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Sixteenth mternational Specialty Conference on Cold-Formed Steel Structures 
Orlando, Florida USA, October 17-18, 2002 

DESIGN OF INDUSTRIAL STORAGE RACKS 

A. T. Sarawitl , T. Pekoz2 

ABSTRACT 

Design of industrial steel storage racks is complex due to the presence of significant perforations 
in the columns and the semi-rigid nature of column bases and beam to column connections. 
Many assumptions are made in the current design provisions to simplify the design but as a result 
the design becomes rather conservative. Studies were conducted at both the component and 
global scale to address some of these assumptions. At the component level, the topics focused 
upon are the column bases, beam to column connections, and members. Results indicate that 
improvements in the current design procedures are possible and recommendations for 
improvement are made. 

1 INTRODUCTION 

The behavior of the components: column bases, beam to column connections, and members have 
a significant effect on the performance of the industrial storage racks. The current design 
provisions in the RMI (1997) specifications for industrial steel storage racks, recommend the use 
of a base fixity equation and beam to column connection tests to account for the semi-rigid 
nature of the column bases and beam to column connection. Also stub column tests are required 
to account for the local behavior of the members because no satisfactory theoretical treatment 
has yet been developed to deal with the presence of perforations in the column section. Studies 
were first carried out for each of these components then followed by a study on cold-formed steel 
frames. A critical review of the current design provisions was carried out in these studies to 
verify or modify the design approach. 

2 COLUMN BASES 

The RMI specification uses the following base fixity expression for the ratio of the moment with 
respect to the corresponding rotation of the base as 

M =bd2Ec 
e 12 

(2.1) 

where b is the width of the column parallel to the flexural axis, d is the depth of the column 
perpendicular to the flexural axis, and Ec is the modulus of elasticity of the floor assumed to be 

concrete. The expression above is based on an analytical approximation developed by Salmon, 
Schenker and Johnston (1955). The base fixity obtained from this expression is equivalent to 
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assuming that the concrete block under the base plate is subject to a bending load distribution as 
shown in Fig. 2.1. Forces in the column, which transfer through the base plate and then onto the 
concrete surface, can be considered as a combination of an axial and bending force. However, 
only the bending force contributes to the rotation of the base. Considering only the concrete 
block under the base plate, however, results in a lower stiffness than what the actual floor could 
develop. This is because the model neglects the confinement from the surrounding material. The 
concrete floor should instead be represented by a half-space material. Based on this idea studies 
were carried out to develop a new base fixity equation. 

2.1 Development of a Base Fixity Equation 

Finite element studies of the base fixity problem have shown that contact pressures between the 
base plate and concrete surface are concentrated around the column wall section rather than 
having a linear bending load distribution as assumed in Eq. (2.1). This is because the column 
wall thickness tw and base plate thickness tp in study are relatively thin compared to the width 

or depth of the column. The distribution of the normal loads on the concrete surface depends on 
these thicknesses and the location of the column wall section on the base plate. An example of 
approximate load distributions for a C-section with different types of base plate configurations is 
shown in Fig. 2.2. As expected the load is distributed wider when the column wall section is 
located at the center of the base plate rather than when it is located at the edges. 

Once the normal load distribution on the concrete surface for a certain amount of bending 
moment is known, deformation of the concrete can be obtained by solving the problem of normal 
loads on the boundary of the half-space using solid mechanic approaches as suggested in 
Sokolnikoff (1983). The rotation is found from the surface deformation, and then the base fixity 
is computed. A parametric study is carried out for a wide range of parameters as summarized in 
Table 2.1. Combinations of these parameters yield a total of 900 models for each base plate type. 
Results are shown in Figs. 2.3a and 2.3b. It is found that the results of base plate type A are 
similar to type B while the results of base plate type C are similar to type D. This is mainly 
because the load at the stiffener and web is rather low. Most of the rotation takes place due to the 
loads from flanges. New base fixity equations can now be obtained by fitting a regression line 
through the resulting data. For use with base plate type A or B, the proposed equation is 

M = ~bd2 E (2.2) e 25 c 

For use with base plate type C or D, the proposed equation is 

M =~bd2E e 20 c 
(2.3) 

