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Abstract 

Sixteenth International Specialty Conference on Cold-Formed Steel Structures 
Orlando, Florida USA, October 17-18, 2002 

On the Computation of the Cross-section Properties 
of Arbitrary Thin-walled Structures 

Chunting Xiang1, Albert C.J. Lu02, Paul Seaburg3 and Robert Crain4 

In this paper, a generalized computational algorithm based on the line chain and tree models 
is developed for the cross section properties of arbitrarily configuration struts without closed 
loops. The two C++ programs for such models are developed. However, the two models cannot 
apply to struts with any cross-section possessing closed loops. Therefore, the further 
investigation should be completed. 

1. Introduction 

Cold-formed, thin-walled struts are widely used to support piping, conduit for building 
construction and other applications like storage shelving. Such thin-walled struts possess 
complex configurations to satisfy industrial needs, and the corresponding sections are open. 
Under external loading, the flexural, torsional and torsional-flexural buckling of thin-walled 
struts with open cross-sections may occur. The warping constant is a key to determine the 
torsional and torsional-flexural buckling. Cooper B-Line Inc. (in Highland, Illinois, USA) 
manufactures a range of cold-formed components for the support and restraint of electronic 
wiring, supports of pipes and similar support systems. Even though struts have standardized 
cross sections in B-Line systems, the stress and buckling designs are still not available in 
textbooks or industry standards such as AISI Cold-Formed Steel Design Manual (1996). 
Therefore, a generalized computational algorithm will be developed to solve such a problem. 

In earlier investigations, one considered the effect of imperfections in materials, unavoidable 
eccentricity of loading as a hypothetical initial curvature of the thin-walled structures. Based on 
such assumptions, Ayrton and Perry (1886) gave an investigation of thin walled structures for 
safe loading. The Perry's formula applies strictly when the failure is by bending alone. 
Timoshenko (1945) developed a theoretical model for the elastic instability of struts having thin­
walled open sections. In that theoretical model, the torque applied on the thin-walled structures 
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consists of two parts resulting from purely torsional and warping stresses. In 1948, Baker and 
Roderick extended the development of the Timoshenko's model. The warping and buckling 
stability was investigated, and such an investigation can be found in Timoshenko et al. (1967) 
and Mikkola (1967) as well. With extensive uses of thin walled structures, the investigation on 
the stability for such structures becomes popular. Loughlan (1993) investigated the weakening 
effect of local buckling on the compressive load, and Chapman and Buhagiar (1993) used the 
Young's buckling equation to design against torsional buckling. In 1997, Wang considered the 
shear lag to investigate lateral buckling of thin walled structures through the spline finite member 
element method (see also, Wang, 1999; Wang and Li, 1999). In addition, Pi et al. (1999) 
investigated lateral buckling strengths of cold-formed Z-section beams, and Kesti and Davies 
(1999) discussed local and distorsional buckling of the thin-walled short columns. All the 
aforementioned investigations are based on some typical cross-sections of thin-walled structures. 
With modern industrial needs, the combination of common struts generates very complex cross­
sections used in industry. The computation of cross-section properties is very difficult but such a 
computation is very. important. Therefore, a generalized algorithm will be developed to obtain 
the cross section properties, including shear center and warping constant. The single line-chain 
and line-tree models for the line configurations of the cross-sections of struts are considered, as 
shown in Figure 1. 

Figure 1 Struts with cross sections possessing line configuration: line-chain model (left) and 
line-tree model (right). (The circular symbols denote nodes and two close nodes 
are connected through a straight line.) 

2. Line chain model 

Consider a cross-section of thin walled struts with n-line segments, sketched in Figure 2. 
Such a cross-section configuration is positioned in the frame oxy, and each segment is modeled 
through a line and two nodes with the corresponding thickness of struts. The nodes of the line-
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chain cross-section are numbered from ° to n. The node information includes the 
coordinates ( x,y) of node location, and the second node of each segment stores its thickness. For 

instance, the jth segment with thickness I, has two nodes relative to the (j -1) th and lh nodes. The 

jth node is defined through (x"y"I,). Note that the initial node is expressed by (xo,yo,O). Such 

a definition is very convenient for computer program. The frame OXY is relative to the principal 
moments of inertia and the origin is at the centroid of the entire cross-section. 

y 
y 

n-l i . ... 0-.-1 1-1 ... ~ 
•••••••• 1 

tj 
x 

o 

a 
x 

Figure 2 Line-chain model. The frame oxy is original, and the frame OXY is relative to the 
principal moments of inertia and its origin is at centroid. 

