space, and this space is coaxial with the 
stress space, the angle between the two vectors should not exceed 90 degrees. 
This because the product of the two vectors should be larger than zero (equation 
12). It can be proven that this rule implies that the oval shape of function f = 0 
should be convex, and that the incremental plastic strain vector should be 
perpendicular to the yield surface, but this will not be proven here. Figure 3 
shows that the strain vector, which starting point can be positioned arbitrarily in 
space because it is incremental, is perpendicular to the yield surface. 

Figure 3, the incremental strain vector is perpendicular to the yield suiface. 
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Another way (instead of equation 12) to define the incremental strain vector is 
now to derive the normal vector (at location B) of the yield function. This is 
straightforward: 

8f(B) . 
ni =--,I=X,Y,XY (13) 

8ai 

We know that the incremental strain vector should coincide this normal vector, 
but the size of it remains unknown for which we thus will use a defined factor 
dJ,.,: 

If we can solve this defined factor dJ,." the incremental constitutive equation is 
solved. It is possible to show how factor dJ,." is solved theoretically. However, in 
this paper this will only be presented for an practical example, see next section. 

4 Example plastic flow 

Formula 2 can be rewritten for stresses as a function of strains. For a plane 
stress situation, 0;" ox" and ayz are zero and the following is valid: 

[
:: ]=_E [~~ ~ ][;.; ]=[;~ !~ ~ -1[:;] (15) 

a~J' l-v
2 

0 0 I-v Exy 0 0 E3J Ex}' 

The strains presented in equation 15 elastic strains. Elastic strains can be 
regarded as total strains minus plastic strains. Rewritten for increments and 
substituting the flow rule (equation 14): 

(16) 

(17) 
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The left and right side of equation 16 to 18 can be multiplied with an arbitrarily 
chosen factor: 

(19) 

(20) 

It was already mentioned that df should be zero (see section 2). The sum of the 
left terms of equation 19 to 21 equals dfand thus should be zero. Now dA can be 
solved using the sum of the right terms equal to zero. The term dA can be 
substituted into equations 19 to 21 and then the relationship between stress 
increments and total strain increments is known. An explanatory example will 
be presented, figure 4. 

(1' "'I. =14504 x y 14504 

Figure 4, steel plate, 3.93*3.93 inch, thickness 0.39 inch, loaded horizontally 
with the yield stress, not loaded vertically. 

We will take a thin plate of steel, and although the dimensions are not relevant 
for the example, assume that the size is 3.93*3.93 inch (100*100 mm) and the 
thickness equals 0.39 inch (10 mm), see figure 4. Young's modulus is taken 
3.046E7 psi (210,000 N/mm2) and Poison's ratio equals 0.3 [1]. This makes it 



147 

possible to calculate E}, E2, and E3 (equation 15). We use the yield function as 
derived in section 2, formula 14. For the yield strength 14504 psi (100 N/mm2) 
is taken. The steel plate is compressed in horizontal direction with the yield 
stress and in horizontal direction no stresses are applied (the plate is able to 
deform freely), see figure 4. 

Factor dA can be calculated using formulae 19 to 21: 

dl (3.084E-5)dIlX+(-7.258E-6}dsy+Ods.t)' (22) 

These values can be substituted into equation 16 to 18, and the result can be 
written conveniently into matrix notation: 

[

dcrx 1 [8015789 16031579 
dcry = 16031579 32063158 

dcrxy 0 0 

o l[ dE: x ] o dE:y 

23430769 dE:xy 

(23) 

To compare these values with elastic values, formula 16 to 18 are used with 
elastic strains only. Young's modulus is taken 3.046E7 psi (210,000 N/mm2) and 
Poison's ratio equals 0.3 [1]: 

[

dcrx 1 [33472527 10041758 
dcr), 10041758 33472527 

dcr~1 0 0 

(24) 

If plastic (equation 23) and elastic (equation 24) behavior are compared, a few 
notes can be made. Firstly, both matrices are symmetric. Secondly, in the 
compression direction, the plastic system gets less stiff, which is expected, and 
in the other direction the system gets stiffer. For the shear stiffness, no 
differences occur. 

