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1 • IN'I'RODUC'l'ION 

DESIGN OF COMPOSITE FLOORS WITH PROPlLBD S'l'BBL 8IIBB'I' 

by Jan Stark• 

Be•.lde• the .any type• o~ ~loor• o~ rein~orced concrete ( .. inly pre~abricated) and 

brick .. terial• that are u.ed in the Netherland•• there 1• now a cp:owiftCJ intereR 

in floor• COWiiiCI•ed o~ thin, pro~iled, •teel u-t• COIIb1ned with OOGcrete. 

Profiled •teel •beet can be applied ~or ~loor •1..,_ in thr- cU~~erent wayaa 

a) st-1 •h-t - ~o~rk 

Here the pro~iled •t-1 •beet .. rve• only •• pea.anent ~onawork ~or the 

concrete. The floor •lab ha• to be rein~orced in the noraal .anner. 

b) st-1 •h-t a• deck 

The •t-1 •heet i• the only •tructural el-nt. The concrete .. rve• ~or 

la.d di•tribution and •urface el...nt. Cellular .action• .. y be u~ ~or 

i~tallation pur.po .... 

c) Steel •beet - ~onawork and rein~or~nt 

ln the ~ two ~or.t~ of corwtruction the •teel and concrete are not both 

~ully utili~. ln thi• ••pact a better ~~ o~ co~truction i• obtained 

when the •teel •beet. .L• connected to the concrete to re•i•t the •hear force• 

between the two .. ter.lal•. In thi• way a co.po•lte el ... nt i• obtained 

ca.parable with a •toel-concrete ~ite be... The •t-1 •h-t ~ a dual 

funct.ion •• a penMnent ~OniWOrk and - po•itive rein~or~nt o~ the •lab. 

• ne.S of the Departaent o~ st-1 Structure•, l~titute '1'MO ~or Building Material• 

and Buildin9 Structurea, Del~t. the lletherlanda. 
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The common name for this type is: composite floor. 

Xn Holland applications type a) and b) are in general not competitive. Type c) 

the composite floor, may be competitive when besides the price per m2 , the 

following advantages are taken into account: 

Because of the dual function of the steel sheet time is saved, since no extra 

reinforcement has to be layed; the form is simple and needs few supports; 

striking and cleaning of the formwork for re-use is not necessary. 

Erection time is quicker since the sheets arrive on site ready to be placed. 

The steel sheets provide a working platform for casting the concrete and 

provide protection to the lower floors. 

During erection the lateral instability of the main beams is prevented by the 

sheets. 

Most products have standard fixtures for ceilings and installations. Cellular 

steel sheets can be used. This enables the lay-out of installations for 

offices etc. to be much more flexible. 

'l'herefore in this paper only floors of type c) will be discussed. From the 

definition appears clearly that it is essential that the steel sheet is adequately 

connected to the concrete. This connection can be achieved in three different ways, 

each with specific mechanical properties. 

!ype 1: Effective bond ensured by the profile shape 

The connection between the steel sheet and the concrete is achieved by surface 

bond. The steel sheet should have dovetailed troughs or another shape with re­

entrant corners. Due to the interlocking shape separation is prevented and a 

reliable effective bond can develop. 

Examples of this type, used in Holland, arc Holorib (Fig. 1) and Lewis. The 

Holorib sheet is available in two depths namely 38 mm and 51 mm and various 
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th~cknesses. The Lewis sheet has rather small d~ensions (depth 15 mm, thickness 

0.5 mm) and is intended to be used for concrete floors of small size on t~r 

beams (f.c. in renovation). 

Type 2& Xndentations in the profiled sheet 

The shear resistance between the steel and the concrete is improved by rolling 

into the flanges and/or the webs of the sheeting acme kind of indentations. 

