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SUMMARY 

EUROPEAN RESEARCH ON PALLET, DRIVE-IN and DRIVE-THROUGH RACKS 

by Jan Stark•) and Kees Tilburqs .. ) 

This paper presents a review of research on storage racking. The research program 

is financially supported by the Dutch industry and the l!lCSC-), and is carried 

out in cooperation with laboratories in four European countries. Results in this 

paper relate to pallet rack design in terms of completed parts of the Dutch contri­

bution to this European program • 

. , Head of the Department of Steel Structures, Institute THO for Building 

Materials and Building Structures, Delft, Netherlands • 

.. , Research Engineer at the Department of Steel Structures, Institute THO 

for Building Materials and Building Structures, Delft, Netherlands • 

... , European convention for Steel and COal 
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EUROPEAN RESEARCH ON RACKS 

2. CONSTRUCTIONAL RACK PROPERTIES 

As a consequence of its constructional design, a storage rack differs very 

much from a traditional steel framework by the following properties: 

-Perforated, thin-walled uprights (Figures 3 and 4). 

Connection type (Figures l arid 4). 
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For practical reasons, readily adjustable beams and cantilever brackets are 

wanted in pallet racks and drive-in or drive-through racks, respectively. 

For this purpose, most beams are provided with connectors which can be 

hooked into the perforations of the uprights. 

Type of "foundation" (Figure 5) 

The uprights are provided with relatively thin base plates, not always 

bolted or anchored to the floor. 

Influence of the pallets on the constructional behaviour of a rack 

structure. 

Most pallets have also a constructional function, as: 

• lateral bracing element for the beams, because of bending stiffness 

and diaphragm action; 

• shear element (diaphragm action) in a braced pallet rack to couple the 

unbraced front frame with the braced rear frame; 

• shear element (diaphragm action) to distribute the horizontal load 

over several upright frames. 
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3. ORGAN:IZAT:ION OF THE RESEARCH PROGRAfoi 

The ECSC research program on stee1 pa11et, dr~ve-~n and dr~ve-through racks 

conta~ns the fo11ow~ng subjects (F~g. 6): 

System aect~ona (Be1g~um, France) 

Eatab1~ah~ng the effect of perforat~ons on the stat~c va1ues of a perforated 

member. 

Beam-upr~ght connections (Nether1anda). 

Determ~nat~on of the rotat~on st~ffness of the beam-upright connect~ons 

as a funct~on of severa1 parameters. Estab1~ahJ.ng a standard teat~ng procedure. 

- Computer program (Be1g~um) • 

Draft~ng of a computer program to ca1cu1ate ~raced pal1et racks, J.nc1ud~ng 

non-11nea~r behav~our of the beam-upr~ght connect~ons. 

- Stab~1~ty of unbraced pa11et racks (Nether1ands). 

Dev~at~on of abacuses to get a qu~ck ~ns~ght ~n the u1etmate load of a 

rack w~th regard to frame ~nstabi1~ty. :Inf1uence of the end condition 

of the upright at the f1oor. 

Stabi1~ty of beams (Nether1ands). 

Determination of the inf1uence of the pa11ets on tho max~mum load at the 

instant of 1atera1 buck1~ng for d~fferent beam sect~ons. 
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- European reccaaendations (Netherlands, Belqium, France). 

The final aim of this research program is to draft European recommendations. 

A draftinq committee has been formed, its members are from the laboratories 

involved and representatives from the industry. 
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Besides the above mentioned research on racking, a preliminary investiqation is 

carried out on steel shelves. This part of the program is carried out in the U.JC., 

at Strathclyde University. 

UNBRACBD PALLET RACKS 

One of the most important problems is to develop a justifiable calculation method 

to determine the ult~te load with reqard to frame instability of unbraced pallet 

racks (Fig. 7). By justifiable is here meant: 

(a) The applied calculation model has to result in a lower limit of the carrying 

capacity. 

(b) This lower limit should not be too conservative. Rack desiqn is to be optimal 

because of mass production. 

(c) Some of the basic properties of the components cannot be calculated7 thvy have 

to be determined by correct standard test procedures. 

The ultimate vertical load with reqard to frame intability is a function of the 

following parameters: 

(1) Rotation stiffness of the beam-upriqht connection, cb. 
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(2) Rotation stiffness of the floor-upright connection, cf. 

(3) Bending stiffness of the upright; moment of inertia Iu' beam distance h. 

(4) Bending stiffness of the beam; moment of inertia Ib, beam length ~. 

(5) Initial ·out of plumbness (unloaded condition). 

(6) External horizontal loads. 

Several of the above parametersformpart of the ECSC research. In this publication, 

attention will be paid to the problem of frame instability and the parameters 

determining it , as for as the Dutch part of the ECSC research is concerned. 

5. ROTATION STIFFNESS OF BEAM-UPRIGHT CONNECTIONS 

5.1 Test program 

As has been stated above, most pallet rack beams are provided with connectors which 

can be hooked into the perforations of the uprights (Figures 3 and 4). These 

hooked connections have the following characteristics: 

(a) A relatively small rotation stiffness with regard to connections customary 

in steel buildings; 

(b) A certain looseness, caused by the always existent play necessary for simple 

adjustment; 

(c) An aberrant constructional design of the hooked connections used by rack 

manufacturers, so there will be a mutually different behaviour. 

