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Seventeenth International Specialty Conference on Cold-Formed Steel Structures 
Orlando, Florida, U.S.A, November 4-5, 2004 

Design of Cold-Formed Web Members with Non-Uniform 
Cross Sections 

Serge ParentI, PE, Joseph J. Pote2, PE, Kenneth W. Neale3, Ph.D., Eng. 

Abstract 

In this paper, design algorithms are proposed for the design of cold-formed webs 
used in joists and girders built with conventional hot rolled chords. Two types of 
web members with non-uniform cross section are investigated: single channels 
periodically closed and back-to-back channels with batten plates. The design 
method for periodically closed sections is based on the representation of the 
cross sectional properties using Fourier series introduced in an energy balance 
for the determination of the buckling loads about each of the three member axes. 
The back-to-back channels case is solved by the adaptation of the classical 
Engesser solution and by the critical shear ratio approach. In all cases, the 
proposed algorithms are integrated in the actual frame of the AISI (1996) 
standard design curves with appropriate effective lengths coefficients. 
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Introduction 

The costly use of square tube sections in JOIst applications justifies the 
development of non-uniform or partially closed cold-formed shapes. A second 
example of a better material usage investigated in this research is the double 
web member made of back-to-back channels with batten plates. In this study, 
two types of single non-uniform web members have been experimentally and 
numerically tested: the partially closed channel with plates and the stitched 
closed channel. Both types are presented in the first part of this paper. The 
second part covers the case of double web members made with two back-to
back channels used in girder applications. In this assembly, an increased axial 
strength is obtaiued when compared with the conventional hot rolled double 
angles of same weight. For both types of web members, the proposed design 
algorithms, a description of the experimental program and the results obtained 
are preseuted. A brief discussion completes both parts, followed by the list of 
references and symbols. 

Singly Non-Uniform Cold-Formed Web Members 

Figure I shows the back-to-back channels with battens and a periodically closed 
channel. In all cases, the single cold-formed channel webs are welded to 
conventional hot rolled angle chords. The design of this type of non uniform 
single member is based on the representation of the periodicity of the geometry 
by Fourier series. The Fourier series approach is required as opposed to simply 
weighing the various geometric properties because it accounts for the position of 
the transition in the cross section (a channel can be closed on its fourth face 
using different patterns and still give the same averages properties as opposed to 
an exact description using periodic series). Timoshenko quotients (BaZant, 
Cedolin, 1991) are then adapted to calculate the buckling loads with respect to 
all axes. These values are used to obtain the nominal buckling stress Fn as 
defined in AISI (1996) Standard. The effective area is calculated and weighted 
between the closed and open section using a boxing ratio defined by <D = 

(number of closures' length of closure)/(length of web member between the 
chords). The nominal buckling strength of the web member is finally defmed by 
Po = AeFo as per AISI (1996) Standard. 

Proposed Design Algorithm-Single Member 

The complete algorithm includes the following 11 steps: 
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STEP 1: Determine the geometric properties of a single cold-formed channel 
(use section properties for cold-formed member). 
STEP 2: Redo STEP 1 for a tube obtained by closing the channel on its fourth 
face. 
STEP 3: Calculate the periodic cross-sectional properties by first defining the 
following geometric variables shown on Figure 1: PITCH = the regular interval 
at which the centerline of a closed area repeats itself, LENGTH = the length of 
the closure over the channel, L = the overall length of the member being 
analyzed. The period is then set equal to the PITCH value and the lower and 
upper limit for integration respectively as: 

AA = P = 0.5 PITCH BB = -AA-(LENGTH-PITCH) (1) 

The appropriate numerical value of any geometric property is attributed to the 
variables CHANNEL and TUBE. All variables are unitless and are defined as 
the functions being integrated to calculate the series coefficient. For example, 
for the area in in2, we define: 

f, (x) = CHANNEL = A~EAc 
m 2 

The coefficients needed to define the complete series are expressed by 
(Zwillinger, 1996): 

