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Thirteenth International Specialty Conference on Cold-Formed Steel Structures 
St. Louis, Missouri U.S.A., October 17-18,1996 

INTERACTION OF FLANGEIEDGE - STIFFENED 

COLD FORMED STEEL C - SECTIONS 

C.A. Rogers! and R.M. Schuste~ 

SUMMARY 

A revision to the Canadian Standard (S136-94)[I] and the American Specification (AISI-
89)[2], in which the procedure to calculate the effective width of an edge-stiffened compressive 
flange is modified, has been proposed by Dinovitzer et al.[3]. The proposal involves a change of 
the equations for the flange plate buckling coefficients of Case II compressive elements, which 
eliminates a discontinuity in the effective width formulation. The modified local buckling 
procedure was compared with the current Canadian Cold Formed Steel Standard using a program 
ofbeam tests at the University ofWaterloo[4] and data available in the literature[8,9, 10, 11,12]. 
Statistical results of the comparison indicate that the revised method is more accurate than current 
design standards and use of this procedure simplifies the current plate buckling equations. It is 
recommended that the Dinovitzer approach be adopted by the North American Design Standards. 

1 INTRoDucTION 
Dinovitzer et al. [3] completed an investigation of compressive elements where a discontinuity 

in the effective width equation for sections with partially stiffened flanges and simple edge 
stiffeners (lips) was discovered (see Figure 1). A partially stiffened flange is an element that is 
supported by a web on one side and an edge stiffener of inadequate rigidity (Ir < 1) on the other. The 
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Figure 1 - Flat Width Ratio vs. SI36[1] Effective Width Ratio 
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S136-MS9 Design Standard[5] was examined to fmd the source of this discontinuity in the 
flange effective width formulation. Dinovitzer observed that the plate buckling coefficient 
equations were identical for Case II and Case III flanges except for an exponent change from 112 
to 113. The objective of the investigation was to then develop an equation which would allow the 
exponent to vary from 112 to 113 gradually. Dinovitzer concluded that the stepwise transition 
from design Case II to Case III should be replaced with the linear formulation of the plate 
buckling exponent transition[3]. For Case II and Case III sections with an edge stiffener of 
inadequate rigidity (Ir < 1 ), the following plate buckling coefficient equations and linear 
formulation of the exponent, n, were recommended: 

d/w ~ 0.25 k = 3.57 (Irt + 0.43, 

0.25 < djw ~ O.S k = [4.S2 - 5(d/w)] (Irt + 0.43, 

n = 25 _ 37W [ (1/ 3 ~ n ~ 1/ 2). 
43 192 VB 

Where W = wit. 

(1) 

(2) 

(3) 

This new formulation will only affect the plate buckling coefficient of sections with Case II 
flanges, since n = 1/3 for wit> Wlim2. Dinovitzer's flange method also simplifies the procedure 
required for the analysis of compressive flanges, by eliminating the need to differentiate between 
Case II and Case III elements. 

2 CURRENT EFFECTIVE WIDTH PROCEDURE OF AN EDGE-STIFFENED FLANGE ELEMENT 
The flat width of the flange, w, is calculated as the overall width minus the thickness, t, and 

inside bend radius, rio for each corner. The flat width ratio, wit, has a limit of 60 as given in Clause 
5.4 of S 136-94[1]. 

The "Case" ofthe flange is determined according to the following flat width ratio limits, 

W;iml = 0.644.JkE/f withk = 0.43, 

W;im2 = O.644.JkEl f with k = 4, 

(4) 

(5) 

where f= Fy or Fy' when cold work of forming is used. The "Case" of the flange is determined as 
follows, 

Case I flange 
Case II flange 
Case III flange 

W/t~Wliml, 
W1im1 < wit ~ W1im2, 
wit > W1im2. 

(6) 
(7) 
(S) 

The influence of the edge stiffener (lip) is determined by means of the adequate moment of inertia, 
la, equations, developed by Desmond[6], 

Case I flange 
Case II flange 
Case III flange 
where W = wit. 