These characteristics make the hooked connection unsuitable for general calculation 

rules, existing at the moment for example for bolted, welded or riveted connections 

in building structures. This results in the ~~£~!!!~X of determining the behaviour 
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of hooked connections by ~!!~!· 

The behaviour of the hooked connections used in racks can be well described by 

means of a moment-rotation diagram (M-~ diagram), because of their constructional 

function. 

The following properties of the booked connection are important with regard to 

rack design (Fig. 8): 

(1) M 
u -ultimate moment 

(2) cb -rotation stiffness (b: beam and bracket) 

d {f(~)} 
cb - d~ 

(3) ... -angle of looseness 

-rotation at M is zero or almost zero 

(4) ... h -t.t, in case of + M, and an initial horizontal position of the beam part. 

(5) .R.m -maximum value of tR. 

In general cb varies with the rotation t , as is shown in Fig. 8. However, at 

the moment constant cb -values are used in case of hand calculations, (e.g. [7] ), 

but also in case of computer calculations•> (calculation of the partially fixed 

pallet rack beams or of frame isntability). Therefore, some constant cb-values 

are investigated. The form of the M-t diagram makes that several definitions of 

a constant cb-value are possible (Fig. 8). 

•> It was also planned to develop, as a part of this ECSC research on racks, 

a computer program which would be able to handle a non-lineair M-t diagram. 

Unfortunately this computer program will not be available within a short time. 
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The research on hooked connections was mainly intended to: 

(i) draft a standard testing procedure for hooked connections; 

(ii) give uniform rules for the interpretation of the M-~ diagram to 

get design values for Mu, cb and ~1 • 

Tb attain this object, the influence of five parameters had to be investigated: 

Two types are investigated with the most important difference that type 1 

(Fig. 3) did not possess any play between the upright-flange and the connector 

(Fig. 9), contrary to type 2 (Fig. 4) with a play of about 4 mm. 

Two different test set-ups were investigated: 

Cantilever set-up according to [2] and [a] (Fiq. 10) 

Cross set-up (Fig. 11) 

c. Lever arm 

Xn both test set-ups, the lever arm •a• is equal to the moment-shear force 

M ratio s• Xn case of a conical perforation form (types 1 and 2), the connector 

will be pinched to the upright-flange by shear force S. Because of this action, 

M the connection becomes stiffer. A highS- ratio ('a'-value) means a relatively 

small s-value and thus a smaller connection stiffness. Some practical 'a'-values 

are given in Table 1. 

3 
Most hooked connections applied have a rotation stiffness of about 15 x 10 a 

100 x 103 Nm/rad • 
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Based on this, and on the above calculated 'a'-values, the following two lever 

arms have been used in the test series to investigate their influence. 

- a relatively short arm: 'a' = ca. 125 mm 

- a relatively long arm: 'a' = ca. 500 mm 

As appears from Fig. 8, a beam-upright connection might act as a hinge at low 

M beam loads, because of looseness. This means s = 0. With the test set-ups 

applied, the influence of the shear force on this first part of the M-~ diagram 

cannot be determined (tests::= constant~ 0). Therefore, some tests have 

been carried out with preloading the connection by s only: s = 1000 N pre 

'a' = about 500 mm 

(a large lever arm results in a relatively important influence of Spre). 

To investigate the possibility of determining the angle of loosenss, ~td' to 
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be used in design calculations, separately form the cantilever or cross test set-ups, 

some tests have been carried out according to the standard looseness test procedure, 

prescribed in (2] (Fig. 12), 

N.B. The influence of the beam height on Mu and cb has mor~over be~n investigated. 
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5.2 Test set-up 

As stated above, the connect~on tests have been carried out with 2 test set-ups, 

the cantilever and the cross set-up. 

Attention bas been paid to the following po~ts: 

(a) The lateral displacement of the beam end has been prevented (Fiq. 10). 

This is neces-ry to simulate the real behaviour: 

- pallet rack: beam between two upriqhts 

- drive-in and drive-throuqh rack: cantilever brackets are connected by 

beams (P~q. 13). 

(b) The beam part baa been horizontally positioned with reqard to the vert~cal 

upriqht part. The beam possesses a similar position as in a pallet rack, 

which is important because of the maqnitude of +th• The pos~tion of the origin 

0 in Fig. 8 is dependinq on the initial slope between beam and upright. 

(c) The meaaurinq of local deformations of the beam part has to be prevented. 

(d) The lever arm has been measured from the point of load application to the 

po~t where the shear force is transferred. The latter point is where 

the hooks catch the upright. 

(e) Load application by means of a lonq pin ended strut (Fig. 10). Xn this 

way, a min~ of secondary normal forces are generated because the 

application point is able to displace laterally in the plane of the beam 

part. These displacements are a result of beam rotation. 
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5.3 Teat results 

Test results nd conclusions are described in [9] • 

Besides ultimate moment Mul and angle of looseness •th' the cb-values according 

to the following definitions (Fig. 8) were determined from the measured M-• 

curves: 

- cb1 , when unloading the connection; 

cb2 , when loading up to 0.5 Mu1 ' 

- cb3 , when loading up to 0.67 Mu1 ' 

- cb4 , mean cb-value when loading up to 0.67 Mu1' including 
·~ •th 1 cb • 0 • . 