1 IBB 1 fAA ao =- f,(x)dx+- f2(X)dx 
2p -AA 2p BB 

1 IBB (n11x] 1 lAA an =- f,{x)cos -. - dx+-
P -AA. P P BB 

b n =- f,{x)sin -- dx+-1 IBB (n 11X] 1 lAA 
p -AA P P BB 

f2 {x)co{ n;x }x 

f 2 (x)sin( n;x}x 

(3) 

(4) 

(5) 

The geometric property over the length of a member can finally be defined by 
the Fourier series: 

AREA{x) = a o + ~an co{ n ;x ] + ~ b n sin( n;x ] (6) 

The same operations are performed for the inertia in x-x Ix, inertia in y-y Iy, 

warping constant Cw, St-Venant constant for torsion J and the polar radius of 
gyration about the shear center roo A summation over a value n = 30 gives a 
smooth curve that represents well the periodic variation of a geometric property. 
STEP 4: Calculate the buckling loads for the combined section using the two 
Timoshenko quotients and the proposed expression for P z defined as: 
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l(d Y(X))2 dx 
p = 0 dx 

, DY~~~' dx J k: 
(7) 

O.5L (d~(X))2 O.5L Ee (d~2(x)J2 f GJ - dx + f _w 2 dx 
o dx 0 k~ dx 

(8) 

and setting y( x) = I: sin( n1tx ) and ~(x) I: -~- cos( n1tx) for the shape 
n~l kxL n~l n op kzL 

functions where L is the member's overall length, top =1 for y(x) and 10 for 
~(x) 

STEP 5: Define the squash load PFy using the area of the channel section and Fy 

such as PFy = Achanne!" F y• 

STEP 6: Calculate the parameter ~ = <l>~tube + (1- <l»~channel with <l> the boxing 

ratio defined above and the property ~ = l-(xo/ro/ with Xo the x-coordinate of the 
shear center. 
STEP 7: Calculate Fn using 

{
(Fn), = (0.6581.;' )Fy when Ac ~ 1.5 

(Fn). = ( 0.~{7 ) Fy when Ac > 1.5 (9) 

where (Fn), is the nominal inelastic buckling stress, (Fn)e is the nominal elastic 

buckling stress, A., is the column slenderness parameter equal to ~PFY IPe , in 

which P e is the theoretical elastic flexural buckling load of the column defined 

as the minimum of {Px,Py, Pe2 = 21~[(px +P.)-~(Px +pz)2 -4~PxPz J} (Yu, 

2000), (Timoshenko, 1945). 
STEP 8: Calculate the properties of the channel effective section using f= Fn. 
STEP 9: Calculate the properties of the tube effective section using f= Fn. 
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STEP 10: Calculate the effective area of the combined section 

with A c = <!> A eff. _ tube + (1- <!> ) A eff. _ channel . 

STEP 11: Obtain the nominal axial strength Pn = AeFn . 

Back-to-Back Cold-Formed Channels with Batten Plates 

For this type of assembly, it is intended to develop design equations with due 
consideration for the presence of the batten plates at mid-height. Components 
and full scale girder tests (Parent, 2004) have shown that calculating the 
buckling strength as twice the single channel capacity with Lx = Ly and a check 
on one single channel with Lz = 0.5 Lx gave lower than measured buckling 
loads. An adaptation of the classical equations for batten columns proposed by 
Engesser (Timoshenko, 1936) and Bleich (Bleich, 1952) is used. The critical 
shear ratio as defined by Galambos (1998) is also modified by the definition of 
appropriate design curves. As for the previous case, the structural analysis is 
introduced in the framework of the AISI (1996) Standard to calculate the axial 
capacity of the assembly. 

Proposed Design Equations - Back-to-Back Members 

A battened column is more flexible in shear than either a laced column or even a 
column with perforated cover plates. It acts as a Vierendeel truss. The effect of 
shear distortions can be significant and should be considered in calculating the 
compressive strength of the member (Galambos, 1998). The first theory 
analyzed for the problem of a back-to-back cold-formed channels with batten 
used for double web member is the one developed by Engesser (Engesser, 1889, 
1895) and detailed by Timoshenko (Timoshenko, 1936). Figure 1 illustrates the 
geometry of the problem. 