Ia = 0 (no edge stiffener required), 
Ia = 399t4( W IWlim2 - O.327?, 
Ia = t4[115 (W I Wlim2 ) + 5], 

(9) 
(10) 
(11) 
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The flat width ratio of the lip, d/t, is currently limited to 14, as recommended by Willis & 
Wallace[7] and the ratio of the out-to-out depth of the lip to the flat width ofthe flange, d;/w, is 
limited to 0.8, given in Clause 5.6.2.3 of S136-94[1]. The moment of inertia of the simple edge 
stiffener is calculated about its own centroid, as defined below. 

(12) 

The ratio of actual to adequate moment of inertia (I, = Is I I.) is calculated and used with the 
equations from Table 1 to determine the plate buckling coefficient for the compressed flange 
element. 

Table 1 - Buckling Coefficients for Edge-Stiffened Flange Elements 

Case II I, ~ 1 
I, < 1 

Case III I, ~ 1 
I, < 1 

Note: d/t s 14 

d/w s 0.25 

k=4 
k = 3.57 (1,)112 + 0.43 

k=4 
k = 3.57 (1,)1/3 + 0.43 

0.25 < d;/w s 0.8 

k = 5.25 - S(d;/w) 
k = [4.82 - S(d/w)] (1,)112 + 0.43 

k = 5.25 - S(d/w) 
k = [4.82 - S(d;/w)] (1,)1/3 + 0.43 

The flat width ratio limit, Wlim, is calculated and compared to the flat width ratio of the flange, 
wit. 

W;im = 0.644.JkE I f with f = Fy or f = Fy' (13) 

Ifw/t > Wlim then the flange must be reduced in width according to the following equation, 

(14) 

where W = wit, and b = Bt is the effective width of the flange, which is separated into 
components using the following equations: 

b l = I, Bt/2 s Btl2, 
b2 =Bt - b l . 

f 

f, 

(15) 
(16) 

Figure 2 - Edge-Stiffened Flange Element SUbjected to Uniform Compressive Stress[l] 

Figure 2 shows the gross dimensions, effective widths and stress distribution of a typical edge-
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stiffened flange element subjected to a uniform compressive stress. 
The compressive stress in the flange, f, is not dependent on the position of the neutral axis 

unless yielding of the tensile flange initially occurs. If the cross-section of the member is such that 
the tensile flange reaches the maximum allowable stress, Fy or Fy', prior to failure of the 
compressive flange, then the stress values used in the effective width formulation will depend on 
the position of the neutral axis. 

The lambda format presented in the 1989 AISI Cold-Formed Steel Specification[2] is an in­
verse format of the S136[1] approach which yields identical results for uniformly compressed 
flange elements. 

3 COMPARISON WITH WATERLOO TEST DATA 

Five of the series tested as part of the Waterloo study[4] contained test specimens with 
inadequately stiffened (Ir < 1) Case II flanges. In total, seven test specimens from these series 
were applicable to the Dinovitzer[3] flange method investigation. Tables A.l and Figure A.l of 
the Appendix contain test specimen dimensions and material properties as well as a test beam 
cross-section. The specimen identification numbers and the resulting Dinovitzer exponents, n, and 
plate buckling coefficients as well as the S136[1] plate buckling coefficients are summarised in 
Table 2. Test-to-predicted bending moment ratios for the current S136 Design procedure and for 
the proposed Dinovitzer method are listed in Table 3. Regarding the test specimens listed in Table 
2, the Dinovitzer method resulted in more accurate predictions of the bending moment resistance. 
A mean of 1.04, a standard deviation of 0.090 and a coefficient of variation of 0.106 were 
calculated for the Dinovitzer method as compared to a mean of 1.06, a standard deviation of 
0.097 and a coefficient of variation of 0.111 for the current S136 Design procedure (see Table 6). 