The practical example in figure 4 will be continued a little bit further by 
applying a prescribed strain in x-direction, and by letting the material free in y
direction, thus 0;. equals zero. Furthermore, OXy equals zero in this situation. See 
table I. 
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Table 1, loading the example offigure 4. 

d8x dBy H 8x Bv ~8x1 d&y 

0 0 0.00000. 0.00000 

0.0001 -3.000E-OS 3041: 3046 0.00010 -0.00003 -3.300 

0.0001 -3.000E-OS 3041: 6092 0.00020 -0.00006 -3.300 

0.0001 -3.000E-OS 304E 9138 0.00030 -0.00009 -3.300 

0.0001 -3.000E-OS 304c 12184 0.00040 -0.00012 -3.300 

0.00007615 -2.285E-OS 232C 14S04 0.00048 -0.00014 -3.300 

0.0001 -2.000E-04 C 14504 0.00058 -0.00034 -0.5000 

Starting with a strain increment d&.., strain increment dBy and stress increment 
da:, can be calculated using matrix-formula 24 (this because oy = OXy = 0). The 
total stress a:. is found by summating all stress increments. Total strains &.. and t;. 
are found likewise. At a certain moment, the stress state will be such that the 
plastic state is reached. In this case, this is the moment where a:< equals 14504 
psi (100 N/mm2) (because oy a:<y = 0). From this moment on, not equation 24 
but equation 23 should be used to calculate strain increment dt;. and stress 
increment dOX. In the plastic state stress increment dCJ'x equals zero, and thus the 
total stress remains 14504 psi (100 N/mm2) , see figure 5. Reading through 
sections 1 to 3, the reader can be surprised on the amount of formulae and effort 
necessary to correctly describe the simple example of figure 4. Hopefully, this 
makes clear that plasticity is not easy to model and to understand and that 
especially finite element calculations using principles of plasticity should be 
used with great care. 

4 Finite element theory 

The most fundamental step in finite element theory is to derive the element 
stiffness: the relationship between nodal displacements and forces. Without 
explaining every detail, the derivation of element stiffness is presented here (see 
for more information [Cook95 a]). See figure 5. We interpolate the horizontal 
u(x,y) and vertical displacements v(x,y) in the element if given the eight nodal 
displacements dj • Both the displacements in the element and the nodal 
displacements are written in matrix notation, the interpolation itself is given by 
matrixN: 
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If the displacements in the element are known (relative to the nodal 
displacements), the strains in the element can be calculated using the 
kinematical relations. Matrix B occurs to relate element strains and nodal 
displacements: 

[5J= [B][d] (26) 

If strains in the element are known, we can calculate stresses easily using the 
constitutive relations. Now, the element stiffness matrix can be derived by 
setting the variation of potential energy of the system to zero. As a result 
[Cook95a] the stiffness matrix can be found by: 

Formula 27 can be understood as summating (the integral signs) some 
components of stress and strain (this can be more or less understood seeing the 
term [Bf[E][B] and formula 26) at every location in de element (integral 
boundaries 0 to band 0 to h). We derived the stiffness matrix using formula 27 
for an element with dimensions as shown in figure 4. The element was loaded 
with an equally distributed strain by prescribed displacements as shown in figure 
5. This results in an equal stress distribution for all locations in the element. At 
the moment the yield stress is reached, not matrix [E] and formula 24, but plastic 
constitutive equations, formula 23, are used to calculate the element stiffness 
matrix with formula 27. As a result, using manual calculations (no finite element 
program), the same stress strain curve was found for the finite element and the 
example of chapter 4 [Doet04a]. A problem occurs when the element is loaded 
by only one prescribed displacement. The stress field in the element is not 
equally distributed now, and only some specific locations in the element will 
yield. If the stiffness of the element has to be updated, formula 27 cannot be 
used because if we are at a yielding location in the integration domain, we have 
to use the plastic constitutive equations, and if we are at a non-yielding location, 
the elastic constitutive equations have to be used. But how can these elastic and 
plastic domains be defined mathematically? Therefore, the integral of formula 
27 is solved numerically. This means that the equations are solved for specific 
values and these values are weighted, formula 28 [Cook85a, page 172]. In 
practice this means that stress and strain are only calculated at the points seen in 
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figure 5, the so-called integration points. If such an integration point yields, the 
plastic constitutive relationship is used, otherwise the elastic relationship: 