The base fixity equations presented here are suggested only for the initial stiffness, namely, only 
when the base plate is still in full contact with the concrete surface, having compression stress 
distribution. By considering the axial force, P and bending moment M at the column base, to 
prevent tension stresses from occurring, an upper bound limit of the equations can be found as 

M <§... (2.4) 
P-A 

where A is the cross sectional area of the column and S is the elastic section modulus of the 
column section for the extreme tension fiber about the axis of bending. Once the upper bound 
limitation has been reached, the stiffness of the connection is expected to decrease. 
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2.2 Finite Element Analysis Verification 

Non-linear finite element analyses of the column to floor connection are performed using 
ABAQUS in order to verify the proposed base fixity equation. The finite element model is 
shown in Fig. 2.4 and assumptions are as follows. The vertical and lateral loads transferred from 
the frame to the isolated column are modeled by nodal forces applied at the centroid of the 
column on the top plate. The ratio of the lateral load with respect to the vertical load is 
maintained through the analysis. Lateral bracing is provided at the top plate to prevent the 
column from twisting. In addition, because only one anchorage bolt is chosen for this model, it is 
expected that the placement of the bolts will affect the behavior of the column. Therefore, both 
directions of the lateral load must be considered. Positive and negative signs of the direction are 
given in Fig. 2.4. An idealization of the boundary conditions of the anchorage bolts connection is 
made by the matching displacements of the base plate nodes and the concrete surface nodes. 

The four node general purpose shell element is used to model the column and base plate 
while an eight node brick element is used to model the concrete floor. Contact surfaces are 
defined between the base plate and the concrete to simulate their interaction. However, in this 
study no friction is considered between the two surfaces. In addition, since the floor is assumed 
to be a half-space, eight node infinite elements are needed to model the far-field region. The 
material model used for the column and base plate is elastic-plastic with strain hardening 
Fy = 45 ksi, Fu = 59 ksi, E = 29500 ksi, and v = 0.3 while the concrete is assumed elastic with 

Ec = 2950 ksi and v = 0.2. The rotation of the base plate is obtained and plotted against the 

applied moment to compare with the proposed equation as shown in Fig. 2.5. It can be seen that 
the proposed equation for base plate type A and B agrees well with the finite element solution. 

3 BEAM TO COLUMN CONNECTIONS 

In storage racks, beam end connectors are used to make beam to column connections. The semi
rigid nature of this connection is due to the distortion of the column walls, tearing of the column 
perforation and distortion of the beam end connector. Storage rack stability depends significantly 
on the behavior of the beam to column connection, thus it is important to have the means for 
predicting it. Designs of these connections vary widely; therefore, it is impossible to develop a 
general analytic model. Instead, beam to column connection tests are usually done to determine 
the relationship of the moment at the joint M and the change in angle between the column and 
the connecting beam e. The RMI specification recommends the use of a cantilever test or a 
portal test. Schematics of these test setups are shown in Fig 3.1 and 3.2. In the cantilever test the 
constant connection stiffness F relating the moment to the rotation as 

F=M (3.1) 
e 

is determined by using the known applied vertical load and deflection of the free end of the 
cantilever. While in the portal test, a certain amount of vertical load is first applied. Then by 
applying an additional horizontal load and measuring the corresponding lateral deflection the 
constant connection stiffness can be determined. The moment and rotation relationship 
determined from the cantilever test is normally used for the design of beams and connections 
while the result from the portal test it is used as connection stiffness in sidesway analyses. 
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An alternative beam to column connection test is presented here to be used instead of the 
cantilever test. In the cantilever test the shear to moment ratio of the actual frames may not be 
well represented. Namely, if the cantilever test is conducted for different lengths of the cantilever 
beam, the moment and rotation relationships obtained from each of these tests might be different. 
To solve this problem a proposed connection test where the entire bay is assembled the same as 
in the portal test is to be used. This test is similar to the portal test but instead of applying the 
horizontal loads, vertical loads are applied incrementally and the corresponding mid span beam 
deflection <5 is measured. The vertical load applied must be equally distributed over the entire 
bay so that the force on each shelf beam can be assumed to be a uniformly distributed vertical 
load w. The developing moment in each joint will be the same in this test and the expression for 
F can be found as follows: 

