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EFYECTS OF STRAIN HARDENING AND AGING ON 

COHNE:R PROPERTIES OF COLD-f'ORMEO STE:E:L SHAPES 

by 

Kenneth W. Karren*, M. ASCE and M. M. Gohil*" 

SYNOPSIS 

More economical design is possi-ble in lig~t-gage steel member::> if the Tensile specimens were tested in the plastic range to establish Lensilt• 

increase in yield strength re~-.ulUng from cold-forming is utilized. Such yield strength, ultimate strength values, and values of the so-called 

increa.o.>E·s in yiPld strr,ngth ano· Muc'1 larrrer in cornt.>r than in flal n'gions strength coefficient k and strain hardening exponf'nt n cr.Jrresi'OTH1lnc; to 

of colc!-foncc·,· '-~'-'C'Llon::. A prcv1ou~~ inv~Z:-.;Lig'>tiorl 1 established analytical the plastic st.rPss-strain relationship 

method by v.·hi-::h t:Jc in<.:rea.s'-' in yield strenqths could be predicted for cor-
Ill 

\o.'hi·-~'1 d relatively 1aryl' amount. of pldsLic straining had occurred. 

In S~!-.h 

diet corner yield strength values for the cornr;rs tested. (3) AdditlCJTJd~ 

in stu~rwt:'L c0uld ht• attriDuted .:::dmo:.;t entir-uly to strain hardening. Tl-'.is 

tensilR spec1men:> of the• fldt sheet steel ·,...ere prestrc.inC.'d to varioJ~> 

a relatively :~m.:r_l1 

amounts of t!:!r.sih' plastic strain a;-;d t:-.e:--, arL :~f"ial ~y aqed 1r. an oven d' 

st !'c' i :1 i ~"•'] '!Creel. !r1 t~.e:,~ corn0rs vith Sr1all 

yi0ld strernJU~ ca:< be attcJbuted r~nnarily 

from these te:sts were used 1n e~ta;JlisiJlTl~ r1ev..· vu! 

to herein as 1c:. 3 and n 3 ). :::n this ca:c n m1.g!1t \o.'ell be caJ1c~~ 

So~nn coi'\:no:L cold·for-:.v·d 1ir_::h~-gage stecJ memh(•rs are shown in Fit). 1. 
spec1m(~ns gave a reduced valt..:r' for th~o: l!Xf'Onf_.n~ n, n 3 <n 1 • For Vdl·~l{·--, 

Lu.ryc pla<_,Lic strains in t:ie :::ornf'rs of mer:-Der·s such as the channe 1 
of lhe a/t ratio largr;r t..han 10, 1t l••d~; founO '.:hat thL" .:_:ur!:eldtiun bet,.,-cen 

<Olll'l a.w;lt· scctiuns. Cln lhc othcl· :'Ldn,l, much smuller pL;<o;tic strains occur 
the theort>tlcd~ and cxperirnentnl 

simllor to lhaL uf Uw tubinq, i.e. p<lrtia.1 hoch cs 

of revolut.iOJI ctnd ~L>l:x.:~: 

aiJ<'i:Fiy dcv~.eloped fc_,r l..nld--forw(._·d 

nt•r::; t,. cold fo:::·rr 

invt'~-Li')<ltiun 1 rclatinq t1,.-· 

;.-·ic:1d (1r:· J,f,. Td'll'"·!thl·_krl•''-'.;) r·.;tlu of corner spC'ci-

The ~-l:lc!l 

a/t rcLt 
cepts regarding (1} the role uf true slres~ and :.r-ue strain in ine~ast1c 

criLvc1 
stress stra1n relationship;, (2) t.he str·aJn hz..rjf'rnnq, anrl. (J) th(' stL~in 

T:>is l.:n---ger rarH:W in·_ludc'."' the a/t ratlos 
aging phC'OOflle>na. These concepts v.·:..ll then be used in a bn_ef reC<l}'l ttl 

fou:.d lll cuLl 
lation of t.ht concCj:-'lS '.JSed in obta_injng the cor~~r yield stren(;th J-'re-

clition equa.lloll devl'lopPd in rcfcn•ncr- l. 