Examples of this type used in Bolland are Cofrastra, Prins floor, Hi-Bond and 

Robertaon O-loc:k (see Fig. 2). The depth of the sheets ranges from 40 IIIID up to 

77 mm and sheet thickness from 0. 75 IIIID up to 1.25 11111. When the sheet is 

trapezoidal profiled the indentations must also be able to prevent separation. 

Composite action is dependent on the type of sheet, depth and number of 

indentations and the span of the slab. Tolerances in form and depth of the 

indentations may have a considerable influence on the shear capacity. 

'!'ype 3: Additional anchors 

Anchors may be provided to produce composite action with plain profiled sheets 

or to enhance the load-carrying capacity when indented sheets are used. 

An example of anchors positioned throughout the span are reinforcement bars 

welded over the troughs of a sheet (Fig. 4). This type is not used frequently 

in Bolland because fabrication costa are too high. 

Another possibility is to provide anchorages at the ends of each span preventing 

slip between the concrete and the sheet. The anchor&Qes may take the form 

illustrated in Figure 5. 

At this mcment only the headed stud can lead to an economic solution. The 

commctor. can then be used in triple function namely& 

fastening of the sheet ('weld-trough', Fig. 6), 

end anchorage for the slab, 

shear connector to achieve composite action of composite slab with supporting 

beams. 
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2. PaDPERI'IBS OF A COMPOSITE SLAB IN BENDING 

2.1 Principal failure modes 

Composite slabs are essentially ma4e from s~ular component parts as a composite 

beam namely a steel section (profiled sheet) and a concrete slab which are 

connected to resist longitudinal shear forces. It is therefore logical to assume 

that a composite slab will have simular properties as a composite beam. 

For a simply-supported sLab the ultLmate load can be determined by three principal 

criteria. or in other words, a slab can fail in three different ways. Piqure 8 

shows the sections which are characteristic for these criteria. 

Section I: Vertical shear capacity of the slab 

This criterium normally will not be critical because composite slabs are relatively 

slender elements. It may be critical in special cases e.g. deep slabs of short ~ 

with relatively high loads. 

Section II: Moment CApacity 

In this case the slab will fail in a flexural failure mode. The maxtmum load is 

reached when in the critical section the opt~um stress situation is reached. In 

Piqure 9 this stress situation is shown for a ao called 'low-reinforced' slab, 

where the full steel section can yield in tension (& ~ &y) before the crushing 

strain of concrete in the upper fiber is attained. From equiU.brium condition 

follows that this optLmum stress situation can only be reached if in section III­

III a longitudinal shear force smax can be tranamitted that is at least equal to 

the resulting t~nsilo force in the steel (T • Aae). This is defined as a complete 

shear connection. 

Section III: Longitudinal shear capacity 

In this case the slab will fail in a lonqitudinal shear failure mode. 
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The maximum mcment depends on the degree or connection present at the interface 

between the concrete and the steel. or in other words depends on the magnitude of 

the l.ongitudinal. shear force smax at failure. The optimum stress situation and 

so the ul.timate mcment in section XX can not be reached. This is defined as 

incomplete shear connection. 

2.2. Slabs with compl.ete shear connection 

Xf there is ccaplete interaction - ~at means no al.ip between the steel sheet and 

the concrete - it may be assumed that pl.ane sections remain pl.ane after bending. 

Xf the stress-strain rel.ationa of the two material.s are known, it is possible to 

rind the stress distributicn ror every val.ue or the curvature. Prcm the stress 

distribution rol.l.ows the IDCIIDeJlt and so the rel.&tion between mcment and curvature 

can be determined. 

For mild steel a good and a&re approximation or the real. a-&-rel.ation is given 

by the ideal elastic-plastic diagram shown in Figure 10&. 