It has been demonstrated that the critical load of a batten compression member 
is always less than the one for a column that has the same cross section area and 
slenderness ratio. The buckling load is largely influenced by the spacing of the 
battens and chords. This decrease in axial capacity is mainly due to the great 
influence of shearing forces that increase the deflection during the buckling. The 
expression proposed by Timoshenko taking into consideration the shear in the 
batten is represented by: 
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Per 
a = --::--"'-----::-

2n2EI /a2 
e 

In this expression, E = 29 500 ksi, G = 11 300 ksi, L is the overall length of the 
double web member, a is the panel length, b is the distance between the 
centroids of both channels, Ie the inertia of one channel (which should be 
substituted with the total inertia of the column), Ib the inertia of the batten plate 
(THICKDEPTH3112), Ab the area of the batten plates (2·THICKDEPTH), 
[~EI/L2J an expression replaced with Pn as defined in AISI (1996) Standard 
which represents the column axial strength taken as a whole and n a numerical 
factor equal to 1.2 in the case of a rectangular cross section. 

Since a contains Pen this equation can be solved only by a trial-and-error 
method. To account for the axial strength of the column taken as a whole, the 
expression n2EIIL2 is replaced with nominal axial capacity Pn as mentioned 
above. Furthermore, since only two panels are generated with a double batten at 
mid height, the last expression represents more adequately the test results if the 
total inertia of the column is used instead of Ie. In this sense, Ie is replaced with 
Iyt = 2[le +(Ae)"(b/2iJ with Ac the area of one channel. 

Bleich (1952) derived a procedure for the buckling load essentially as described 
in the preceding paragraph by using an energy formulation rather than an 
equilibrium approach. At the difference of Timoshenko's development, the 
effects of the distortion of the chord members and battens due to the shear 
stresses which occur during bending are disregarded. It will be shown later that 
the two formulations will lead to different critical loads for short members 
having only two panels. The approach leads to the formulation: 

Po = "'~;I. '( / ' 
l+~.!i. ~ + n EtlO ~ 

24 Ie L L2 12Elb 

(11) 

Reasoning in the same manner as in the preceding section, we may replace 10 = 

[Ae·b2/2J in the numerator by the moment of inertia I = 10 + 21e of the column. 
In this way we account for the flexural rigidity of the chords. Numerical and 
experimental results presented in this paper indicate that for short members, the 
ratio IJle contained in the second term in the denominator can be replaced with 



271 

lolly! to account for the neglected shear stress effects. In this ratio, 
lyt=2[le+Ae'(b/2)2] represents the inertia of the complete column instead of only 
twice the inertia of a simple chord. As with the previous formulation, the 
expression [n?EtI/L 2] is again replaced with P n' 

Another solution to the problem is based on the use of shear shape factors and 
moments of inertia of the battens and chords (Galambos, 1998). The 

functionCRITrat(fl) = 'l'e-(lSfl)n with ['I' = 10, Q = 0.55] for Ll20 =: 1, ['I' = 7.5, 

Q = 0.65] for Ll20 =: 2 and ['I' = 5, Q = 0.75] for Ll20 =: 3 with L expressed in 
inch, is proposed to match the stub columns as well as the full scale girder tests 
(Parent, 2004). As for the previous two cases, the typical unit of a battened 
column has a length a center to center of battens and a width b between 
centroids of the chords. 

In developing the shear flexibility effect for the highly redundant battened 
member, Lin et al. (1970) assumed points of inflection for symmetric members 
at the midpoints of the battens and midway between the battens for the chords. 
The analysis is conservative because the overall continuity of the longitudinal 
members is neglected. The shear flexibility parameter is then given by: 

fl=[-( 1)2 +(~J2][~[ ab2 +5.2~ThJ+2.6~aT]e + ~; (~J2l (12) Lire 2L Ab 6rb b 12 re 
The nomenclature for fl is shown in Figure 1 and (additionally) as follows: 1;,. = 
(a - DEPTH)/a, re, rb = radius of gyration of longitudinal and batten elements, 
respectively. 11c,11b = shear shape factors for the longitudinal and batten 
elements, respectively, where the shear shape factor is the ratio of the total 
cross-sectional area to the shear area (Timoshenko and Gere, 1961). In this case 
11c = 1.5 and 11b =1.2. 