LYf-'"s of mild st.cC'l<;, Cnajro'-;, Rritv~·:.:, and l'rue st.ress __, 

sm~dl J'la~_;l.tc stJa.inc> thetr1 for laryc Th0 influence of strain <'qiny 
a' -= PIA Pl 

pruc,tJcu.lly ne'lligibl<' fen pl.~~;tic strctins larc;cr than 0.10. Thus, lt 
when• A 1s the 1nstantaneous area of a cross section correspond1r.y tc a 

l1kr-ly thdt strdLtl oc!ing lS of much more Importance the cf thP 
given load P. In a ductile material tr~e stress continues ir1cre,-::sin~J up 

large a/t rat1os occt..:rrtng we:dcd ~lee l tubing than the 
to the ultimate load while conventional stress decreases after the ul ti-

of the 

Most colrl-formon cornr>rs. To investigate 
mate load is reached. Up to the point where a cr-oss-sect.ion begins lo 

neck down, true stress o may be related to e:ogineering stress a and engi-

du~LPJ on a hot rolled li']~1t_ gage St..C'el al Br1ghar.t Young University: 
nee ring strain by the equatl on 

(1) l1 st•ril·~, of 'J1r_l-fu:rno:...l ...:orrwro-; ,,.:ilh a/t ratios Vctrytng from 1.4 to 70 o' • o (!+e) ( 3) 

True strain c' may be calculated from 

tnk,'n from th•' unviolkPJ fL,L ITodlerial from whi'-h th<:> corners were formed. 

CorrlpH-'C·~-'iV<' spt c Jn,_n~:; were tt•c;t•·r1 tu obLd_n lhc compressjvp yield strength. 

*Professor, Deparlrnenl of Civil Engineerin'), Brigham Young University, Provo, 
Utah. 

**Fonner graduate student, :Je!lartment of Civ1l Engineerin<J, Brigham Young 
University, Pr·ovo, Utah. 

(4) 

where {is the instantaneo~o~.s and _C0 is the ini ti.al element length. True 

strain £ 1 is related to engineering strain by the equat1or: 

t' • ln (lit) (S) 

True stress and strain are sometime!: referred to as natural stress and 

strain. 



ltrain Hardening. It i1 wll known that mild a.teel exhibitl atreaa-etrain 

characterilt1cl peculiar to mo1t other typea of metal&, excluding certain 

type• of bra••, 1.1., the 1tre11-1train curve il characterized by (1) a 

1traiqht. Una relationahip in the ela1tic domain, (2) and u.pper yield 

point, (3) followed clo1ely by a drop in load uaually called the lower 

yield. point, (4) a lonq 1table yield plateau in which a large increase in 

atrain occura with little or no change in load, (5} a region called the 

atrain hardening reC)ion in which the lo&d. again increases wtth increase 

in atrain, b\lt not as rapidly a• in the elastic region, and (6) and un-

ltable reqion past the ultimate load in which the load decreases with 

increasing atrain. See Fig. 2 (adapted from reference 3) tor a schematic 

representation o! thil etrews-atrain behavior. The phenomenon of strain 

harc:lening iw explained in a variety of waya including the pre~ence of im-

per!ectiona, called dhlocationa, in the cryatalline micro-structure. 

Wt\ile dielocation theory provide• a plausible explanation for much strain 

hardening and •train aginq behavior, it will not be discussed further in 

thi• paper. 

One etrain hardenin9 theory 5 atates that (j may be expressed as a 

function o! C , or 

0 • l (t) 

The eq!..liV&lent 1tre18 a may be determined from the diatortion enerqy 

where 0'1 1 , o2 ', and o3 1 are the principal stresses expressed in terms of 

true stress. The equivalent strain t may be found from 

t • (1 \/(c '-c ') 2 + (c '-c ') 2 + (c '-< ') 2 
312 23 31 

where! c1 ', t 2 ', and cj are natural principal strains. 