[K] = xfb y=t ([B]T [E IB ])rrdy '" 
x=Oy=o 

(tXB{xJ ,Yl)]T [E(xt,yt )IB{xl ,Yl)]+ (I XB{X2,Y2)JT [E(X2,Y2 )JB{x2,Y2 )]+ 

(lXB(x3,Y3)]T [E{x3,Y3)IB{x3, Y3 )]+ (lXB{x4. Y4)]T [E{X4, Y4 )JB(x4, Y4)] (28) 
Equal prescribed displacements downwards 

Node • 
Integration point 

y, v 
h b Lx, II 

XI • 
~'I 

Hinge Roilliearing 

Figure 5, a finite element loaded with two equal prescribed displacements. 

This means that the element only "feels" plasticity at the integration points, 
which is a very important conclusion for practice. For instance, if a shell 
element is bended only two integration points along the shell height means that 
the cross-section is only able to simulate full elastic behavior or full plastic 
behavior. If a shell element is used with four integration points along the 
surface, and a yield line is parallel moving through the surface, the line will 
move discontinue, because of the fact that it can only exist at the integration 
points. 

5 Real examples (Ansys) 

Using the finite element program Ansys, the two above presented load cases 
(equal prescribed displacements, only one prescribed displacement) have been 
simulated, see figure 6. The program output is as expected, especially for the 
case with only one prescribed displacement. This means that explanations and 
numerical calculations as presented in this paper are likely correct. 
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.. fern one prescnbed 
disp. 

Figure 6, load-deformation curves for one and two prescribed displacements. 

6 Conclusions 

It is interesting to note the amount of formulae and effort necessary to correctly 
describe a very simple example of plasticity (figure 4). This makes clear that 
plasticity is not easy to model and to understand and that especially finite 
element calculations using principles of plasticity should be used with great 
care. 

A finite element only "feels" plasticity at the integration points. For instance, if a 
shell element is bended only two integration points along the shell height means 
that the cross-section is only able to simulate full elastic behavior or full plastic 
behavior. If a shell element is used with four integration points along the 
surface, and a yield line is parallel moving through the surface, the line will 
move discontinue, because of the fact that it can only exist at the integration 
points. 

Using the finite element program Ansys, two load cases (equal prescribed 
displacements, only one prescribed displacement) were simulated. The program 
output is as expected, especially for the case with only one prescribed 
deformation. This means that explanations and numerical calculations as 
presented in this paper are likely to be correct. Solution procedures to solve the 
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problem presented are not discussed in this paper. Note that they can produce as 
many problems and questions as for the application of the flow rule here. 
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8 Notations 

17ij 

(Javg 

Stress in ij-direction 

Average stress 

Deviator stress in i-direction 

[psi, N/mm2] 

[psi, N/mm2] 

[psi, N/mm2] 



fy 

ej 

a 
E 
v 
x,y,z,q,l] 

we;l 

we;2 

w 

f 
d:t 
[II] 
r ,,] 
[d] 
[N] 
[B] 
[K] 
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Yield stress 

Total (or elastic) strain in (i-direction 

Plastic, elastic strain in (i-direction 

Deviator strain in i-direction 

Angle of rotation 
Young's modulus 
Poison's constant 
Variables for axis definition 

Elastic shape change work, 1-0 

Elastic shape change work, 2-D 

Plastic work 
Flow function 
Scale factor 

[rad.] 
[psi, N/mm2] 

Vector containing displacements as function ofx,y 
Vector containing strains as function of x,y 
Vector containing displacements of nodes in x,y-direction 
Matrix relates [II] and [dJ. 
Matrix relates r,,] and [d]. 
Matrix relates nodal forces and nodal displacements. 
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