Table 2 - Exponent, n, and Plate Buckling, k, Values 

Snecimen n k-Din k-S136 Snecimen n k-Din k-S136 

C2-DW20-1-A 0.338 1.43 0.972 C2-DW20-1-B 0.342 1.29 0.877 
C2-DW45-1-A 0.349 2.92 2.90 C2-DW45-1-B 0.345 2.85 2.76 
C2-DW25-2-A 0.446 1.83 1.69 C2-DW25-2-B 0.447 1.76 1.63 
C2-DW20-3-A 0.388 1.90 1.57 C2-DW20-3-B 0.388 1.92 1.60 
C2-DW35-3-A 0.383 3.11 3.11 C2-DW35-3-B* 0.500 3.11 3.11 
C2-DW25-4-A 0.438 1.07 0.934 C2-DW25-4-B 0.437 1.24 1.09 
C2R-DW20-1-A 0.384 1.15 0.874 C2R-DW20-1-B 0.384 1.15 0.874 
Note: * Ir> 1 for test specimen C2-DW35-3-B. 

Table 3 - MT/Mp Ratios - Local Buckling Methods 

S136 AISI Din Sl36 
Specimen MT Mp MTiMp Mp MTiMp Mp MTiMp 

kN'm kN·m kN'm kN'm 

C2-DW20-1-A,B 4.19 3.73 1.12 3.88 1.08 3.98 1.05 
C2-DW 45-1-A,B 5.16 4.84 1.07 4.86 1.06 4.85 1.06 
C2-DW25-2-A,B 9.21 7.75 1.19 7.75 1.19 7.75 1.19 
C2-DW20-3-A,B 11.3 10.8 1.04 11.4 0.99 11.1 1.01 
C2-DW35-3-A,B 12.2 12.9 0.94 13.7 0.89 12.9 0.94 
C2-DW25-4-A,B 31.9 33.9 0.94 36.6 0.87 34.4 0.93 
C2R-DW20-1-A,B 4.16 3.64 1.14 3.71 1.12 3.80 1.09 
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4 COMPARISON WITH AVAILABLE TEST DATA 

Twenty available test specimens consisting of sections with inadequately supported (Ir < ·1) 
Case II flanges were included in this study. Table 4 lists the applicable sections tested by 
Cohen[8], Moreyra[9], Schuster[10], Shan[ll] and Winter[12]. Also listed are the corresponding 
Dinovitzer[3] exponents, n, plate buckling coefficients as well as the S136[1] plate buckling 
coefficients. Test-to-predicted bending moment ratios for both the Dinovitzer exponent method 
and the current S136 procedure are found in 5. Similar to the Waterloo[4J test result comparison, 
the Dinovitzer method more accurately predicted the bending moment resistance of the available 
test data. Dinovitzer's flange method resulted in a mean of 1.00, a standard deviation of 0.147 and 
a coefficient of variation of 0.09"0 for the available test data. In comparison, the current S 136 
procedure yielded a mean of 1. 0 1, a standard deviation of 0.158 and a coefficient of variation of 
0.166 (see Table 6). 

However, it must be noted that eleven of the applicable test specimens were subject to the 
distortional buckling mode of failure. The test-to-predicted bending moment ratios of these 
sections were significantly unconservative « 1). SpecimeIis tested by Moreyra[9], Schuster [10] 
and Shan[ll] (12B,16, ... ) were removed from the comparison so that local buckling concerns 
could be isolated. The Dinovitzer[3] method remained more accurate for the available test data 
with a mean of 1.13, a standard deviation of 0.087 and a coefficient of variation of 0.090, as 
compared to a mean of 1.15, a standard deviation· of O. 100 and a coefficient of variation of O. 101 
for the S 136[1] method (see Table 6). 