(6) 

(8) 

In Equat1on 6, F 1s 1. function depending on the characteristics of the 

rn~tal involved. F may be found, for example, from the stress-strain curve 

of a Sll"'ple tensile specimen, and is assumed valid for other states of 

&tcesD subject to the following lirrntations: (1) The material is iso-

trop1 c und.cr phs tic conditions. (2) Elastic strains are neqliqible in 

conpu·1son with plastic strains. (3) Shearing stresses are responsible 

toe p~ds~l:..: d .. ·!ormations, but norMal stresses are not. (4) The ratios 

of lhe pnncip•l strains remain constant throughout the straining which 

takes plac.r>, i.e. t 2/t1 and e3 /c1 remain conatant. (5) The principal 

axes of S'.l::::essive strain 1ncrements do not rotate with respect to the 

element. (6) The tensile and compressive &tress-strain curves coincide 

when E"Xpressed in terms of true stress and true strain. (7) No Elauschinger 

effect is present. (B) Tt\ere ia no change in volume due to plastic deforma.-

t1.on. The experimental and analytical results of the first investigationl 

showed t.he total error attributable to these assumptions to be reasonably 

small. 

For many steel& and some other metals, a plot of the loqarithm of 

the effective ;itress versua the effective strain appears aa a straight 

linl'l. When this is true the inelastic portion or the stress-strain curve 

may be represented by the power functior. 

Examples of this type of atress-strain curve may be seen in Fiqa. 3-5. 

(9) 

Note that tor the condition of uniaxial tenaion ~epreaented in these curvea 

a • a1 'and. C • c1 '. 

.. fennce 1 vaw the followinq a~~pidcal equations for the otrenqth 

aoeffic:ient an4 the a train hardening exponent' 

(10) 

and 
(11) 

Jn re~Uininq portlona of thia paper, values of the materials constants 

calculated by Equations 10 and 11 will be referred to as k1 and n 1 • 

Str.ain Aging. When a steel specimen is loaded in the plastic range, un-

loade~, and immedi.ately reloaded, the yield strength of the mild steel 

i• increased up to the point where the specimen was unloaded. This 

phenomenon i,.s known as strain hardening. Now, if a time is allowed to 

p~a after unloading, the yield strenqth of the specimen may be further in-

creased, i.e. more than the increase due to strain hardening. This phenome-

non ia known as strain aging. It causes the yield plateau to be re-

eetabliahed, and causes increases in both the yield strength and in the 

ultimate atrength. On the other hand, the ductility of the material is 

reduced, Fig. 2 • 

Corner Model. To analyze the cold-forming strains, a corner model was 

chosen1 in which application of bendinq moment to a wide flat sheet pro­

duces a Wliform curvature as shown in Fiq. 6. !f r 0 is taken as the radius 

to the surface of zero strain, the enqineering strain on a surface with a 

• radius r is 

The corner model is assumed to be in a condition of plane strain. Con­

sequently, Cz 1 • 0. For a constant volume condition, which is often 

assumed W\der conditions of plastic strain, the volume strain is zero. 

Hence, 

Substitution in Equation B results in 

Assumin9 that Equation 9 is valid in compression as well as ip tension, 

one may find the average corner yield strength aye by integrating the 

1 effective stress over the full area of a corner; 

(12) 

(13) 

(14) 

~ ro b/ro ( 2 \ n 1 n 
k ~ t J, 73 In x) x dx +Ja/rol;tln xj x dx (15) 

" 

where a and b are the inside and outside corner radii as shown in Fig. 6, 

and x ... r/r0 • Equation 15 was evaluated numerically, assuming that the 

axis of zero strain to be located at r 0 • '{;h, from a/t = 1 to a/t • lO. 