To obtain the critical load using the shear factor curve, we first need to calculate 
fl using Equation (12). Then we use the pre-defined functions and to obtain K = 
[1/ CRITrat(fl )t·s. Knowing the equivalent length factor, we can complete the 
calculations using the AISI (1996) design equations for compression members. 
This way, only one slenderness coefficient is included in all the calculations by 
setting kx = ky = ky = K to obtain Fn introduced in Pn = FnA.. 

Experimental Program 

To validate the proposed design algorithms, stub columns and full scale joist and 
girder tests were performed. The stub columns tests were designed such that the 
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webs were fixed inside small pieces of angle 6" long representing the chords. 
Blocks of steel were also inserted between the chords to maintain a constant gap. 
For the single partially closed member, specimens of 12", 18" and 24" were 
axially loaded up to failure by buckling using a Tinius Olsen press coupled to a 
CMH 496 controller unit. A loading rate of 2.4 ksi of cross-sectional area per 
minute between increments of 10% of the estimated ultimate test load obtained 
by finite element simulation was applied. For the back-to-back channel 
configuration, 24" specimens were tested using the same press. In all cases, four 
replicates per configuration were tested. 

To obtain a better representation of the behavior of these non-uniform sections, 
full scale joists and girders were built and tested. All joists were loaded until the 
critical web member (third web member in from the end) failed in compression. 
The experimental program included a run of joists of 40' in length by 30" deep 
with channel sections of 1 13/16" web, 1 3/16" flanges by 0.187" thick. Two of 
the test joists were built using the same web channel closed with three plates of 
LENGTH = 5" by 1 %" in width at a PITCH = 8" value. During the same test, a 
60" deep girder, 48' long built with back-to-back channels joined with two 
batten plates was loaded. The joist was evenly loaded at 17 panel points while 
the girder only had seven load points with all the same load. Increments of 1000 
lbfwere used to start the loading but were reduced to 500 and 250 lbfbefore the 
onset of buckling occurred. 

Another run of tests included 18 joists 16' long with webs of square sections 1 
Yz" by 0.083" thick. Nine joists 18" deep and nine other of 32" were fabricated 
using three different types of web with conventional angle chords: the OPN, 
CLO and STI. OPN is an opened channel obtained by grooving one face of the 
square tube, CLO is the square tube and the STI is the OPN stitched welded at 
both ends and in the middle. The STI section has values LENGTH = 1 Yz" and 
PITCH = 1 0" for the 18" joist and LENGTH = 1 Yz" and PITCH = 20" for the 
32" deep joist. Illustration of the press setup used is found in Dinehart and aI., 
(2003). All the 16' joists were equally loaded at each panel point with bridging 
lines on top and bottom chord. 

When not obtained from a square tube, the cold-formed sections were built by 
press braking using ASTM AlOII-02, grade 50 ksi hot roll high strength low 
alloy approved HALAS-F steel. GMA W welding was utilized to weld the 
connections using a protection gas mix with 80% argon - 20% carbon dioxide. 
A certified AWS A5.18 0.045" diameter 70 ksi S-3 wire was used in the 
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process. Tensile tests as per ASTM A370, (2003) in the rolling, transverse and at 
45° from the rolling direction confirmed the low anisotropy of the steel used. 

Results and Discussion 

Table 1 summarizes the test results for stub, full scale joists and girder 
experiments. The geometry of each member is listed with the periodic 
characteristics for the single members (LENGTH, PITCH, <1» and the batten 
geometry for the back-to-back specimens (THICK and DEPTH). The length of 
each compression member L with the slenderness coefficients considered in the 
calculations is also listed. For each test, the calculated value is compared against 
the measured failure load. 

For the calculated buckling strength in the stub column tests, k values of 0.5 
were chosen for the single member periodically closed to represent the welded 
connection completely fixed and locked in the press. In joist application with 
this type of web members, values of 1.0 for the channels closed using plates vs a 
value of 1.3 for the channels closed with Biz" weld (stitch-welded) were 
considered. For the stub column test of the back-to-back channels, fixity in x 
and y axis was assumed with kx = ky = 0.5. Only kz was set to 0.75 to account for 
the possible warping of the flanges in the fully welded connection with no 
rotation. In full scale girder applications, values of 1.0 were implemented in 
Equations (10) and (11). 