Table 4 - Exponent, n, and Plate Buckling, k, Values 

SIlecimen n k-Din k-S136 SIlecimen n k-Din k-S136 

Cohen[8] Schuster[lO] 
It2-nnin-d90-1Ll 0.333 2.44 2.03 BSI-A* 0.385 3.08 2.97 
It2-rmin-d90-2Ll 0.333 2.44 2.03 BSI-B* 0.385 3.08 2.97 
IIt2-nnin-d90-1Ll 0.333 2.44 2.03 BS2-A* 0.385 3.08 2.97 

BS2-B* 0.385 3.08 2.97 
CSI-A* 0.373 2.91 2.80 

Moreyra[9] CSI-B* 0.373 2.91 2.80 
B-W* 0.347 2.69 2.67 CS2-A* 0.373 2.91 2.80 
B-TB* 0.337 2.54 2.41 CS2-B* 0.373 2.91 2.80 
C-W* 0.337 2.51 2.31 CS3-A* 0.367 2.83 2.67 
C-TB* 0.337 2.45 2.22 CS3-B* 0.373 2.91 2.80 

Shan[ll] 
Winter[12] 2B,16,1&2(NLA 0.384 2.37 2.11 
B4 0.433 2.55 2.39 2B,16,l&2(NLB 0.382 2.36 2,09 
B6 0.365 2.32 l.92 2B,16,3&4(NL A 0.385 2.67 2.51 
B7 0.345 3.57 3.54 2B,16,3&4(NLB 0.382 2.41 2.15 
C5 0.350 3.08 2.84 12B,16,1&2(NLA* 0.394 2.63 2.47 

12B,16,1&2(N)J3* 0.394 2.79 2.70 
12B,16,3&4(N)_A* 0.393 2.37 2.13 
12B,16,3&4(N) B* 0.394 2.79 2.70 

Note: * Subject to distortional buckling mode of failure. 
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Table 5 - MTlMp Ratios - Local Buckling Methods 

S136 AISI Din Sl36 
Specimen MT hlp MT/MP Mp MT/MP Mp MT/MP 

kN'm kN·m kN'm kN'm 
Cohen[8] 
It2-rmin-d90-1L1 70.5 55.7 1.27 59.9 1.18 57.5 1.23 
It2-nnin-d90-2Ll 73.3 55.7 1.32 59.9 1.22 57.5 1.28 
IIt2-nnin-d90-1L1 66.2 55.7 1.19 59.9 1.10 57.5 1.15 

Moreyra[9] 
B-W* 13.2 15.1 0.87 16.3 0.81 15.2 0.87 
B-TB* 14.0 15.5 0.91 17.0 0.82 15.6 0.90 
C-W* 15.6 13.9 1.12 15.4 1.02 14.1 1.11 
C-TB* 15.0 14.9 1.00 16.6 0.90 15.2 0.99 

Schuster[1O] 
BSl* 8.46 9.07 0.93 10.3 0.82 9.07 0.93 
BS2* 8.61 9.07 0.95 10.3 0.84 9.07 0.95 
CSl* 9.05 10.8 0.83 11.9 0.76 10.9 0.83 
CS2* 9.05 10.9 0.83 11.9 0.76 10.9 0.83 
CS3* 9.29 10.8 0.86 11.9 0.78 10.9 0.86 

ShaurllJ 
2B,16,1&2(N) 3.82 3.50 1.09 3.49 1.10 3.56 1.07 
2B,16,3&4(N) 3.90 3.61 1.08 3.60 1.08 3.64 1.07 
12B,16,1&2(N)* 22.5 28.9 0.78 30.5 0.74 28.9 0.78 
12B,16,3&4(N)* 23.4 28.5 0.82 30.1 0.78 28.7 0.82 

Winterf12] 
B4 49.4 44.4 1.11 44.3 1.11 44.4 1.11 
B6 38.3 34.7 1.10 34.7 1.11 35.8 1.07 
B7 5.59 5.58 1.00 5.57 1.00 5.59 1.00 
C5 16.5 14.2 1.16 15.3 1.08 14.4 1.15 
Note: * Subject to distortional buckling mode of failure. 