These results were given in Reference 1. It was found that Equation 15 

could be closely approximated by the formula 

0 ~ JL 
yc (a/t)10 (16) 

where 

b • 0.945 - 1.315 n (17) 

and 

111 • 0.803 n (18) 

Bqution 15 wu re-evaluated in thia a:tudy "for &/t ratio a from 1 to 100. 

Pig. 7. It vaa found that Equation 15 could atill be closely approxi-

mated by Equation _16. 
However, the extenaion of the linea in Fiqure 

neceaei tate4 llOdification of the conatanta b a-...a m. 
""' The ravised equations 

tor the•e oonatanta were now found. frOIII: Pig-a • 8 and 9 to be 



b • 0.942 - 1.04 n (19) 

and 

m • n (20) 

Equations 16, 19, and 20 will be utilized in a following section to pre-

diet three sets of corner yield strength values. To do this, the material 

constants k. and n will be determined from: (1) Equations 10 and 11 (k1 and 

n 1J, (2) virgin tensile specimen test values (k2 and n 2 ), and (3) prestra.ined 

and aged tensile specimen test values (k3 and n 3). 

EXPERIMENTAL INVESTIGATION 

Tensile and compressive flat and corner test specimens were taken from 

a hot-rolled 16 gage sheet steel. The corner specimens were all formed by 

press braking. The inside radius of each corner specimen was measured by 

means of radius gages. The following paragraphs describe the test pro-

cedures and results. 

Standard Tensile Tests of Virgin Sheet Steel. Six specimens were prepared 

from flat unworked sheet steel in accordance with ASTM standard dimensionc; 

given in Fig. 10 (a). Tension tests were carried out using a "".icroformer 

gage. The resulting tensile yield and ultimate strengths are given 1n 

the first half of Table I. 

Tensile Tests for Inelastic Constants of Virgin Steel. Three tensile 

test specimens were made from flat unworked sheet steel in accordance 

with Fig. 10 (a) as before. Two marks were made 2 in. apart on the speci-

prior to their placement in the testing machine. Extensions in the 

plastic domain were measured by means of dividers and a steel rule, the 

load being noted at each extension or 0.05 in. When the testing was com-

plcted, values of t.rue stress and true strain were computed and plotted 

on log-log pal-Jer, Figs. 3-5. In eac.:h plot, the strength coefficient k 

appears as the intercept of the £' = 1. 0 axis, and the strain hardening 

exponent n is the slope of the straight line. 

Tensile Tests for Inelastic Constants from ?restrained and Aged Specimens. 

Five tensile specimens were made to the dimensions of Fig. lO(a). These 

specimens were loaded beyond the elastic limit the loads being noted at 

each predetermined elongation. Next, the specimens were artificially aged 

by placement for one-half hour in an oven preheated to 100°C. The speci-

then retested, elongations and loads being noted. The yield 

strengths were found by the 0.2\ offset method and plotted as true yield 

stress versus t.rue strain at prestrain, Fig. 11. Note the resulting 

straight line from which values of k and n were computed. 

Tensile Tests of Cold-Forwed Corners. Eighteen specimens were made in 

accordance with Figs. lO(b) and (c). These tensile tests were carried out 

using a microformer gage. Test results are given in Table II. 

Compressive Tests. Six compress! ve specimens were prepared from the un-

worked flat sheet material in accordance with the dimensions shown in 

Fig. lO(d). Eighteen compressive specimens of three inch length were 

also cut from cold-formed corners. These specimens were qrea.sed, wrapped 

with aluminum foil, &nd then cast in hydrostone inside 3/4 in. diameter 

aluminum conduit cut to 3-13/16 in. length&. This procedure wu followed 

to prevent buckling in the specimens while measuring compressive loads 

and deformations. The compressive yield strengths for the aix flat apeci-

s 

-n• are given in Table I and thoae for the eighteen corner apecimens in 

Table III, 

Teat Results. From Table I it may be seen that the average virgin yield 

strength is 46.9 ksi for tensile and 45.6 ksi for the compres!!live specimens. 