5.3.1 ~~!!!!_!!!!!~! 

The cb1 definition is a m aningful one, as at one beam side the connection is 

unloaded because ~ the lateral displacement of an unbraced pallet rack. 

From available computer results it even appears that in most cases the moment 

reverses its sign, shorly before frame instability occurs. 

This means that at the unloaded connection the maximum angle of looseness 

will at a certain moment be passed, and not only +th (Fig. 8). 

Additional tests to investigate thi9 problem will be carried out in the 

near future. 

The test results showed some considerable scatter, which hampers a statistical 

interpretation because of the rel4tively few tests, especially for the 

type 1 connection (Figures 14 18). This scatter is probably caused by 

important form deviations of the investigated beam-upright connections with 

respect to each other. The measured cb4-values, including the influence of 
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~th' showed the largest scatter (type 1: max~al +78\ and -57\ with respect 

to the mean value; type 2: maximal +18\ and -16\ with respect to the mean 

value). 

Because the connection properties, including the angle of looseness ~th' are very 

important with regard to the carrying capacity of unbraced pallet racks, design 

values for cb and ~t have to be determined carefully. This means: 

(a) Besides ~th' it is also ~portant to know the maximum value ~tm (Fig. 8) to 

determine a design value of ~t' because the position of the origin 0 in the ~t 

-traject very much depends on the position of the connector with regard to the 

upright flange and perforation side (Fig. 19). As mentioned above this position 

can show some considerable scatter, with the possibility that in one rack 

beam-upright connections are present with the most unfavourable position 

of the connector. 

(b) One has to choose tes pieces from different parcels of finished products, because 

the position of the connector depends on the fabrication process. This can 

change from time to time, and from mechanic to mechanic. If the connector is 

automatically welded to the beam, the position of the connector will of course 

be more constant. 

5.3.2 Ult~ate moment ---------------
Contrary to the measured cb- and ~1-values, Mu was showing little scatter (less 

than 10% with regard to the mean value). 

Mu showed a linear relationship with the beam height; at the instant of failure, 

the lever of the force at the hooks is equal to the beam height (Fig. 20). 
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It appeared that the cb3-values are most sui\~le in ,qesign because these 

values had the smallest scatter in most cases, whereas cb1 and cb4 showed 

an unaccaptable amount of scatter (Figures 14- 17). 

The cb1-values in case of a decreasing moment on the connection were higher 

with respect 
cb1 

(Type 1: -­
cb3 

to e.g. the cb3-values in case of an increasing moment 
cb1 = 1.2to2.7; Type 2: -- = 1.2 to 1.8). 
cbl 
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When loading a complete pallet rack to its maximum number of pallets, a part of 

the beam-upright connections will be unloaded (see also 5.3.1). 

With the two connection types investigated, the Mu- and cb-values show a 

certain decrease with increasing lever arm 'a'. In the case of cbl' an 

increase of 'a' gives the smallest decrease of cb. The decrease of cb becomes 

more important at increasing beam heigt (Fig. 18). 

The test results form the cross tests showed significantly higher values 
Mu-cross cbl-cross 

for Mu and cb ( = 1. to 1. 2; til = 1. to 1. 5) • Mu-cantilever cb3-can ever 

This was probably caused by friction problems at the supports with the cross 

tests, resulting in secondary normal forces in the beam part. To avoid secondary 

normal forces in the cantilever tests, the load was applied by a long pin-ended 

strut (Fig. 10). 

With the two investigated connection types, a preloading by s = 1000 N pre 

did not show any increase of the measured cb-values (Fiqures 14 - 18). 
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5.3.7 ~22!!~!!!-~!!~-!~~2!2!~2-~2-~!2~-!~ 

It was hardly possible to interpret the looseness test results because of 

their considerable scatter. 

5.4 Standard test procedure 

As a standard test procedure for the beam-upriqht connections in pallet racks, 

the cantilever test is recommended. 

Test set-up (Fiq. 10): 

(a) See points a - e of 5.2. 

(b) Lenqth of the lever arm 'a' = 300 mm. 

(e) No preloadinq. 

Minimum number of tests: 6, because of the scatter involved. 

Contrary to the tests carried out so far, it is also recommended to load the 

connection durinq one test by M with a reversed siqn compared with the 

moment caused by the vertical pallet loads only (no sidesway). In this way, 

the maximum anqle of looseness, ·~m' can also be measured. 

5.5 Standard interpretation 

For 6 test results, the desiqn values of Mu' cb3 and·~ have to be determined 

from: 

desiqn value = mean value + 2 * standard deviation 

- + minimum desiqn value 

+ + maximum desiqn value 

Dependinq on the rack detail, the followinq desiqn values of the beam­

upriqht connection have to be taken into account: 
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• - ... 1 .... f.h 

- ain.S..U. cb3 

(b) connection deaiCJD a - ain.t..ua •f.h 

- aext..Ja cb3 

(cJ Pr- inatability a - the laz'pat value o~a • ..an •1b 
• 0.5 * ..xl•• .!a 

(With ~r- inatability, -an valu- are allowed becauae o~ the lazve nWiber 

o~ connection• ~~lved). 