F=--~----------~----
L (4WV J h 

2EIb 5wL4 -384EIb<5 1 - 3EIe 

(3.2) 

where Ib and Ie are the moments of inertia of the beam and column segment. The corresponding 
moments developed in the joints can be found as follows: 

wE 
M= (h L 1 J 24EIb ---+---+-

3EIe 2EIb F 

(3.3) 

To obtain the moment and rotation relationships, e can be determined for each load step using 
Eq. (3.1). The load carrying capacity of the entire bay may also be determined from this test 
whether failure is due to the connection or the shelf beam. However, if the load carrying capacity 
is not of interest, the proposed test could be conducted prior to the portal test. 

4 MEMBERS 

4.1 Elastic Buckling Strength 

The column sections in storage racks are perforated for the purpose of easy assembly of the beam 
end connector. It is well known that the presence of such perforation reduces the buckling 
strength of the section. The significance of this reduction will however depend on the geometry 
and material properties of the member and the boundary conditions. The RMI specification 
allows the use of the full cross section properties to predict the overall buckling strength, thus 
assuming that the presence of such perforation does not have significant influence on the overall 
buckling strength. The objective of this study is to validate this assumption. 

A study is carried out to compare the buckling strengths of perforated and unperforated 
A-LDR type columns. The cross sectional geometry is shown in Fig 4.1. Two section thicknesses 
are investigated, one where the section is locally stable, which in this study will be referred to as 
the thick-walled section and the other where the section is locally unstable under yield stress, 
which will be referred to as the thin-walled section. These sections are studied as both a 
concentrically loaded compression member and a flexural member subject to bending about the 
strong axis. Boundary conditions at the ends of the member for both cases are pined condition 
such that the effective lengths for bending about of both the strong and weak axes and torsion are 
equal to the length of the member. The critical buckling load is found for the different length 
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members. Two approaches are used and then compared: finite element method using the 
ABAQUS computer program and the theoretical overall buckling equations as given in the AISI 
(1996) specification. The finite element method is considered to give more accurate results. 

Finite element models range from a member length of 12 to 120 in. with a 6 in. increment 
between models. The theoretical values are obtained for the full section, weighted section, and in 
addition the net section moment of inertia for the flexural buckling mode. A weighted section as 
shown in Fig. 4.1 refers to a section that uses an average thickness in the perforated segment of 
the section to account for the absence of the material from the holes along the length of the 
member. The results are given in Figs. 4.4 and 4.5 where the vertical axes are the elastic axial 
buckling load p. divided by the axial load causing the yield of the full section Py , and the elastic 

flexural buckling moment Me divided by the moment causing initial yield at the extreme 

compression fiber of the full section My. Results show that instead of using full cross section 

properties to predict the overall buckling strength of perforated sections as assumed in the 
current design specification, better results can be obtained by using the weighted section 
properties for the torsional-flexural buckling and lateral buckling equation and the net section 
moment of inertia properties for the flexural buckling equation. 

4.2 Member Strength 

In order to deal with the presence of perforations in the column section, the RMI specification 
recommends the use of a stub column test to establish an effective net section. The area of the 
effective section is for an axially loaded member failing due to local behavior. The results are 
also further used to develop a reduction factor to find the effective section properties for bending 
and overall buckling. The objective of this study is to validate these reduction factors. 

