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Fifteenth International Specialty Conference on Cold-Fonned Steel Structures 
St. Louis, Missouri U.S.A., October 19-20,2000 

Automated Design of Steel Trusses 

S-Y.Chenl, B. Mobasher and S. D. Rajan 
Department of Civil and Environmental Engineering 

Arizona State University 
Tempe, AZ 85287 

Abstract: Designing an automated procedure for the optimal design of any structural 
system poses special challenges. Converting this methodology into a practical tool is 
even more challenging. In this research, a point-and-click software system is developed 
for the optimal design of roof truss systems. The starting point is a roof template 
containing minimal user input - outline of the truss, truss spacing, load information, 
and cost figures. A ground structure is constructed as the starting point of the design 
iterations. The Genetic Algorithm (GA) is used as the optimization tool to drive the 
design changes. Using the database of available sections, the member cross-sections are 
selected for the top and bottom chords, and the webs. In addition, the number and 
layout of the web members is also determined. The final design is obtained so that the 
truss has the lowest cost and also satisfies AISI-LRFD design specifications. Numerical 
experience using the developed methodology and the software system on an Intel-based 
PC running Microsoft Windows OS shows that optimal designs can be obtained in a 
few minutes. 

Introduction 
The cost effectiveness of using steel roof systems for residential buildings is becoming 
increasingly apparent with the decrease in manufacturing cost of steel components, 
reliability and efficiency in construction practices, and the economic pressure on 
alternate building materials. While steel has been one of the primary materials for 
structural systems, it is only recently that its use for residential buildings is being 
explored. 

The challenge in turning any design methodology into a practical tool is to find a way 
to translate the theory into a robust, efficient and accurate computer program that is 
also easy to use. From a user perspective, the software system must require the user to 
input minimal amount of information with the rest of the required data being 
automatically computed with reasonable accuracy and fit. On the other hand, for 
experienced users, the software system must provide controls that the user can use to 
guide the design process and results. We will attempt to address some of these issues in 
this paper. 

The paper is divided into four parts. We first list the basic requirements in the design of 
steel trusses. The next section examines these requirements in greater detail. The paper 

1 Research Assistant (currently with Honeywell Engines & Systems, Phoenix) 

411 



412 

concludes with details of two numerical examples that illustrate our design philosophy 
and a section on possibilities for future research. 

Steel Truss Design Requirements 
The designed trusses must not only satisfy safety and serviceability requirements as 
suggested by design codes but they also need to be easy to manufacture, construct, and 
design, and they must be economical. 

AISI-related requirements 
The AISI-LRFD design code (AISI, 1986) was used to compute the corresponding 
values of the different cross-sections. The details of the code provisions and the 
relevant calculations are not shown here since they are not the primary focus of the 
current study. They are however available in a research report [Mobasher and Situ, 
1996]. 

Other considerations - manufacturing and cost issues 
When dealing with the problems of practical structural design, the total weight of the 
structure is usually a good first estimate of the cost. However, there are other 
considerations that must be met. 

1. A truss with a smaller number of joints is usually preferable. 
2. Similarly, a design involving the least number of cuts to be made to obtain the 
different truss members is also preferable. 
3. The design should use members with available cross-section. Customization of the 
cross section (e.g. built-up section) is an expensive option. 
4. Crisscrossing members are not allowed simply because of construction constraints. 

It should be noted that these requirements usually cannot be easily satisfied by 
traditional NLP techniques. On the other hand, GAs are easily adapted to handle such 
requirements. 

Design Software System 
When developing a robust and user-friendly software for practical design of steel truss, 
the above stated factors need to be carefully addressed and implemented. This paper 
focuses on these issues as well as theoretically aspect of numerical optimization 
techniques to achieve the purpose of automated design of steel trusses. 

GA as a Design Tool 
When the truss design problem is posed as a structural optimization problem, the tasks 
usually involve sizing, shaping and topology optimization. This problem can be stated 
as follows. 
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where x is the design variable vector, I(x) is the objective function, NEQC is the 
number of equality constraints, NINEQC is the number of inequality constraints, NBDV 
is the number of binary design variables, NIDV is the number of integer design 
variables, and NSDV is the number of real design variables. 

Traditional optimization algorithms perform remarkably well with engineering design 
problems where the objective and constraint functions are well-behaved (usually 
unimodal functions defmed in a continuous design space). The attractiveness of the 
Genetic Algorithms to solve engineering design problems arises when the design space 
is disjointed, where the existence of multiple local minima is a distinct possibility and 
where the computational challenges with traditional optimization techniques are too 
great (e.g. computation of gradient vectors to be used with gradient-based methods). 
When sizing, shape and topology design variables are introduced into a structural 
design problem simultaneously, numerous special situations are created that cannot be 
handled in the context of traditional design optimization. GAs then become an attractive 
solution methodology. 