6.1 P'Wlction o~ the ba8e plate 

In the ~irat place, baae plat:ea are uaed to apread the vertical load in order to 

prevent ~loor cta.ap, and to enaure 9ood uana~er o~ ~orcea. ao...ver • the baM 

plate in~luencea alao the end condition o~ the heavieat 10114ed bott:aa portion o~ 

the upri9hta. 'l'bia bottca portion will -inly C)OVerll the ult~te load with ~ard 

to ~r- inatability, becauae the upri9ht Mction ia .,.._rally CGilatant ov.r ita 

total left9th. 'l'bere~ore, the ~loor-upri9ht connection 1a very illportant with ~ard 

to the carryin9 capacity o~ an unbraced pallet rack. 'l'be ~1oor-upri9ht connection 

conaiata of a baM plate with a thickneaa of about 3 - 8 -· which protrutaea 

about t 5 - 25 - wi t:h reapect to the upri9ht aection • .. aaured perp.ncticular to the 

plan• o~ the upri9ht-~r .... 
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Sometimes - and with drive-in and drive-through racks, this should be good 

practice- the base plates are provided with bolts or anchors (Fig. 5). However, 

research was retricted to•base plates welded to the uprights and without bolts 

or anchors. 

Base plates without bolts or anchors may always be considered as a hinged end 

condition. In case of a relatively stiff floor material (e.g. concrete), this is 

a rather conservative assumption, as there may be a non-uniform stress distribution 

under the base plate (Fig. 21). So a certain partial fixity may be expected. 

~.2 Test series 

The partial fixity of the uprgiht at the floor has been investigated with the 

test set-up of · Fig. 22. An electronic hydraulic servo-system was used to ensure 

that the vertical load vector always passes through the centre of the base plate, 

so M and V were exactly known at the base plate (no second-order influences; Fig. 23). 

The following parameters will affect the degree of fixity: 

(a) Floor condition 

• 2 
Tests: flat concrete floor with quality B 22.5 (f ck = 22.5 N/mm ), steel floor 

(b) Base plate dimensions (Fig. 24). 

Tests: t = 3, 5, 10, 40 mm 

bl = 80, 120 nun 

b2 = 6, 10, 12, 15, 25 nun 

dl = 50, 60 nun 

d2 = 10, 20 mm 

(c) Upright dimensions b 1 and d 1 
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(d) The initia1 angle between the base plate and the floor, measured in and 

perpendicular to the plane of the upright frame. 

M (e) V -ratio; M = moment on the base plate 

V = concentrical compression force on the base plate. 

Several combinations of M have been regarded: v 
M - V =constant= ~b1 + e 1 (Fig. 24, with R is resulting force of M and V): 

b2 = 15; e2 = 20; e1 = -5 mm 

b2 = 15; e2 = 5; e1 = 10 mm 

b2 = 25; e2 = 5; e1 = 20 mm 

b2 = 25; e2 = 15; e1 = 10 mm 

- Y-=-=2!!~~'!1.l~ 20 kN, increasing M 

- Y-=-=2!!!~!!!~ = 60 kN, increasing M 
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M - V -ratio according to Fig. 25. Fig. 25 has been calculated with (10) {page 27} 

and t = 3.70 m; h = 2.00 m; Ib = 171 • 104 mm4 ; Iu = 80 • 104 mm4 ; 

cb = 30 kNm/rad and cf = 125 knM/rad. 

M An increasing V -ratio with increasing vertical load V corresponds better 

with reality. The va1ue of cf = 125 kNm/rad has been derived from the 

tests with : = constant. 

6. 3 Test results 

Test results and conclusions are described in [10] • 

The moment rotation diagram (M-~ diagram) for the base plates has the same 

form as that of the beam-upright connections: a non-linear course and a certain 
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M angle of looseness (Fig. 8). The results with V according to Fig. 25 are 

summed up in Table 2, where: 

- M • mean value of the ultimate moment; u 

- ~t = mean value of the angle of looseness, 

- cf = mean value of the rotation stiffness of the floor-upright connection. 

(mean value of three test results) 

From Table 2, the following can be concluded: 

(a) cf increases about linearly with t, when t increases from 3 to 5 mm. The 

increase of t from 5 to 10 mm has no 

with Table 3. Table 3 gives the test 

influence on cf, which is in contradiction 

M 
results for V = constant. 

(b) Mu increases appro~imately with b1~. 

(c) ~t shows considerable scatter. 

It appeared to be very difficult to derive from these results a general rule to 

calculate cf and Mu. A standard testing procedure will be very expensive. Moreover, 

the test results showed considerable scatter for cf (e.g. table 2, 't = 3mm, d 2 = 20 mm: 

cf = 140, 305, 310, 260 kNm/rad). This scatter is caused by the qreat influence 

of form imperfections on cf. 