In the coordinate (x, y), the cross section area is 

A=IA=I.t,l, 
i=l i=l 

and two components of centroid in the x and y-directions are given by 

1 n 1 n 

Xc =-LA,X;, and Yc =-LA,:Y;; 
A '=1 A '=1 

where the length, center and coordinate differences of the jth segment are 

(1) 

(2) 

(3) 
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The coordinate (x, y) is mapped into a new centroidal coordinate (x', y') through a map 

consisting of x == x' +xc andy == y' + Yc' The St. Venant torsion constant and moments of inertia 
of the ith segment are: 

I n 

J ==-"L}l for Ii» fi' 
3 i=1 

The principal moments of inertia are computed 

_.!. +.!. I _ 2 2 
Im"",Imin-2(Ix,+IY')-2"'(/X' Iy') +4Ixy ' 

and the angle between x and Ix(p) is computed by 

_jtarctan[ 2Ix'y'/( Iy ' - Ix' )], 
Bp - ,,/2, 

0, 

if Ixy '" 0; 

if Ixy == 0 and Ix' < Iy'; 

if Ixy == 0 and Ix' ;::: Iy .. 

(4) 

(5) 

(6) 

(7) 

Set the maximum principal axes of the moments of inertia 1m"" and l min to be X and Yaxes, 

respectively, and the origin is at the centroid of the entire cross-section. To compute shear center 
in the X-direction, the corresponding coordinate (x,y) transforms to the new frame (X,Y) for 

all nodes 

( Xi] (Xi -xc Yi - Yc ](COSBp] 
1; == Yi - Yc -(Xi -xJ sinBp' (8) 

Based on shear flow distributions in the cross section, the shear center in the X-direction is 
computed by 

if 1m..,. == 0, 

(9) 

where 
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dX(') =y.IX,_,Y, -x,y,_,I, VX(') = VX(H) + i (Y, +Y,-,), Vo = 0; 
I 

-11-' if Y,_,(Xi-Xi-!)<XijY,-Y,_,), 
"X(i) - 1, if Y,_,(Xi-XH ) > Xi-!(Y,-Y,-,), 

0, if Y,-, (Xi - Xi-!) = Xi-! (Y, - Y,-,). 

In a similar fashion, the shear center in the Y-axis is: 

where 

if XH(Y, -Y,-,) < Y,_,(Xi -Xi-!)' 

if XH(Y,-Y,_,»Y,_,(Xi-Xi-I)' 

x X 

(10) 

(11) 

(12) 

+ 
r 

Figure 3 Struts with an arbitrary cross section at rotation center at point S: basic 
configuration (left) and increment of areas wept by rotation (right). 

To compute the warping constant, the sectorial area for an arbitrary cross section is 
introduced and through the sectorial area, the warping constant is computed as in Cook and 
Young (1999), i.e., 

(13) 
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where s is the local coordinate along the middle line of the thin walled cross section, and t is 
thickness for the thin-walled cross section. A distance r is from the rotation point P (i.e., shear 
center for struts) to the tangential direction of the differential element ds, as shown in Figure 3. 

For the line chain model, we have 

m = tml = t f r,ds, Cw = ttl r m;ds for the ith segment; (14) 
;=1 t=l /-1 1=1 i-I 

Therefore, the warping constant is computed by 

where 

and 

Cw = tA; (W;-1 +wl_1d,J/5s/ +.!.d?,Z; -2woowl_1 -woods/,os, +~v) (15) 
1=1 3 

1
1, 

0Sl = -I, 

0, 

if .r;(H) (XI -X/-l) < X,(i-l) (1'; -1';-1)' 

if .r;(I-l) (XI - Xi-l) > X'(i-l) (1'; - 1';-1)' 

if .r;(I_l)(XI - Xi-l) = X S(i-l/1'; - 1';-1)' 