The stress-strain rel.ation of concrete is not onl.y infl.uenced by the ~ality of 

the concrete but also by the speed of l.oading and the form and dimensions of the 

teat specimen. Figure 11 shows for exampl.e the infl.uence of loading speed on the 

stress-strain relation found with an uniaxial. ccmpreaaion teat on a priaa. Por 

design purposes these a-£-rel.ationa are not very suitable. Thererore the CBB has 

aqreed upon an ideal.isation of this rel.&tion as shown in Figure lOb. Because the 

falling branch is not incl.uded, it was necessary to limit the max~ ccapressive 

strain: £' • 3.5°/oo. When the idealised a-£-diaqrams or Figure 10 are used, the u 

theoretical ultimate mcment is reached when in the outer fiber of the concrete, 

the Htrain is uqual to &~. 

Depending on the position of the neutral axis different stress situations at 

ultimate moment are posaibl.e as shown in Figure 12. Only for case (a), when the 
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steel sheet is fully plastified a simple design formula can be derived. For the 

other cases the calculation of the ultimate moment is more complicated. For design 

purposes therefore, a simplified method is generally adopted. 

The basic assumption for this design method is that both steel and concrete are 

assumed to be ideal plastic materials. For steel this is a usual assumption for 

example also adopted in plastic design of steel structures. 

For concrete the difference between the real and the idealised stress-strain 

relation is greater. To compensate the effect of this unsafe idealisation, the 

ultimate stress of the concrete is reduced with a factor k. Calculations for a 

great number of composite sections have shown that a safe estimation of the 

ultimate moment can be found if the value of k is assumed to be 0.8. 

The idealised stress-strain diagrams are drawn in Figure 13. Using these ideal 

plastic stress-strain relations means that the ultimate moment of the section 

only follows from equilibrium conditions. There are two possible cases to be 

considered, depending on the position of the neutral axis at ultimate load as 

shown in Figure 14. 

The fact that the ultimate moment Mu can be determined from equilibrium conditions 

means that Mu is not influenced by internal forces caused by the manufacturing 

process. So a composite slab not propped during casting of the concrete will have 

the same ultimate load as when propped. 

This may be illustrated by the results of load tests on two simply supported 

Prins-floors with a total depth of 120 mm and a span of 3.80 m. one was propped 

during casting of the concrete, the other one unpropped. In Figure 15 the 

measured relationship between load and deflection is given. The non-supported 

slab II, with initial steel stresses due to casting equal to aa = 115 N/mm2 , 

appeared to be even stronger than the propped slab I. 
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2.3. S1abs with incomplete shear connection 

Zmcomplete shear connection implies that a horizontal shear failure occurs before 

the optimum stress situation as shown in Figure 9 is attained. The failure load 

can be calculated when the stress situation and so the moment in the heaviest 

loaded section is known. This stress situation is of course dependent of the 

strength of the shear connection. However, this is not the only parameter because 

the deformation capacity of the shear connection a1so plays an important role. 

This is illustrated in Figure 16 where as an example the stress situation is 

presented for two extreme cases e.g. an extreme brittle shear connection (bond) 

and an ideal tough shear connection. 

Zn the case of a brittle shear connection the maximum moment is reached when 

shear failure starts. Because of the sudden drop-of of the shear load when s1ip 

occurs also the moment and the load show a sudden decrease. Unti1 the maximum 

load is reached, p1ane sections remain plane (no slip). From this compatibility 

condition and equilibrium between shear force S and tensile force T fo1lows max 

the stress situation. 

When the shear connection is tough no drop-of of 1oad occurs when S is reached. max 

When slip increases the magnitude of s remains constant. As a result of the max 

slip the curvature increases with constant value ofT and D (see Fig.16). Because 

of that, the steel and the concrete have no longer a common neutral axis. A 

redistribution of stresses is possible so that an optimum situation can be 

attained. The stress situation then only follows from the yie1d condition and 

the equilibrium between T and S • The inf1uence of the deformation capacity max 

appears clearly from Figure 17, where for a specific slab the relation between 

moment and shear load is shown for the two extreme cases of deformation capacity 

and with same shear strength. 