However, knowing a lower limit of the rotation stiffness of the end condition of the 

uprights at the floor, will already be a good help towards designing pallet racks 

as optimally as possible. Because of the desian methods used at this moment, a constant 

cf = cf4-value should be derived in accordance with the cb4-value 
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for beam-upright connections. So cf4 is a mean rotation spring constant, which 

also covers the traject with cf = 0 for 4> .=:, 411 . (Only that part of the M-4> 

-3 1 
diagram has been regarded where • .=:. 20 * 10 rad .. so>. 

Taking into account that a pallet rack possesses several base plates (about 

8 to 20) with different cf1-values (low and high), it is suggested to use 

in frame instability calculations as a rather good lower limit (Fig. 26): 

flat concrete floor: cf • cf4 a SO kNm/rad, if t > S mm 

7. FULL-SCALE TESTS 

7.1 Test program 

The full-scale tests are included in the research program to compare the calcu-

lated ultimate loads by hand (see 9.), or computer calculations with real 

physical behaviour. Within these calculations, component test results on beam-

upriqht and floor-upright connections have to be used. Then the relation between 

the component ~ests plus the applied calculation model can be checked against 

reality. 

Five full-scale tests have been carried out with variation of the connection type 

and the end condition at the floor: 

a1.: Ball supports (cf = 0) 
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a2.: -Flat concrete floor with quality B 22.5 (f 1 ck • 22.5 N/ ~ 

-Base plate with (Fig. 24): t • 8 mm, b 1 • 80 

d - so , d 2 • 6 mm respectively frame width. 

b1.: Ball supports (cf • 0) 

• 2 
b2.: -Flat concrete floor with qua~ity B 22.5 (f - ck • 22.5 N/mm ) 

-Base plate with (Fig. 24): t • 8 mm, b 1 • 80 mm, b 2 • 40 mm, d 1 • 50 mm, 

d2 - 25 

b 3 .: An artificial base fixity of the upright with a spring constant cf • 60 kNm/rad. 

1.2 Test set-ue 

All the assemblies tested had three beam levels and two bays. The rack height 

was about 4500 , so the beam distance was about 1500 • The beam length was 2800 

The vertical load was partly applied by dead weight (about 10 kN per pair of 

beams) and partly by horizontally movable hyc!raulic jacks. The. loads applied 

by the jacks were kept vertical by horizontal jacks. A horizontal load of t• 

of the vertical load was applied by dead weight via a cable and a pulley. 

An overall view of test a2. is given in Fig. 27. In this case, an electronic 

hydraulic servo-system kept the loads, appli d by the v rtical jacks, vertical 

when sidesway of the rack occurred. 

7.3 Test results 

Evaluation of test results is currently in progress. However, the following 

tentative conclusions can now be drawn: 
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(a) The racks collapsed because of frame instability. 

(b) Influence of the floor: 

- Ball support compared with concrete floor: 

= 1.5 = 1.4 

- Effective sprinq constant of the concrete floor: 

vb2 
vb3 = 1.0 

N.B. A design value for cf = 50 kNm/rad would here be a lower limit 

(Vb3 : cf = 60 kNm/rad). 

(V =total vertical force at failure). 
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(c) Test b 2 : the fixinq moment of the upriqhts at the floor, combined with the 

vertical loads, caused local failure of the upriqhts of the middle 

frame at the floor. 

S. SIMPLE DESIGN FORMULA WITH REGARD TO FRAME INSTABILITY OF UNBRACED PALLET RACKS 

8.1 Principle of calculation model applied 

To derive a relatively simple hand desiqn method to check frame instability, 

a calculation model is used to r~place the stability problem by a stiffness 

problem <[11]); the latter is much easier to solve. The stiffness properties 

determine the compressive load at which instability occurs, e.q.: 

Euler: FE = Stiffness: E, I, K1 
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The relevant stiffness property with regard to frame instability is the frame-

stiffness against lateral displacements. The calculation model is based upon 

this phenomenon. 

The following basic assumptions are made (Fig. 28): 

(a) The frame consists of individual, stable elements. 

(b) The original frame with the load scheme (Fig. 28a) is assumed to be replaced 

by the same, unloaded frame, connected to a pin-ended strut on which the 

total load acts (Fig. 28b). This is permitted because if point a is fulfilled, 

the collapse load with regard to frame instability is independent of the 

way the load is spread over the frame. The pin-ended strut is connected to 

the frame in such a way that only a horizontal force can be transmitted. 

Both, the connection bar and the pin-ended strut, are infinitely stiff 

and weightless. 

(c) The critical load, Vcr' with regard to frame instability is defined as the 

load at which, after release, the frame remains standing in the forced 

displaced position, and will not return to its original undeflected position. 

This means that at load V the moment equilibrium of the laterally displaced cr 

pin-ended stru~ is fulfilled (Fig. 28c): 

H 

vcr =us h ---------------------------------- (1) 

H s 
Xn fact, the term u- represents the spring stiffness, cfr' of the frame 

against lateral displacement (a force Hs = cfr gives the frame a displacement u = 1). 
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vcr = cfrh --------------------------------------- (2) 

The spring stiffness, cfr' being known,critical load Vcr follows from relation (2). 