As in the previous study, the finite element method is used to predict the member 
strength. The analysis considers both geometric and material nonlinearities. Initial conditions of 
the model involve both flexural residual stresses and geometric imperfections. The magnitude of 
the flexural residual stresses throughout the thickness in the longitudinal direction is given in 
Fig. 4.2. These stresses are assumed to be tension on the outside and compression on the inside 
of the section. Geometric imperfection is introduced by using the buckling mode shape obtained 
from the buckling analysis. For short members where local or distortional buckling is critical, 
buckling mode shape with a maximum imperfection magnitude of one tenth of the thickness is 
used as the geometric imperfection. For long members where overall buckling is critical as 
shown in Fig. 4.2, the geometric imperfection is generated by superimposing the overall buckling 
and the local buckling mode shape together, where the maximum imperfection magnitudes of 
these modes are one thousandth of the member length and one tenth of the thickness, 
respectively. An idealization of the material model that is elastic-plastic with strain hardening is 
assumed where, Fy = 45 ksi, Fu = 59 ksi, E = 29500 ksi, E." = E/45, V = 0.3 and e .• , is 15 

times the maximum elastic strain. 
Results are compared with design specifications in Figs. 4.6 and 4.7. For the full 

sections, the initiation of the yielding procedure of the AISI specification is used while for the 
perforated sections the RMI specification is used. The RMI specification requires the use of the 
ultimate compression load from a stub column test. The finite element results for the 
concentrically loaded compression members are used i~ this case. For research purposes LRFD 
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is used here but with the resistance factors considered to be equal to one. It can be seen that both 
specifications give conservative results compared to the finite element method, especially for the 
very long length flexural members. According to the finite element solution, these members have 
postbuckling strength. 

4.3 Development of a Design Approach for Beam-Columns 

An interaction equation is used in the AISI specifications to design beam-columns. A finite 
element parametric study is carried out here to evaluate this equation. Column type A-LDR is 
used again with the same finite element assumptions as in the previous study but with 
modification of the applied load so that the members are subject to combined compressive axial 
load and bending about the strong axis. Three load cases with stress distributions applied at the 
ends of the member as shown in Fig. 4.8 are considered. The correlations of the finite element 
results with the interaction equation are given in Figs. 4.8 and 4.9. For a given finite element 
result, the members strength P,. and M ux are substituted in the interaction equation and the 

resulting axial and flexural strength ratio is plotted. All the finite element results fall outside the 
triangle indicating that the interaction equation is conservative. 

The interaction equation defines member failure by limitation on the combined strength 
ratio. The allowable member strengths (AP., (AMnx and (AM.y are determined independently. 

Therefore, three separate failure modes must be considered, resulting in taking the lower bound 
limits of each governing strength. As seen from the finite element result, designing members 
with such an assumption can lead to rather conservative results, especially when failure by 
overall member instability takes place. An alternative design approach for beam-columns is 
presented here to improve the design efficiency. This proposed method represents the behavior 
of beam-columns by considering a single failure mode to govern the member capacity. The 
following are the design procedures. First, the combined axial and bending elastic critical 
buckling stress Fe for the member under the required load and boundary conditions is calculated. 

P M M 
F =.....!..+----E..+----.!!1... 

A Sx Sy 
(4.1) 

where p. is the elastic critical axial force, determined for an eccentrically loaded section, A is 

the cross-sectional area, Sx and Sy are the elastic section moduli for the extreme compression 

fiber about the x- and y-axes, M ex and M ey are the corresponding elastic critical moments 

about x- and y-axes. For beam-columns with equal end eccentricities, these moments are the 

end moments due to the eccentricity, ey and ex' respectively 

~=~ ~~ 

~=~ ~~ 
The critical buckling load for an equal end eccentrically loaded section can be solved by using 
the computer program CU-TWP or by using the theoretical overall buckling equation given in 
Sarawit (2002). All the above parameters should be calculated based on the weighted section 
properties when designing perforated sections. The combined axial and bending nominal failure 



375 

stress Fn is then determined by interpolating between the two currently used design equations 

given in the AISI specification 

( Fn ) p Fp + ( Fn ) M ( F mx + Fmy ) 
F = ---'---'------""--'-----'--'-

n Fp + F mx + Fmy 
(4.4) 

where (Fn) p is the nominal failure stress for concentrically loaded compression members 

calculated according to the AISI Eqs. (C4-2) and (C4-3), with Fe determined from Eq. (4.1). 

(Fn) M is the nominal failure stress for flexural members calculated according to the AISI Eqs. 