The aVerage virgin tensile ultimate strength was 58.0 ksi. 

The values for the inelastic materials constants k and n were estab-

liahed in three ways in this study: (1) by tha approximate Equations 10 

and ll repeated from Reference 1, (k1 • 89.4 ksi and n 1 • 0.158), (2) from 

loq-109 plots of true streaa versus true strain in the plastic region of 

virgin flat sheet specimens, Figs. 3-5, (ave k 2 • 88.2 ksi and ave n 2 .. 

0.164), (3} from a loq-loq plot of true yield stress versus true pre-strain 

of preatra.ined and artificially aged specimens, Fig. 1.1, (k 3 D 89. 5 ksi and 

n 3 • 0.114). Note that the values of k are comparatively close for all 

three methods. The value of n for the strain aged method is much smaller 

than for the virgin materials methods, for which the values of n are 

relatively close. 

All three sets of constants were used in Equations 16, 19, and 20 in 

predicting corner yield strengths. The resulting curves arc plotted as 

straight lines on the log-log plot of Fig. 12. The compressive and tensile 

yield strengths of corners are also shown on this figure. Curves 1 and 2 

for constants k 1 , n1 and k 2 , n 2 , compare well with the experimentally 

obtained corner yield strengths for a/t ratios up to 10, but not beyond. 

On the other hand, curve 3, corresponding to strain aged constants k 3 , n 3 , 

compares more favorably with the experimental corner yield strengths for 

the larger a/t ratios, but not for the smaller a/t ratios. It should also 

be noted that this third curve predicts all of the larger corner yield 

strengths slightly conservatively. 

The maximum increase in corner yield strength was 47 percent for an 

a/t ratio of 1. 38. The smallest increase in corner yield strength was 

1 percent for an a/t ratio of &8. 7. For a/t ratios greater than 30, the 

increase in corner yield strength results are comparatively small (i.e. in 

the range of 8 percent for an a/t ratio of 34 to 1 percent for an a/t ratio 

of 69, Tables I I and III. 

The stress-strain curves (not shown herein) for corners with small 

a/t ratios (large amounts of cold work) were gradual yielding, while thos£> 

for corners with large a/t ratios (small amounts of cold work) were sharp 

yielding. The gradual yielding nature of stress-strain curves for corners 

with small a/t ratios may be explained as follows: The cold-forming 

•trains in a small a/t ratio comer ver'j from zero at the surface of zero 

strain to greater than ultimate strain at the outside of the corner. Hence, 

when the corner is tested, the fibers near the surface of zero strain yield 

fir•t and those near the outside and inside surfaces yield last. Further­

more, the tendency of strain aging to restore t~e yield plateau is not 

present in auch highly deformed corners. On the other hand, in corners 

with l&r<Je a/t ratios, the tendency for strain aging to restore the sharp 

yielding nature of the stre•s-strain diagram is present because the degree 

of cold work i• not larqe. 3 

New empirical equations for the constants b and m have been estab-

liahed froa Figs. 8 and 9. These curves indicate that the extension of 

a/t ratloa up to 100 reduces the slope of the plots compared with pre­

viously established1 reaulta for a/t ratios up to 10. 
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l 

2 

3 

4 

5 

6 

Average 

l 

2 

3 

4 

5 

>----6 
~vcraqe 

-·--

10 

11 

12 

13 

14 

15 

16 

17 

18 

TABLE I 

Yli:;LO AND ULTIMATE STRE:NGTtiS OF 

VIRGIN SHEET STEEL 

Yield 
Strength 

Tvoe (koi) 

Tensile 40.8 

47.6 

48.0 

48.6 

48.6 

47. a 
Tensile 46.9 

Compress! ve 45.8 

49.6 

42.5 

44.6 

51.7 

39.5 

Compressive 45.6 

TABLE III 

CORNt;R COMPRESSIVE: 