5 COMPARISON WITH WATERLOO AND AVAILABLE TEST DATA 

The Dinovitzer[3] method was again more accurate in comparison with the current S136[1] 
procedure when the applicable Waterloo[4] and available test data[8,9,10,11,12] were analysed 
together. Analysis of the test-to-predicted bending moment ratios for the twenty-seven test 
specimens resulted in a mean of 1.01, a standard deviation of 0.134 and a coefficient of variation 
of 0.138 for Dinovitzer's method and a mean of 1.02, a standard deviation of 0.145 and a 
coefficient of variation of 0.147 for the current S136 procedure (see Table 6). 

The Dinovitzer[3] method remained more accurate in comparison with the current S136[1] 
procedure when the Waterloo[4] and available test data[8,9, 10,11,12] were combined, excluding 
the sections which failed by distortional buckling. This comparison of test-to-predicted bending 
moment ratios produced a mean of 1.09, a standard deviation of 0.096 and a coefficient of varia­
tion of 0.095 for the Dinovitzer method and a mean of 1.11, a standard deviation of O. 104 and a 
coefficient of variation of 0.101 for the S136 procedure (see Table 6). 
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Table 6 - Statistical Comparison ofMT/Mp Ratios 

Test Specimen' Dinovitzer S136 

Waterloo Data Mean 1.04 1.06 
(7 Tests) S.D. 0.090 0.097 

C.o.v. 0.106 0.111 

Available Data Mean 1.00 1.01 
(20 Tests) S.D. 0.147 0.158 

C.o.v. 0.090 0.166 

Available Data Mean 1.13 1.15 
w/o Dist. Bckl. S.D. 0.087 0.100 
(9 Tests) C.o.v. 0.090 0.101 

Waterloo & Mean 1.01 1.02 
Available Data S.D. 0.134 0.145 
(27 Tests) C.o.V. 0.138 0.147 

Waterloo & Mean 1.09 1.11 
Available Data S.D. 0.096 0.104 
w/o Dist. Bckl. C.o.v. 0.095 0.101 
(16 Tests) 

6 CONCLUSIONS 
The Dinovitzer[3] exponent method used to calculate the plate buckling coefficient of an in­

adequately supported compressive flange was more accurate than the current S136[1] procedure 
for all applicable Waterloo[4] and available test data[8,9,10,11,12]. Since the Dinovitzer flange 
method is more accurate than the current S136 procedure and it simplifies the current plate 
buckling coefficient equations, it is recommended that the Dinovitzer flange method be used to 
revise the North American Design Standards[l,2]. 
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APPENDIX 

Table A.I - Test Specimen Dimensions and Material Properties 

Specimen ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t Q ~ ~ % 
mm mm mm mm mm mm mm mm mm mm mm mm MPa MPa Elg. 

C2-DW20-1-A,B 7.00 41.0 102 41.0 13.0 6.50 40.5 103 40.0 13.0 1.14 2.29 362 439 28.3 
C2-DW45-1-A,B 15.0 39.5 100 39.5 15.0 14.5 40.0 99.0 40.0 15.0 1.14 2.29 362 439 28.3 
C2-DW25-2-A,B 9.20 41.2 99.0 40.9 26.4 9.00 41.0 99.0 41.3 26.6 1.87 3.73 386 492 30.6 
C2-DW20-3-A,B 8.00 37.6 241 38.0 27.1 8.10 37.7 242 37.9 25.7 1.21 2.43 326 369 38.8 
C2-DW35-3-A,B 13.2 38.4 240 38.6 25.9 13.3 38.3 240 38.5 25.8 1.21 2.43 326 369 38.8 
C2-DW25-4-A,B 7.90 42.7 301 42.3 26.2 8.40 42.9 300 42.2 25.6 1.90 3.81 418 515 27.2 
C2R-DW20-1-A,B 6.00 38.0 101 38.3 25.8 6.00 38.0 ·102 38.2 26.1 1.21 2.42 329 381 34.4 

Note: Material properties are based on an average offour coupon tests per series. 
Percent elongation is based on a 50mm gauge length. 

I~ 

D, D, 

Figure A.I - Test Specimen Cross-Section 
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