Genetic algorithms are based on the principles of natural genetics and originated with 
the work by John Holland at the University of Michigan in 1975. The simple GA while 
powerful, is perhaps too general to be efficient and robust for structural design 
problems. First, function (or, fitness) evaluations are computationally expensive since 
they involve finite element analysis. Second, the design space is at times, disjointed 
with multiple local minima, and is a function of boolean, discrete and continuous design 
variables. In this section, we show how our proposed improvements to the simple GA 
are implemented. 

Adaptive Penalty Function for Constraints 
GAs were developed to solve unconstrained optimization problems. However, 
engineering design problems are usually constrained. They are solved by transforming 
the problem to an unconstrained problem. The transformation is not unique and one 
possibility is to use the following strategy. 
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where cj and C j are penalty parameters used with inequality and equality constraints. 

Determining the appropriate penalty weights C j and c j is always problematic. We 

propose an algorithm here where the penalty weight is computed automatically and 
adjusted in an adaptive manner. First the objective function is modified as follows. 

(3) 

The following rules are used to select ca' 

(1) If there are feasible designs in the current generation, ca is set as the minimum f 
among all feasible designs in the current generation. The rationale is that for the 
design with minor violations and smaller objective value, the probability of survival 
is not eliminated. If, on the other hand, the maximum f among all feasible designs is 
used, infeasible designs will have a smaller probability to survive even if the 
constraint violations are small. 

(2) If there is no feasible design, ca is set as the fthat has the least constraint violation. 
The motivation idea has the effect of both pushing the design into feasible domain 
as well as preserving the design with the smallest fitness. 

Improving Crossover Operators Using the Association String 
As discussed by some researchers, the one-point crossover is preferred for continuous 
domains, and the uniform crossover for discrete domains. However, schema 
representation still plays a pivotal role in the efficiency of the GA. If one uses a one
point crossover then it is obvious that the ordering of the. design variables is an 
important issue. Since the characteristic of one-point crossover is that the shorter 
schema has a better chance to survive, if two variables that have less of an 
interdependency are placed adjacent to each other, or two variables with a strong 
relationship are placed far away from each other, the crossover operation will make it 
more difficult for the GA to search the design space efficiently. To implement this 
strategy, we introduce an additional string called the association string. The details of 
this scheme can be found in a previous publication by Chen and Rajan [2000, 1998, 
1997]. Results show that the association string improves the robustness of the solution 
process. 

Mating Pool Selection 
The selection scheme (for generating the mating pool) together with the penalty 
function dictate the probability of survival of each string. While it is very important to 
preserve the diversity in each generation, researchers have also found that sometimes it 
may be profitable to bias certain schema [Jong, 1975]. However, results from most of 
the selection rules, like roulette wheel, depend heavily on the mapping of fitness 
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function. In this paper, the tournament selection [Jong, 1975] is used. There are at least 
two reasons for this choice. First, tournament selection increases the probability of 
survival of better strings. Second, only the relative fitness values are relevant when 
comparing two strings. In other words, the selection depends on individual fitness 
rather than ratio of fitness values. This is attractive since in this research, the fitness 
value contains the penalty function and does not represent the true objective function. 

Elitist Approach 
The elitist approach was proposed by De Jong [Jong, 1975]. Our research has shown 
GA with the incorporation of the elitist approach can be more reliable and efficient than 
the ones without. This approach is used in the current research. 

Repeating Chromosome 
It was found that, during the evolutionary process, the same chromosomes at times are 
repeatedly generated [Raj an, 1995]. Since the fitness evaluation in structural design 
involves finite element analysis, a computationally expensive step, all generated 
chromosome and the associated fitness information are saved in memory. In this way, if 
a chromosome is repeated, a finite element analysis is not necessary. Saved 
chromosomes may also be helpful for further processing of the design history. 

Convergence Property, Population Size and Stopping Criteria 
Convergence property of GAs can be proven to be applicable under certain assumptions 
[Chen and Raj an, 2000]. The result can be used to estimate the population size. 
Consider a good initial population containing uniformly distributed alleles. By this, it is 
meant that no chromosome pattern is missed. Each chromosome is represented by n bits 
with each bit being either 1 or O. If the distribution of 1 's in each bit location is to be 
uniform, the initial population size should be at least n. During the evolution, it is 
expected that that the chromosome converges to some special pattern with the (0-1) 
choice decided for n locations. 