- Stable equilibrium : 

- Neutral equilibrium: 

- J:nstability 

Remark 

v 
cf > h r 

cfr =v+v 
h cr 

v c >­fr h 

A too large spring stiffness, cf, is found, if the area of the area of 

moment diagram of the uprights from the original frame is larger than that 

of the infinitely stiff pin-ended strut, after a certain lateral displacement 

The maximum necessary reduction of cfr belongs to the flexural buckling 

case of a bar fixed at the base and free at the top. A maximum difference 

then exists between the two areas of the area of moment diagram (Fig. 29): 

Model: 

H 
3EI + 3EJ: (, s v = = 

h3 u h3 cr 

Euler: ----

~ 2 1r2EI 1r EI 
v = = 
cr (2h) 2 4h2 

./ 

Maximum recuction factor = 

= 0.82 ---------------------- (3) 
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Thus far only a vertical load has been considered, but horizontal loads can 

also act on the frame simultaneously. Additionally a frame can have an initial 

out of plumbness, after erection and without load. Both influences mean that 

V cannot be determined unequivocally any more (accordinq to eq. (2)). From cr 

the moment equilibrium of the pin-ended strut, a relation is now obtained between 

the present vertical load, v, horizontal load B and initial out of plumbness s0 

(Fiq. 30): 

Vut + Hh - Bsh = o + v = ------------------------- (4) 

Where: ut = u + u0 = total lateral displacement 

u 0 = displacement related to s 0 

B 
Xf the stiffness of the frame cfr (= us) ~s substituted into relation (4), this 

relation chanqes into: 

v = 
cfrh (ut - u 0 ) - Hh 

ut 
(5) 

From relation (5) it appears that it is not possible to determine the permissible 

vertical load directly from V , but has to be determined on the basis of stiffness cr 

or strenqth requirements. For example: 

- At workinq state 

At ultimate limit state: s < JL 
u so 

- Yield of the upriqht, yield of the beam or attaininq M in the connector. 
u 
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8.2 Calculation model applied to unbraced pallet racks 

To determine the spring stiffness cfragainst lateral displacment of a pallet 

rack, the following assumptions have been made: 

(a) The rack has a regular configuration. That is the same uprights, beams, beam 

distances and bay widths are applied. 

(b) The rack has infinite length. This is a conservative assumption. A 

significantly higher critical load with regard to frame instability is found 

if the rack consists of three or fewer bays. 
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(c) Portion of the rack adjacent to the floor is determiniqn frame instability (Fig. 7). 

This assumption is valid when the rotation spring constant of the base plate­

floor connection is relatively small, and/or when the compressive stress in 

the lowest part of the uprights is considerably larger than in the parts above. 

Zn many cases this condition will be satisfied. 

On the basis of these three assumptions, rack portion ABCD (Fig. 7) is represen­

tative of the spring stiffness, cfr'of the rack. 

Points B and C at midspaa of the beams can be regarded as hinges with free 

lateral displacements because of symmetry considerations. Point D has been chosen 

at tho position of zero moment in that part of the upright. The position of D is 

therefore determined by: 

-rotation stiffness at A (building floor); 

- number of levels; 

- bending stiffness of the upright with respect to that of the beam (rotation 
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stiffness of the beam-upright connection included)J 

- lateral deflections of the frame, which means that the position of D is 

also a function of the present vertical load. 

An appropriate position of D will be determined by computer calculations Ln 

combination with full-scale teat results. Suppose D at (1 + U)h above the floor. 

An expression similar to eg. (5) can be derived from Pig. 30.: 

-------------------------- (6) 

ut 
Xf the dimensionless magnitude s • (1 + U)h is used (S • out of plumbness), 

eq. (6) becomes: 

2c (S - S0 ) (1 + U)h - ~ 
Vb• fr ----------------------------- (7) s 

where, Vb and Hb are loads per bay. 

The following design formulas can be derived ( [7] ) to calculate 

1 8 •--- to be used in eq. (7) and Mf ( fiXing moment at the floor): 
cfr 

a. Hinges at the floor 

-------------------------- (8) 



EUROPEAN RESEARCH ON RACKS 809 

b. Partially fixed at the floor 

B = ~yhR. < 1 + a ) 

(....r!_ + 
iC b 

2 
+ h ) 

EI 
u 

--------------------------- (9) 

R. R.2 h2 
(~ + ~ + EIU) u ----------------------------------- (10) 

where, 

------------------------------ (11) 

c. Fully fixed at the floor 

B = yhR. 1 R. h 3 
4 (1 + 2a > < cb + 6El:b ) + 12El:u 

3 
(1 + 4a > ------------------------- (12) 

Mf = ::uB (yR. + ~:: + E:Ih2 ) u ------------------------------------------- ( 13) 
cb b b 

where, 

y ------------------------------------------ (14) 
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Xt is also possible to check the upriqht section directly below the first 

beam level, if the out of plumbness s has been calculated from eq. (7) and 

Mf from eq. (19) or eq. (13). on this section are actinq: 

- bendinq moment M - ~ (~ + ShVb) - Mf -------------------------- (15) 

- compressive force (16) 

- shear force (17) 