(C3.1.2-2), (C3.1.2-3), and (C3.1.2-4), with the following notations substitution: Me = (Fn) M ' 

M, = F, ' and M)' = Fy. The axial buckling stress Fp and the bending buckling stresses F mx and 

Fmy, are fractions of the combined axial and bending buckling stress along the net cross section, 

computed as follows: Fp = P, I A..et' F mx = M exl S xnet , and Fmy = M ey / S ynet , in which A..et is the 

net cross-sectional area, Sxnet and Synet are the elastic section modulus of the net section for the 

extreme compression fiber about the x- and y-axes. 
The reason for using Eq. (4.4) for beam-column designs is that the nominal failure stress 

determined from this expression is a weighted approximate value of the two current design 
equations as shown in Fig 4.3. The design equation for concentrically loaded compression 
member is the lower bound due to the consideration of the initial geometric imperfections and 
the design equation for flexural members is the upper bound due to the allowable additional 
beam capacity from the shape factor. The nominal failure stress determined from Eq. (4.4) 
should be reasonable because both the effects of the initial geometric imperfections and the 
additional capacity from the shape factor should be considered less in beam-columns. 

The reduction factor for the net section, r to account for local buckling, must then be 
calculated. By interpolating between the reduction factor expressions for concentrically loaded 
members and flexural members given in the RMI specification, the following expression is 
obtained for beam-columns: 

(4.5) 

where 

F = F + CmxF mx + CmyFmy 
e p ax a y 

Q is determined by stub column tests according to the RMI specification. Definitions of Cmxlax 
and Cmy / a y are as given in the AISI specification. The nominal axial strength Pn is then 

determined as follows: 
Pn = rA..etFnp (4.6) 

where Fnp = Fn Fp / Fe is the axial nominal failure stress. The corresponding nominal flexural 

strength M nx and M ny is then determined as follows: 

Mnx =PnMejP, 

M ny = PnM ey / P, 

(4.7) 

(4.8) 
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Finally, with the AISI resistance factors, the design strengths are determined as follows: 
P" =¢J'. (4.9) 

Mux =¢bMnx (4.10) 

Muy =¢bM.y (4.11) 

Similar to the _ interaction equation this method also involves using the same moment 
magnification factor; therefore, some iteration is required to find Pu ' That is, the assumed p" 

used in ax and ay to solve Eq. (4.5) must be the same as when it is determined from Eq. (4.9). 

The net cross section properties are used in this approach to account for the perforations in the 
column sections. However, most perforated sections have more than one possible net section; 
therefore, the different net sections should be explored to find the least design strength. This 
proposed method for beam-column design is evaluated by comparing it with the previous finite 
element results and interaction equation as shown in Figs. 4.8 and 4.9. It can be seen that overall 
the proposed method works well for the torsional-flexural and flexural buckling agreeing better 
with the finite element results than the interaction equation. 

4.4 Moment Magnification Factor 

In the design of beam-columns, primary moments due to lateral loads and end moments are 
multiplied by moment magnification factors to account for the second order effects and the 
moment gradient in the member. This factor used in the current AISI specification is developed 
based on the assumption that failure by instability will be in the plane of bending. Thus, the 
current moment magnification factor does not consider the torsional-flexural failure mode. 
Generally this may not be the case. The torsional-flexural failure mode is common in thin-walled 
sections. If it takes place, the moments in the elastic beam-column will be unconservative if 
computed with the current moment magnification factor. 

Pekoz and Celebi (1969) presented an approximate analysis approach for elastic beam
columns with equal end eccentricities. Maximum bending moment in the member can be 
computed by using the member deformation results from this approach. When the column type 
A-LDR is subjected to a compression load with eccentricity ey = 1 in. as shown in Fig. 4.10, the 

maximum bending moment about the strong axis M xmax computed from the Pekoz and Celebi 
(1969) approach will not be the same as that from using the AISI moment magnification factor. 
As seen in Fig. 4.11 the AISI approach is unconservative. This is because the Pekoz and Celebi 
(1969) approach has the level of P limited at the elastic critical axial load p., agreeing with the 

actual behavior in which the member will buckle by torsional-flexural at this load. But the AISI 
approach has it limited at the flexural buckling load P.x instead. Contour plots given in Fig. 4.10 

can be used to obtain p. for the different load eccentricities. 