When infinite rotation capacity of the shear connection is assumed tlo-a rP1ation 
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between maximum moment and the ultimate shear strength S can simply be max 

calculated. A qualitive presentation of this relation is given in Figure 18. 

Now it has been shown that the deformation capacity of the shear connection 

is an important parameter, it will not be surprising that the properties of 

slabs with plain sheets are quite different from those with some kind of 

mechanical shear connection. This is illustrated more in detail in section 3 

and 4 where some theoretical consideration and test results for a specific 

product of both types will be presented. 

3. DESIGN OF COr~OSITE SLABS WITH PLANE SHEETS 

When the concrete in tension is uncracked (M < M k) the shear stress at max crac 

the .interf ace between concrete and steel can be calculated with the well-known 

formula: 

T 
VQ 

bi 
c 

(1) 

where: V = shear force 

Q statical moment of concrete sectional area 

b width 

Ic = composite section moment of inertia 

The value of the shear stress is maximum near the support. 

Some manufacturers of composite decks used this formula to check for the horizon-

tal sh<~ar criterium. Based on tests a limiting value for the shear stress T was 

determine<] (see for example [1]). 

It will be shown now that this des;i.<Jn methou auust l>e useu with care cand only 

applies if the slab dimensions and the load pattern are approximately the same 
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as in the tests. 

Assuming that the formula (1) applies the total ultimate load (= 2V) should only 

be dependent of the cross-sectional dimensions of the slab and should be indepen­

dent of the loading scheme and the span. Slip should start near the supports 

where the shear force and thus the shear stress is maximum. In the table of 

Figure 19 results are presented of load tests on simply-supported Holorib-slabs, 

type 38/0.91, 120 mm deep, 0.47 m wide and spanning 4.0 m. 

The slabs were continuously supported during casting and hardening of the concrete. 

From the table appears that the shear force at failure was not the same for all 

the tests with a shear failure mode.Furthermore during the test was visually 

found that slip did not start near the support but at the section of maximum moment. 

This behaviour can be explained as follows. From the measured load-deflection 

curves can be determined that the cracking moment was approximately 6 kNm. Before 

that value is reached the horizontal shear stress is still very small. When 

cracking occurs,the stress in the steel at the position of the crack will be 

cons iderably higher than at the uncracked sections surrounding the crack; thus the 

local shear stress between the steel and the concrete J.ncrcJa s nA considerably (see 

Fig. 20). If the critical value of the bond stress is reached, slip between concrete 

and steel will start. This means that friction forces will develop with the result 

that at sections further from the crack a smaller shear force has to be transmitted. 

With increasing loading, also in these sections the critical bond stress will be 

attained. Loss of bond will proceed over a continuously increasing length. The 

slab more and more acts as a 'tied arch • as illustrated in I•'igure 21. As soon as 

the anchorage length of the tie is t·.no short, the slab will fail. 

The facts seem to confirm this theory; 

- Te st specimen 7 (table fig. 19) has a considerable higher ultimate moment then 

the other Hpecimens. railing of the ancltorar:-e of the tie is preventot'1 hy the 
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shear connectors. 

The ultimate moment is hiqher when the distance of the relevant section to the 

support is qreater. 

In [2] Bryl reaches the same conclusion and proposed as a safe criterion for 

failure the moment when crackinq occurs in the concrete. This appears to be an 

overconservative approach. 

In Fiqure 22 the ultimate moment from the tests recorded in Fiqure 19 have been 

plotted aqainst the shear span, 1 • It appears that the ultimate moment increases s 

proportionately with the shear span. This is a loqical result, since, if the slab 

is very lonq shear failure will not occur but flexural failure (M = M ). 
max u 

For desiqn purposes the relation as presented in Fiqure 22 can be derived for 

various floor types by performance tests. This method of presentation has the 

advantaqe showinq very clearly the efficiency of the relevant system. 