Xn the Fiqures 31 and 32, Vb - s curves are qiven; they were calculated from the 

equations above (Vb =total vertical load on one bay): 

Fiq. 32: h = 2.0 m 

R. = 3.7 m 

cb = 30 kNm/rad; cf in kNm/rad 

X 0.80 106 4 <[so - so - 5) = * mm u 

:rb 1.71 106 4 
(INP 100) = * mm 

s == 0 
0 

a = 0.5 

Fiq. 33: h, R., I u' :rb, a I SaJDe as in Fiq. 31 

cf = 125 kNm/rad 

s 1 =--
0 750 

Hb = 0.01 vb 
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NOTATION 

The follow~ng symbols are used in this paper: 

a = lever arm 

cb = rotation spring constant of the beam-upright connection 

cf = rotation spring constant of the floor-upright connection 

cfr = spring stiffness of a frame against lateral displacement 

E = Young's modulus 

h = beam distance 

H = horizontal load 

~ = total horizontal load per bay 

Ib = moment of inertia of a beam 

I = moment of inertia of an upright 
u 

Jl, = beam length 

M = moment 

Mf = fixing moment of the floor 

M u = ultimate moment 

s = shear force; out of plumbness 

S 0 = initial out of plumbness 

S = shear force with which the beam-upright connection was preloaded before pre 
any moment was acting 

u = lateral displacement 

u = lateral displacement related to S 
0 0 

ut = total lateral displacement= uo + u 

v = vertical load 

vb = vertical load per bay 
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v critical vertical load with regard to frame instability 
cr 

~ = angle of rotation 

~.fl. angle of looseness 

~.fl.h = ~.fl. in case of + M (Fig. 8) and an initial horizontal position of the 

beam part 

~.fl.m maximum value of 
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Table 1: Practical 'a'-val.ues 

k 
a cb [Nm/rad] a [mm] 
Jl, 

Jl, = 2400 mm Jl, - 3700 mm Jl, - 2400 mm Jl, = 3700 mm 

1 0.21 CD CD 504 780 

1/2 0.09 140 X 103 114 X 103 216 333 

1/4 0.044 47 X 103 38 X 103 106 163 

1/8 0.021 20 X 103 16 X 103 50 78 

cb cal.cul.ated form k with: 
~ * * ·~ J; * l 4 - Jl.= 2400 mm: J:Jl, = 80 em (J:PE 80) ~ AI Mfc 

4 
a~............_ v :;:>' 

- R.= 3700 mm: J:Jl, = 171 em (J:PE 100) ~ .d:Z .Me= kMfc IHI~ 

Mfc = M-fully clamped 

i Table 2: Base plate tests M 
with V according to Fig. 25 

I I I 

I 
~ -

ci>Jl, 
-• t b1 b2 d1 d2 i M cf ' I u 

; ! ! ' ' 

! ' 
' *10-3 ; mm ; DUll mm i mm i mm Nm rad. kNm/rad i i I 

I i : 

' ; ! I 

' I l 
3 80 10 so i 15 700 0 I 90 I 

80 15 50 20 930 1 250 

5 80 15 so 20 1000 9 450 

120 20 60 20 1750 2 330 

10 80 15 so 20 1330 10 450 
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.·.-.................... 

Table 3: Base plate tests with • t ... 10 mm (Fig. 24) 

- · .··· .· .. A.· ... ·.·~· 

t b2 d2 f}t:)/(.1~:· material . <~~t cf 

.. .. 

mm mm mm •-10-3 rad. knM/rad 
~ 

12 20 C<Jllt~ r.~te 5 125 

12 20 cconc:r~te -5 100 
5 

15 20 ccm.:::r:c_,te 2 130 

11 20 st~w t -6 100 
.• ·.· .·.·.·.r.•.· .. . -..... 

15 20 c t•f, ;::·r.·•,!t.e 11 225 

15 20 cc~t , nn:? t.e 24 410 

10 15 20 C<:.il., ,;;,:· ~~te 19 230 

25 22 cc~t·,~;~ rete 28 240 

15 20 st~~l 12 415 
_. .. _...,.,.. ......... 

13 20 C<:~ft t;· :r.:~te 7 330 

40 12 20 st.~~l 10 800 

13 20 st.~~ I . 9 650 

.. - ~·.·······"·'•'•' .... 

• 
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Fi g.1 Example of a pallet rack 
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Fig. 2 Example of a drive -in and drive-through rack 



Fig. 3 Example of a beam-upright connection; 
connection type 1 

Fig.4 Example of a beam-upright connection; 
connection type 2 
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Fig. 5 Example of a base plate construction 
(also without bolts or anchors) 

H 
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,,, 

I 
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I 
I 
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I 
I a_ 
I-
I 
.,,,,,,, 

i 
J 
: 
I 

' 4&o 
I c 

;e 
I 

-
,,,, 

I 
, 

I I 
I I I ..... 

I I 

I I 
I I -l. 

I I 
I I 

I I -
I - r 
I I 

I ,,,,,,, ,, 

Fig. 7 Portion of the rack adjacent to the 
building floor is determenative of 
frame instability 
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EUROPEAN RESEARCH PROGRAM 

Program 

Inventory and survey of literature f-

Influence of perforations calculation I 

l-on area,moment of inertia methods and/or 
' standard tests I etc i . 