Assume that the choice of each bit is independent of all the other bits. Since the 
population size is n in each generation, after every generation from the statistical 
viewpoint we can expect to learn about at least one bit. Ideally then after n generations, 
one can expect to learn about all the n bits forming the chromosome. However, since 
each bit is not independent of the others, more than n generations are perhaps necessary 
to obtain a good solution. This suggests that the population size and the number of 
generations should be at least n. Our previous work suggests that using population and 
generation size of 2n leads to reasonable results efficiently. 

The Improved GA Optimizer 
As mentioned before selective improvement can be made to obtain a more robust 
solution methodology for a class of problems. Table 1 shows the proposed 
improvements. 
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Other Considerations: Design Variable Linking 
As shown in Eqn. (1), GAs essentially can handle three types of design variables -
discrete or integer, real, and boolean. These design variables capture all the possible 
structural design parameters. The sizing design variables considered in this dissertation 
are either cross-sectional dimensions or available cross-section. The former can be 
described using real design variables since these dimensions can vary continuously. The 
latter is described in terms of integers (an integer index that points to a row in a table of 
available cross-sections). The table search is carried out by using a table of ordered 
available cross-sections with the lower and upper bound candidate cross-sections 
specified by the user. The shape design variables are the nodal locations. These are real 
design variables. The topology design variables can be structural parameters such as the 
presence or absence of members, and presence or absence of fixity conditions at 
supports. Table 2 shows the linking of the design variables. 

Development of the Software System 
The algorithms mentioned above . were implemented in a computer program. The 
software was developed under MS Windows 95/NT due to its user-friendly graphical 
user interface and excellent performance per unit cost that can be achieved. Figure 3 
shows a snapshot of the graphical user interface for the design system. The software 
system offers the following features. 

(1) The design process is initiated by specifying the geometrical and loading 
parameters. These include the span, height of the King Post (or, the pitch of the 
roof), the dead and live loads acting on the top and bottom chords, heel heights 
and support conditions, the overhangs, and the truss spacing. Finally, the different 
types of cross-sections to consider for the members are specified. Table 3 shows 
the typical cost values of the candidate sections, and Table 4 shows the use of the 
cross section in each member. Figures 1 and 2 show the typical cross-section of 
the members. 

(2) The truss structure is defined by the specification of the panel points, the maximum 
unbraced length of a bottom chord member or top chord members. Once the panel 
points are identified, the elements and nodes of the model are defined by 
connection of all the nodes to adjacent nodes. This creates what is popularly 
known as the ground structure. 

(3) With the truss completely defined in terms of the topology (all the members with 
their cross-sectional properties and the member end nodal coordinates known), a 
materially linear, small displacement, small strain finite element analysis is carried 
out. The structure is assumed to be a planar frame with rigid connections. No 
second-order effects are considered. 

(4) Design checks based on the AISI code are carried out on the finite element results. 
(5) The genetic algorithm attempts to remove the elements that have a low stress 

magnitude while the elements with the stress level exceeding the allowable stress 
are penalized, increased in size andlor repositioned. Step three is repeated again 
for the newly updated shape and geometry. 
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(6) At the end of the design process, one would obtain the cross-sections for the top 
and bottom chord, heels, King Post and the webs. The number of web sections and 
their location (in terms of the coordinates of the web members) are also 
determined. 

When the implementation includes the improvement of the GAs as mentioned above, 
the user just needs to specify the design model and no user-adjustment of the design 
parameters or algorithm is necessary. 

Numerical Examples 
Two numerical examples are considered in this section. In the first example, a 
commonly used flat-bottom truss was designed, constructed and was a full-scale testing 
was carried out under carefully monitored conditions. The second example is used to 
test the applicability of the developed methodology for different types of trusses. 

Example 1 
The example considered is a flat bottomed symmetric truss with a span of 6.10 m (20 
ft) and 2 panel points on each side. The height of the heels is 15.24 cm (6") with 30.48 
cm (1 ') overhangs, and the height of the ridge is 1.524 m (5'). The loading on the truss 
include 957.6 N/m2 (20 pst) live load and 478.8 N/m2 (10 pst) dead load on the top 
chord, and 239.4 N/m2 (5 pst) dead load on the bottom chord. Figure 4 shows the 
ground structure of this example. The final cost is $39.13. The final connectivity and 
layout of the structure is shown in Figure 5. 