(17) 

Consider the B22 strut of B-Line systems (1999) as a sampled problem. The cross-section 
model of struts and input parameters are given. For the B22 strut, the computational model is 
given in Figure 4: The (x,y) coordinates are an initial frame selected arbitrarily. A root (initial) 

node is selected from the beginning or end of the chain, and all nodes of the cross-section are 
numbered. From node numbers, the input data including coordinates and line thickness is 
tabulated in Table 1. The point(xc'Yc) is the location of centroid in the (x,y)-coordinate frame, 

which is as the origin of the (X,Y) coordinate frame relative to the moment of inertia principals. 

Running the corresponding C++ program gives all cross section properties for the B22 strut: 
Area isA = 0.57070 in2 • 8t. Venant Constant is J = 0.00199 in4. The location of centroid is 

(xc,Yc) =(0.68115,0.0000)(unit: in). The origin is mapped into the centroid through a 

translation map x = x' + Xc and y = y' + Yc' and a new coordinate frame is (x', y') with the origin 

at the centroid. The moments of inertia for the (x',y') coordinates are Ix' =0.24426 in4 and 

Iy. =0.19919 in4, respectively, and the product of inertia to x'-y' plane is Ix'y'=0.Oin4. 

Further, the corresponding maximum and minimum principal moments of inertia are computed, 
and the principal axes of the inertia moment are assigned to X and Y-axes respectively. 
Therefore, IpX = 0.24426 in4, Ipy = 0.19919 in4 and the rotation angle from x' -axis to X-axis 
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is 8p = O. Through such a rotation angle, the coordinate ( x', y') is converted to the (X, y)­
frame. The location of shear center is computed, (X"' y,) = (-1.5806, 0.0000) (unit: in.). The 

warping constant for the cross-section is Cw = 0.15575 in4. In a similar manner, The cross­

section properties for other struts Bll, B12, B24, B52, B54in B-line (1999) are computed, and 
the results are tabulated in Table 2. 

y 

~ 1.5226 
4 3 

Y i 
0.272 6 

1~ 2 ~ 

1.5226 
~ 0.2301 ~ 

(Cx,Cy ) 
8 X 7 

x 

· .. ······ .. · .. · .. ··Line 

if ................. Node 

5 6 
Figure 4 Th cross section of strut B22 of B-Line systems (uniform thickness: 0.1024 i~ch). 

Table 1 Input data for the cross-section properties of the B22 ofB-Line systems (unit: inch) 

Node x(in.) y(in.) t(in.) 
number 

1.2925 0.4887 0.0000 

2 1.5226 0.4887 0.1024 

3 1.5226 0.7613 0.1024 

4 0.0000 0.7613 0.1024 

5 0.0000 - 0.7613 0.1024 

6 1.5226 - 0.7613 0.1024 
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Table 2 Cross Section Constants for B11, B12, B22, B24, B52, B54 in B-Line (1999) 

B11 Bl2 B22 B24 B52 B54 

A( in2) 0.90350 0.73710 0.57070 0.42926 0.40430 0.30771 

Xc (in) 1.47555 1.07630 0.68115 0.70234 0.29513 0.31297 

Yc(in) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

J( in4) 0.00316 0.00258 0.00199 0.00080 0.00141 0.00057 

Ix' (in4) 0.43714 0.34070 0.24426 0.18866 0.14782 0.11563 

Iy.( in4) 1.14843 0.55222 0.19919 0.15656 0.03427 0.02833 

Ix'Y ' (in4) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

IpX( in4) 1.14843 0.55222 0.24426 0.18866 0.14782 0.11563 

Ipy (in4) 0.43714 0.34070 0.19919 0.15656 0.03427 0.02833 

(Jp (rad) 1.57080 1.57080 0.00000 0.00000 0.00000 0.00000 

X, (in) 0.00000 0.00000 -1.58064 -1.63316 -0.75200 -0.79818 

I: (in) 3.21213 2.39783 0.00000 0.00000 0.00000 0.00000 

Cw (in6) 0.84662 0.41800 0.15575 0.13584 0.02788 0.02568 

3. Line tree model 

Consider a line tree model of the open cross-section without any close loop, as shown in 
Figure 5. The coordinates (x,Y) and (X,y) are set up as in the line chain model. In the line tree 