4. DESIGN OF COMPOSITE SLABS WITH DEEP INDENTED SHEETS 

In this section will be shown that the theory presented in 2.3 for slabs with 

incomplete shear connection with 'touqh' connectors, can be applied for indented 

sheets provided the indentations are deep enouqh. 

For the Dutch product "Prins-floor" an extensive test proqramme has been carried 

out to confirm this. The Prins sheet is a trapezoidal profiled sheet. In the webs 

are rolled two rows of spherical indentations (burls). The horizontal spacinq of 

the indentations is 30 mm and the depth is 4 mm. 

Fiqure 23 qives an impression of the sheet. When it is assumed that the burls 

behave 'touqh', the ultimate moment cw1 be calculated if the ultimate shear force 

per burl is known. 
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According to the theory presented in section 2.3 in the region of the maximum 

moment a fully plastic stress distribution is assumed. The compressive force 

in the concrete (• tensile force in the steel sheet) equals the resultant ultimate 

shear force of the burls (= n S ) over the shear span. The ultimate moment can be 
u 

calculated from the so found stress distribution (see Fig. 24). 

To simplify the calculation, the stress distritution in the sheet can be split 

in two components; pure tensile force resp. pure bending moment. 

The ultimate shear force per burl is determined from beam tests with variable 

spans -and floor depths. The tests loads were 4 line loads as shown in Figure 25. 

Figure 26 shows the measured relation between load and deflection resp. load and 

end slip for an element with 5.0 m span and a depth of 160 mm. These two plots 

show clearly the ductile behaviour of the burls. After the slip starts the load 

can still be increased and when the ultimate load is reached with increasing slip 

load remains practically constant (horizontal branch). 

Figure 27 gives an impression of a test specimen after the test. From the tests 

followed that, when the length of the shear span is so long, that it contains 

about 210 burls per web, the optimum stress distribution can be reached. The 

tested slabs had 6 webs over the width. The yield force of the steel sheet was 

A ay = 297 kN. 

So the ultimate shear force per burl can be calculated as: 

s 
u 

A a 297000 
= 7 = 6 X 210 238 N 

With the theory, discussed before, the relationship is determined between the 

maximum moment and the number of burls in the shear span (or here equivalent the 

length of the shear span). The calculated relation is plotted in the graph of 

Figure 28, together with some test results.With the burl configuration of the 

normal Prins product, within practical values of the span, the ul.t.imate capw::ity 
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of the shear connection will be not less then 0. 7 A a • However in a prel~.minary 
y 

test programme sheets have been tested with larger burl spacing. Some of the 

results of these preliminary tests are plotted as well in Figure 28 (solid dots). 

The comparison is not fully justified, because the sheets for the preliminary 

tests were fabricated in a different way then the final product. As a results of 

that the shape of the burls was slightly different. As mentioned before the shape 

of the indentations has a considerable influence on the ultimate shear capacity. 

Worth mentioning as well is that the ultimate load was unfavourably influenced 

because the outer webs of the sheets were not lateral supported. The webs deformed 

as shown in Figure 29, and caused the burls in these webs to be less effective. 

In a real structure this deformation cannot occur because the adjacent slabs give 

the necessary support. The test results are therefore conservative. To obtain 

more information about the influence of the concrete quality on the maximum load 

per burl, also push-out tests have been carried out after the bending tests. The 

principle is shown in Figure 30. Contrary to the bending test now the outer webs 

were lateral supported. 

2 With a cube strength of 36 N/mm (same as in bending tests) the ultimate shear 

load per burl was 287 N. The difference of 15% between the result of the bending 

tests and the push-out tests can be fully ascribed to the influence of the edge 

condition of the outer webs. 

It can be concluded that for the investigated type the design method for tough 

connection as presented in section 2.3 may be applied. With this method design 

tables have been produced by the manufacturer l3]. 
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5. RESEARCH ACTIVITIES J:N EUROPE 

At this moment a number of research institutes in different countries in Europe 

are invo1ved with research on composite decks. 