. 
Beam upright I 

standard tests ;....-
connections I 

i 

computer progr. r-
I 

Stability of unbraced hand calculation! 

pallet racks rules 
t--

full scale tests 1--

I StabiU.ty of be-• 
1 

influence of the . 

pallets on the ~ 
in pallet racks lateral buckling: 

' behaviour 
I 

l aoriz:ontal 
. 

loads I I 

1 European Recommendations r-

Executing country 

All participants 

Belgium 

France 

Netherlands 

Belgium 

Netherlands 

Netherlands 

Netherlands 

Belgium 

Netherlands 

Belgium 

Netherlands 

France 

Fig. 6 Organisational scheme of the European 
research program on pallet, drive-in and 
drive- through racks 
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M 

t 
constant cb- values: 

-cb1 =f971 

-cb2-3 = f972-3 

-Cb4 : f974 

0 
---·· ¢ 

Mu2 M= f ( ¢) 

Fig.8 Qualitative rendering of a M- ¢ diagram of hooked 
connect ions used in racks 

upright flange •11• play 

"i .. "' '[ Jii 
-----+!+-- t c 
connector 

Fig.9 Position of the connector with regard 
to the upright flange 
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Fig.1 0 Cantilever test set-up; notice the way of 
load application and the prevention of 
lateral displacements of the beam end 
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I: 
measures in mm • 

Fig.11 

600 

I • . 

Cross set-up 

beam 

013 

Test procedure 

a. Pr = 500 N 
b. Pr = 50 N 
c. measurement r(mm} 
d. pt = 500 N 

e. P\ = SON 
f. measurement l (mm) 

g cp 1 = .ll.=.d. . d 200 

Fig.12 Looseness test in accordance with the 
SEMA code ([2]) 
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1---~0,_I +--'---;+c=:-b_e_a_m ______ ' ____.ft/1-tl-----l~anhlever bracket 

0 tJ i 

Fig.13 Lateral displacement of the brackets is impossible 
because of the beam and the opposite orientation 
of the brackets with regard to each other 
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beam height of 100 mrn 
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O=beoarn heoight of 130 rnrn 

b:beoarn he>ight of 80rnrn 

~ With hooke>s Fig.2o Fai!u,-., modes ot bE>arn-upr;ght conn.,ctions 
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fixing moment : tR 

Rg.21 Non-uniform stress distribution 
under a base plate 

Fig. 22 View on a base plate test 
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-E.IEJr.=- actuator 

s 
d 

loadeell 

dlsplace:ncnt transducer 

signal of dlsplacemement transducer 

displact-ment 

ball bearing 

(pin-endt>d strut 
Lwith actuator 

! 
I centerline 

of 
pin-endf.'d 
strut in 
displaced 
position , 

I -, 
i 
i 

d. i . ~t. 
_c_en_t_erl_i_""_)-lf_;_ ~ 

of ·1 upright in - I 
displact>d .,. 
position .C 

------------''- --"'·- '-

Fig. 23 Principle of tho test set-up, used with the 
--- base plate tests 
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Fig. 24 Baw plate dimensions 

I I I 
folkft fit baM plat .. within trojoct AA 

I 

----..:1>:. N ( Nm) 

Flg.25 M -v curw,US4XI with tests summarized in bbl~ 2 
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a. frame 
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Ct4 
(kNm/rod) 

t 
• • • 

fla•g rad. - Ct4•0 

It •number of equal teM ...... 

• • 
tte2 I 
--':--:.~r-.-'----------

.___.&-_.. ___ jp:,n-._!_ ----~----
0 3 ~ ~ 

--•• .. tCmm) 

Test results d cf4 

r!!1Vcr 
' + Hs 
~ -~----,---~ 

I 

~Jl,,.],,,, ....... l. 
L..ptn end•d strut 

b. model c. stabllty co stlffnecs 

Principl• of the calculation model 
Fig.28 
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Fig.27 View on full-scale test no. a2 
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~v 

EI 

h 

(model ) 

Model applied to a bar. fixed 
at the base and free at the top. 

Fig.29 

pin ended 
strut 

u 0 : no internal forces in the 
H 

rack-+Hs=O-cf=~ u 

Forces at the pin-ended strut in case 
of an initial out of plumbness u0 and a 
horizontal load H 

Fig.30 
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~ 
1/21 ·I· 1/21 ·I ~vb 

Hs Hs 
0 / ~ t ~ 

I ah 
I 

I 
, 

I 

I h 

I 
cf 

A 

c b = Rotation spring constant beam upright connection. 

Cf = Rotation spring constant floor upright connection. 

Model with regard to unbraced 
pallet racks. 

Fig.31 

83S 
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80~--~-----r----~----~--~----~----~--~ 

VbCkN) 

20 

0 2 4 6 8 10 12 14 16 

---o•~s•0.01 (rad. ) 

Fig. 32 Vb-s curves with varying Cf-values 

2 4 6 8 10 12 14 16 
---11a-o-. S .. O.ol (rad.) 
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