model, it is very important that the concept of the parent-children nodes should be introduced. 
For a cross section with the line tree model, any single path can be traced back to the root node. 
For each path, if a node is directly from another certain node, the certain node is called the parent 
one and the node itself is termed the child one. The parent node may have a lot of children, but 

each child node has only one parent. Consider the ith line segment having the (i -1 t and i th 

nodes. To compute the cross-section properties, the parent-children hereditary system is 

established herein, as shown in Figure 4. The (i -1 t node is one of children nodes of the 

(i - 2 t node. In other wards, the (i - 2 t node is the parent of the (i -1 t node. For the (i -1 t 
node, it has many children nodes numbered by (i,j,k, .. ·). Therefore, the (i-It node is the 

parent of such nodes, and this node is stored in the information archive of those nodes as the 
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parent information through expressions P"Pj>Pk'··. Similarly, the i th node has children nodes 

(i"i2 ,··,ir ,··,im ), and the node is the parent of the nodes (i"i2 ,··,ir ,··,im ), where m is the total 

number of the direct children nodes of the ith node. Through this tree structure, any node has 
only one parent except for starting node (or root node), but may have many children except for 
the end node of each branch. 

y Y 

•• :\1- e. 
o •• - •••• a. e. 
II 0- • .• • e • 

•• - :: e. 0 
. o· :: ·0 
12 <5 6 0 

o 

-:: .... 
• e. ·0 . . . . . . 
0° 
j 

k 

o 
o 

o 

x 

x 

Figure 5 The parent-children tree structure for the line-tree model. The frame oxy is 
original, and the frame OXY is relative to the principal moments of inertia and 
its origin is at centroid. 

F or the i th segment, all formulas for the cross-section properties are derived. In the 
coordinate (x, y), the cross section area, the St. Venant torsion constant, moments of inertia and 

the corresponding principal inertia are computed through equations (1), (2), (4)-(7), respectively. 
However, the length, center and coordinate differences of the ith segment are computed by 

(18) 

where (x p,' y p,) are the coordinate values for the parent node of the i th node. In a similar 

manner, set the maximum principal axes of the inertia moment 1m"" and 1nnn to be X and Yaxes, 

respectively, and the origin is at the centroid of the entire cross section. To compute shear center 
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in the frame OXY, the corresponding coordinates are mapped into the new frame (X,Y) for all 

nodes through equation (8), and the parent node(xp"yp,) is mapped to (Xp"Yp,) as well. For 

the lh node having the child nodes ir (1:::;; r :::;; m) where m is the total number of the direct 

children nodes of the ithnode, the function Sx; is computed 

where 

if 1;, (X, - X") < X" (1; - 1;,.), 

if 1;, (X, - X") > X" (1; - 1;,), 

if 1;JX, - X,) = X" (1; - 1;). 

if 1max = 0, 

if 1max *- 0; 
(19) 

(20) 

Based on the recursive function, the functions VX(i) and S x, are computed and Xx = S x" . 

Similarly, we have 

where 

{
I, 

OY(I,) = -1, 

0, 

if X" (1; - 1;,) < 1;, (X, - X,,), 

if X" (1; - 1;,.) > 1;,. (X, - X,,), 

if X" (1; - 1;,) ~ 1;,. (X, - X,,). 

y, = SY" is obtained through the function VY(i) and Sr, computed by the recursive function. 

The warping constant is 

(21) 

(22) 

Cw = tA, (w!, +Wp,dJIO" +~d~112 - 2wa,wp; -wa,dJ,o" +w~,} (23) 

where 



and 
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X'(i) = X; - X,., Y;(;) = Y, - Y,; 

XS(PI) =Xp, -XS'Y;(PI) =Yp, -Y,; 

d=-X Y.-XY . II I SI 1; '(PI) S(,) S(,) s(p,) , 

0,; = 1~1' 
0, 

if Y;(p,)(X;-Xp) <X,(p,)(y,-Yp), 

if Y;(p,)(X;-Xp»X'(PI)(Y,-YP)' 

Note that the function w; is computed through the recursive function. 