Example 2 
This example is a flat bottomed symmetric truss with a span of 9.14m (30 ft). The 
height of the heels is 22.86 cm (9") with 45.7 cm (18") overhangs, and the height of 
the ridge is 2.29 m (7.5'). The loading on the truss include 957.6 N/m2 (20 pst) live 
load and 478.8 N/m2 (10 pst) dead load on the top chord, and 5 psf dead load on the 
bottom chord. There are 5 panel points on each side. Figure 6 shows the ground 
structure. The final cost is $73.0. The final connectivity and layout of the structure is 
shown in Figure 7. The problem took about 1900 seconds CPU time on an Intel 
Pentium 75 machine with Windows 95! Clearly, with today's faster computers, a much 
reduced time is possible. 

Concluding Remarks 
A comprehensive system has been developed to design residential steel roof truss 
systems. The AISI-LRFD design code is used in the design process. A GA-based 
design methodology has been developed that uses minimal input to automatically size, 
shape and configure the truss. The summary of the research accomplishments is as 
follows. 

, 
(1) Development an automated design procedure to design the lowest cost truss. The 
design procedure includes (a) the planar frame structural analysis carried out to 
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compute the response of the individual members subjected to the design loads, (b) use 
of the response values in an AISI-based design checks to ensure the adequacy of the 
individual members, and (c) the procedure to redesign in order to minimize the cost of 
the truss. 

(2) The validity of the structural analysis is established by comparing the linear and 
elasto-plastic FEA strain and deflection values against the experimentally obtained 
values from the full-scale test. 

(3) The procedure to redesign the truss in order to obtain the lowest cost truss is 
validated by comparing the cost of the truss to industry norms. The cost of the designed 
truss is $51 translating to about $2.50 per linear foot. This is about the best estimated 
cost as per industry norm. These [mal designs are obtained with minimal user input and 
in a reasonable amount of computer time. 

A good number of the tasks that a design engineer normally deals with when translating 
an architectural drawing into code-conforming final design can be automated. This task 
is certainly worthy of further investigation. 
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T bl 1 D·f~ a. e 1 erences B etween T d·· ra Itlona and Proposed G A 
Traditional Proposed GA 

GA 
Penalty Function ad hoc Automatic 
Schema ad hoc Ordered 
Cross-over Probability ad hoc Adaptive 
Population/Max Generation Size ad hoc Suggested as 2n 

Table 2 Linking of Design Variables and the Physical Meaning 

Optimization Physical Meaning Design Variable Note 
Type in GA 

Topology Element Existence Boolean 
Sizing Cross-sectional Integer Search inside a given 

selection table 
Shaping Nodal Coordinates Real Varies inside upper 

and lower bound 

a e yplca ost a ues T bl 3 T . I C V I 

Item Cost ($) Item Cost ($) 

3.5 Chord 16 GA 0.84/ft 3.5 Chord 18 GA O.72/ft 

3.5 Chord 20 GA 0.60/ft 3.5 Chord 22 GA 0.468/ft 

2.5 Chord 16 GA 0.73/ft 2.5 Chord 18 GA 0.996/ft 

2.5 Chord 20 GA 0.48/ft 2.5 Chord 22 GA 0.372/ft 

1.5 SQWEB 20 GA 0.34/ft 1.5 SQWEB 18 GA 0.44/ft 

1.5 SQWEB 16 GA 0.68/ft 1.5 CEWEB 20 GA 0.34/ft 

Screw 0.02 Labor per screw 0.08 

Cut Cost 0.35 
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Table 4 Usage of Cross-sections 

Top Chord Bottom King Post Webs Heel 

3.5 Chord 16 GA YES YES NO NO NO 
3.5 Chord 18 GA YES YES NO NO NO 
3.5 Chord 20 GA YES YES NO NO NO 
3.5 Chord 22 GA YES YES NO NO NO 
2.5 Chord 16 GA YES YES NO NO NO 
2.5 Chord 18 GA YES YES NO NO NO 
2.5 Chord 20 GA YES YES NO NO NO 
2.5 Chord 22 GA YES YES NO NO NO 

1.5 SQWEB 20 GA NO NO NO NO NO 
1.5 SQWEB 18 GA NO NO YES YES YES 

1.5 SQWEB 16 GA NO NO YES YES YES 

1.5 CEWEB 20 GA NO NO NO YES NO 

I", 1. .... I 

Figure 1 Typical web and heel section (designation: 1.5 WEB 18GA) 

Figure 2 Typical chord section (designation: 3.5 CHORD 20GA) 
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Figure 3 Graphical User Interface for the Roof Truss Design System 

Figure 4 The Ground Structure of Example 1 

Figure 5 Final Design of the Example 1 ($39.13) 
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Figure 6 The Ground Structure of Example 2 

Figure 7 Final Design of the Example 2 ($72.00) 
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