The case of single member periodically closed with plates overly predicts the 
measured failure load. It has been found that too long plates induce bending at 
the onset of buckling and act as a stress riser rather than a closure. This is an 
indicator that the proposed model using plates is invalid for boxing ratio <I> 
greater than 0.5 for joist members. Nevertheless, the other measured critical 
loads for the stitch-welded case are in good agreement with the predicted load as 
long as a calibrated slenderness coefficient of 1.3 is introduced. 

In general, the predicted loads on· stub column tests for back-to-back cold
formed channels are lower than measured. The closest value is obtained with the 
critical shear ratio with 88.9 kips vs a measured critical load of 95.6 kips. When 
tested inside full scale girder tests, values from Equation (10) and (11) of 56.1 
kips and 55.9 kips respectively slightly over estimate the experimental value of 
53.9 kips. Nevertheless, the critical shear approach is almost equal to this value. 
As outlined in the theoretical description of the Timoshenko and Bleich 
formulations, both methods give different predictions, but are reasonably close 
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as long as the appropriate geometric parameters are input as explained. For the 
range of members tested, the critical shear method appears to be the most 
representative. 

Conclusion 

This paper outlined different design methods to predict the critical load of two 
types of non uniform cold-formed member loaded axially. Single web members 
with periodically varying cross sectional properties and back-to-back channels 
with batten plates were tested using stub columns tests and real joist and girder 
applications. The methods presented give good predictions for the range of 
tested specimens used in the experimental program. The proposed design 
schemes also offer the advantage of being implemented within the actual AISI 
(1996) Standard. 
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List of Symbols 

a Vertical distance between the battens 
lin,o Coefficients of a Fourier series 
Ab Cross-sectional area of the two battens 
Ac Area of a single channel 
Ae Effective area of a channel 
b Distance between the channels' centroids of a batten 

column 
bn 

Cw 
DEPTH 
E 
Et 

Fn 
(Fn)e 
(Fn), 
Fy 
G 
I 
10 
Ib 
Ic 
Ix 
Iy 
I yt 

J 
kx,y,z 

K 

L 
LENGTH 
Lx,y,z 

n 

Pcr 
PITCH 

Coefficients of a Fourier series 
Warping constant of torsion of cross section 
Depth of a batten plate 
Module of elasticity or Young's modulus (29 000 ksi) 
Tangent modulus of elasticity 
Nominal buckling stress 
Nominal elastic buckling stress 
Nominal inelastic buckling stress 
Yield stress ofthe steel 
Shear modulus (11 300 ksi) 
Moment of inertia of a batten column taken as a whole 
Acb2/2 
Inertia of a batten plate 
Inertia of a channel in a batten column 
Moment of inertia about x-axis 
Moment of inertia about y-axis 
Moment of inertia of a batten column taken as a whole 
St. Venant torsion constant of cross section 
Effective length factor in x, y and torsion-axis 
Effective length factor from the critical shear ratios 
curves 
Overall length of the member being analyzed 
The length of the closure over the channel 
Buckling length in the x, y and torsion -axis 
Maximum number of temlS included in a Fourier series 
Numerical factor of 1.2 for rectangular plate 
Critical buckling load 
The regular interval at which the centerline of a closed 
area repeats itself 
Theoretical elastic flexural buckling load 
Nominal axial strength of member 



, 

L 

Px,y 
Pz 

PFy 

p 
rb 

rc 
ro 

THICK 
Xo 

y(x) 

~ 
~(z) 

T\b, c 
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Euler flexural buckling load about x, y-axis 
Torsional buckling load about z-axis 
Squash load 
Half period 
Radius of gyration of batten elements 
Radius of gyration of a longitudinal element 
Polar radius of gyration of cross section about shear 
center 
Thickness of a batten plate 
x-coordinate of shear center 
Shape function for the lateral deflection 
1-(xolro)2 
Shape function for the angle of torsion 
Shear shape factors for batten elements and 
longitudinal elements 
Column slenderness parameter 
Boxing or closing ratio 
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