(25) 

The implementation of the tree model is much more complicated than the line model. This 
model needs a standard data structure of tree. It is implemented by using the dynamic array plus 
the computation of recursive functions. Through the theoretical development, a C++ program 
will be developed for the line tree model. As in the line chain model, a root node should be 
selected first. But in this model, any node or even a casual point (for example, middle point) in a 
line can be selected as a root node, and then number the nodes naturally. Furthermore, a certain 
sequence is followed for the sake of simplicity. 

y 

9 4 1.5226 ~ 3 

Two lines --_. Line _ i 
Overlapping 

20.2r 
10 11 1 

6 

1.5226 I 0.2301 
x 

1 13 14 8 7 

12 5 6 

Figure 6 The cross section of the strut B22A ofB-Line systems (thickness: 0.1024 inch). 
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Table 3 Input data for the cross-section properties of the B22A ofB-Line systems (unit: inch) 

Node number x(in.) y(in.) t(in.) p(parent index) 

1.3437 0.4887 0.0000 0 

2 1.5738 0.4887 0.1024 

3 1.5738 0.7613 0.1024 2 

4 0.0000 0.7613 0.1024 3 

5 0.0000 - 0.7613 0.2048 4 

6 1.5738 - 0.7613 0.1024 5 

7 1.5738 - 0.4887 0.1024 6 

8 1.3437 - 0.4887 0.1024 7 

9 -1.5738 0.7613 0.1024 4 

10 -1.5738 0.4887 0.1024 9 

11 -1.3437 0.4887 0.1024 10 

12 -1.5738 -0.7613 0.1024 5 

13 -1.5738 -0.4887 \ 0.1024 12 

14 -1.3437 -0.4887 0.1024 13 

Consider the B22A strut ofB-Line systems as an example, and node-l is selected as the root 
node, as shown in Figure 6. All the other nodes are numbered. For node-13, it can traced back to 
the root node-l through a path: node 13 => 12 => 5 => 4 => 3 => 2 => 1. Node 12 is the parent of 
node-13, and node-5 is the parent ofnode-12, etc. However, node-5 has two children: node-6 and 
node-12. Except for the root node, each node has only one parent. Once the root node is 
assigned, the parent indices of the other nodes will be determined accordingly. The parent node 
index will be as a parameter in the node data information. Therefore, in the C++ program, the 
data structure of a node is changed from (x, y, t) in the line chain model to (x, y, t, p) for the line 
tree model, where p denotes the index of the parent node of the node. The input data for 
computation of the cross section is in Table 3. Running the C++ program for the B22A gives the 
corresponding cross section properties in Table 4. The other struts in B-line systems relative to 
the line tree model are also computed, and the corresponding results are given in Table 4. 

4. Conclusions 

In this paper, the line chain and tree general models are developed for the cross section 
properties of arbitrarily configuration struts of B-Line systems without closed loops. Based on 
the two models, two C++ programs are developed. From the cross-section properties, the 
buckling stability of struts under centroidally loading can be investigated However, the two 
models cannot apply to struts with cross-section possessing closed loops. 



614 

Table 4 Cross Section Constants for BllA, BI2A, B22A, B24A, B52A, B54A in B-Line (1999) 

BIIA B12A B22A B24A B52A B54A 

A (in2) 1.82796 1.49512 1.16236 0.86968 0.83366 0.62658 

x, (in) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

y, (in) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

J (in4) 0.00966 0.00850 0.00733 0.00292 0.00618 0.00247 

Ix' (in4) 0.88644 0.69355 0.50067 0.38403 0.30877 0.23798 

Iy' (in4) 6.50808 2.97754 1.00975 0.78254 0.16587 0.13189 

Ix'y' (in4) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

I px (in4) 6.50808 2.97754 1.00975 0.78254 0.30877 0.23798 

Ipy (in4) 0.88644 0.69355 0.50067 0.38403 0.16587 0.13189 

Bp (rad) -1.57080 -1.57080 -1.57080 -1.57080 0.00000 0.00000 

X, (in) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

r: (in) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Cw (in4) 4.51388 2.13922 0.76568 0.63374 0.13975 0.11846 
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