YIELD STRENGTH VALUES 

Yield St.rcngth 
aye 

Ratio (ksi l 
-----

l. 624 62.8 

2.181 62.2 

1.644 65.6 

1. 37 3 66.0 

1. 392 66.8 

1. 361 63.9 

33.44 49.6 

]5 .11 49.5 

33.78 49, 1 

68. 7) 45.9 

65.18 45.7 

65.18 4 5. 7 

5. 208 51.1 

5. 16 3 52.9 

5.630 52.1 

a. sn 49.2 

8. 881 49.5 

8. 741 48.6 

Ultimate 
Strength 

(ksi) 

56.3 

58.8 

57.9 

58.5 

58.4 

sa. 3 

58.0 

----
----
----
----
----
----

0 

Oy ~~mpr. 
-- ----·----

1. 38 

1. 36 

l. 44 

1. 45 

l. 47 

l. 40 

1.09 

1.09 

l.OB 

1. 01 

1.01 

1.01 

1.12 

1.16 

1.14 

1.08 

1.09 

1.07 

TABLE II 

CORNER TENSILE YIELD AND 

ULTIMATE STRENGTH VALUES 

-Yield Strength Ultimate Strength a 
a/t '}yc 0 _y_c __ 

u 
o., tens. Speelman Ratio (ksi) 

1 1.918 63.1 68.4 1. 34 

2 1.667 66.9 74.6 1. 42 

3 1. 892 60.4 63.9 1.29 

4 1. 410 64.8 72.1 l. 38 

5 1. 423 63.9 67.7 1. 36 

6 1.157 64.0 76.2 1. 36 

7 5.109 sa. 3 62.8 1.24 

a 5.236 57 .o 60.7 1. 22 

9 5.154 53.7 61.8 1.14 

10 8.547 50.2 61.1 1.07 

11 8.635 49.3 60.1 1.05 

12 B. SOB 53.1 62.4 1.13 

13 70.8 48.0 57.7 1.02 

14 44.6 49.7 sa. 2 1. 06 

15. 67.3 48.5 57.5 1. 03 
16 34.7 49.0 57 .a l. 04 
17 36. 5 48.0 57.3 l. 02 
18 35.7 48.5 58.2 l. 03 

WELDED PIPE 

u 
CHANNEL SECTION 

ANGLE SECTION 

FIG. 1. COMMON COLO-F0Rt1ED LIGHT GAGE STEEL SECTIONS 

6 
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FIG. 5. TENS ILl-~ STili:St~-STF!.AI:'ol' CUHVL P!R VJF.:,_;J.: :11\TLkl A!. SPE-:"T':.:~J 1'3 l.~ 
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SUMMARY AND CONCLUSIONS 

1. The experim~ntal results of this invc~tigation shm·.' thut cold-form-

ing inc.:reases the yield strength of corners, the variation of increase being 

9 

1\ for an a/t ratio of 69 to 47\ for an a/t. ratio of 1. 38. The percentage 

increase in ultimate strength was not as large, beinq a maximum of 29\ for 

an a/t ratio of 1.67. 

2. The analytical technique of a prevjous investigalion 1 for pre-

dieting corner yield strengths has been suc.:cessfully extendeU to a/t 

ratios above 10 for a hot rolled light-gage sheet. steel material. The 

relation kb/(a/l)m (Equation lE>) holds good for such larger •It ratios 

providing includes the influence of strain aging. The equations for b 

and m {Equations 19 and 20) have been revised somewhat. from those of the 

previous investigation (Equations 17 and 18). 

3. The influence of strain aging on the increase in yield strength 

is negligible for small values of a/t, but he comes signj ficdnt for large 

values of a/t.. 

4. Strain aging seems to decrease the value of the strain hardenj ng 

exponent n. This may be due to a decrease in ductility and lesser margin 

of difference between the yield strength and the ultimate strength after 

strain aging. 

RECOMMENDATIONS FOR FUR'l'HER STUDY 

1. Since this investigation was not funded, the testing was limited 

to one type of material. To further check the validity of the method, 

similar tests should be conducted on several types of material. 
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