5 COLD·FORMED STEEL FRAMES 

The behavior of industrial storage racks depend on how the three individual components 
previously discussed: column bases, beam to column connections, and members perform 
interactively with each other. Thus the frame behavior can become very complex, many 
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parameters such as semi rigid nature of joints, presence of significant perforations, and 
susceptibility to local buckling are part of the cause. As to which analysis method is best to solve 
this problem will certainly depend on the tools available to the designer. The analysis model can 
be as simple as using a sub-structure model such as isolating the column and using the alignment 
chart, or as sophisticated as using numerical methods to analyze the entire frame. With the 
availability of powerful computers and software, the latter approach has become more attractive, 
allowing more complex and efficient designs to become possible. Current guidelines for analysis 
methods and design criteria are being reviewed in this research project. A preliminary study of 
finite element simulations of physical rack tests is illustrated here. 

Physical tests of the pallet rack shown in Fig. 5.1 were conduced by Pekoz (1975) for two 
loading cases. First, gravity loads were applied on each bay equally, and second, a combination 
of vertical and horizontal loads were applied. Horizontal loads at 1.5% of the vertical loads at 
each beam level were applied to the right at each beam to the column joint of the left upright 
frame. For the case of gravity loads, in the physical test,· failure took place in the beams by 
yielding and local buckling. Complications arise when beam elements are used to model the 
shelf beams in this case. As shown in Fig. 5.2a, the finite element solution will yield 
unconservative results because beam elements did not accurately capture the local behavior. 

For the case of the combination of vertical and horizontal loads, in the physical test, 
failure was due to sidesway collapse where most of the lag bolts were broken off due to the 
excessive rotation of the column bases. How the column bases are modeled are of great 
importance in this case. If simple linear torsional springs were used to model the column bases, 
even though the spring stiffnesses accurately represent the base fixity, satisfactory results are yet 
not possible as shown in Fig. 5.2b Model II. A double axial spring model as shown in Model I 
should instead be used in this case. A double axial spring model not only produces the same 
stiffness as the linear torsional spring but will also capture the upper bound limit of base fixities 
behavior. The physical result is higher than Model I indicating that the actual upper bound limit 
of the base fixity is slightly higher than assumed. Additional resistance from the base fixity could 
be due to the presence of the lag bolts. Currently different design approaches are being studied 

6 SUMMARY AND CONCLUSIONS 

This paper presents the results of four studies. The first study focuses on the column bases. 
Results show that the current base fixity equation underestimates the stiffness. Unless actual tests 
are conducted to obtain the base fixity, the proposed equation developed in this study along with 
the upper bound limits of the base fixity behavior should be considered. In the second study, a 
new beam to column connection test is presented. The proposed test may give a better 
understanding of the connections behavior and overcome the disadvantages of the current 
cantilever tests. 

A critical review of the AISI and RMI design provision for cold-formed steel members 
was carried out in the third study. It was found that the overall elastic buckling strength of the 
perforated members could be predicted by using the weighted section properties for determining 
torsional-flexural buckling strength and lateral buckling strength and the net section moment of 
inertia properties for determining flexural buckling strength. Then sources of conservatism in the 
specification for the design of beam-columns were identified and a new design approach is 
presented to improve the results. The moment magnification factor was also looked at in this 
study. Determining the maximum bending moments by using the AISI moment magnification 

\ 
( 
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factor is found to give unconservative results if the member failure is by torsional-flexural. 
Current research is focused on cold-formed steel frames. In this study current guidelines for 
analysis method and design criteria are being reviewed, and different possible analytical models 
are being studied. 
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Table 2 1 Column and Base Plate Dimensions 

bd,in. 2 djb c, in. tw ' in. t It p • 

4,6.25,9, 12.25, 16, 1, 1.25, 1.5, 1.75, 2 0, d/2 0.05,0.10 1, 1.5,2,2.5,3 
20.25,25,30.25,36 



379 

Fig. 2.1 Defonnation shape of the concrete block under the base plate 

Fig. 2.2 Base plate configurations 
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