Without being comp1ete the fo11owing institutes can be mentioned: 

Eng1and 

France 

Germany 

Nether1ands 

Switser1and 

University of Sa1ford, Department of Civi1 Engineering, 

Prof. E.R. Bryan and Mr D.c. O'Leary. 

Centre Technique J:ndustrie1 de 1a Construction M4ta11ique, 

Mr A. Fu1op and Mr c. Moum. 

:.J:nstitut fQr Konstruktiven Ingenieurbau, Ruhr UniversitAt Bochum, 

Prof. K. Roik and Dr B. Hofmann (now Roesch Sieger1andwerke AG) • 

• Institut fiir Statik und Stah1bau der Technische Hochschu1e Darmstadt, 

Prof.dr ing. o. Jungb1uth and Mr R. GrAfe. 

Institute TNO for Bui1ding Materia1s and Bui1ding Structures, 

Ir J.W.B. Stark. 

J:nstitut fQr Stah1bau der Eidgen. Technische Hochschu1e Lausanne, 

Prof.dr J.c. Badoux and Mr M. Crisine1. 

Some pub1ications are mentioned in the reference 1ist [11, 141, lsi, 16]. 

In 1975 the European Convention for Constructiona1 Stee1work (ECCS) presented 

European recommendations for the design of composite f1oors with profi1ed sheet 

r11. The draft of these recommendations was prepared by the Department of Civi1 

Engineering of the University of Sa1ford. A working group of committee 11 of the 

ECCS, under chairmanschip of Prof. F. Reinitzhuber, was entrusted with the 

e1aboration of the recommendations. 

The recommendations were based on the state of the art at that moment. 

Recently new design methods for composite floors have been deve1ooed. So a 
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revision of the recommendations are under preparatJ.on. ThJ.s revisJ.on will be 

prepared by a workJ.ng group of CCIIIIDJ.ssJ.on JU.xtes (AIPC-c:BB-CECM-PIP) and wJ.ll 

form part of European recommendations for all types of ~site constructJ.on. 
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composite floors with profiled steel sheet", London, May 1975. 
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'~ : -=-··· 

... J 

'f.J 

· Fig.l _ Composite floor- Holorib system 

a. Shaped troughs with small 

deformations 

b Spherical dents in the webs 

c Inclined lugs in the webs 

d Cusps on the webs and 

longitudinal dimples 

Fig.2 Some types of sheets with indentations. 
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Fig.3 Prins system 1 steel sheet with indenta1ions. 

Fig. 4 Reinforcement bars welded over the troughs 
as additional one horage. 

909 
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Fig. 5 Anchorage at end support. 

Fig.6 Headed stud welded through the steel 
sheet. 

I composite floor I I composite beam I 
concrete slab 

Comparison of a composite floor 
with a composite beam. 

Fig. 7 
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!vertical shear capacity I 
l.fnoment capacity I 

[longitudinal =shear capacity I 

Sections which may be critical 

Fig.8 

~ 
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• 

Optimum stress situation in a "low­
reinforced" composite floor. 

Fig.9 
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a. ldoal elastic- plastic str~s-stroin diaurom. b. ldoalized t;- e diagram of concrete tor 
short timo loadintJ. (CEB) 

0 

Fig.lO 

d£ 2 0/ I . """'dT = too m1n. 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

Stress-strain relations for cone rete (com pression 
test on prism ). 

Fig .11 
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n.a. 

I I 

--.Jf"u -- -~ "low reinforced" 

L:l£>£y ~ 

n.a. 

cy 

steel full plastic 

cu 

i!{- "heavy 

Cy 

steel partial elastic 
I I 

g~:y ~- "heavy 

Cy 

steel portia I elastic 
partial compressed 

reinforced" 

reinforced" 

Different possible stress situations 

steel i 

Fig.12 
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Composite floor system "Prins" 

Fig. 23 
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