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Ninth International Specialty Conference on Cold-Formed Steel Structures 
St. Louis, Missouri, U.S.A., November 8-9, 1988 

NONLINEAR ANALYSIS OF STEEL SPACE TRUSSES 

By 

Shien T. Wang 1 , George E. Blandford2 and Christopher D. Hil13 

An investigation of the behavior of thin-walled steel space truss 
structures under the interaction of local, member, and overall buckling is 
described. Nonlinearities due to member buckling or tensile yielding and 
local buckling of component plates of the member are accounted for in the 
analysis. First-order geometric effects are included using a geometric 
stiffness matrix. Second-order effects are included through an updated 
Lagrangian formulation. An incremental/iterative solution strategy 
utilizing modified Newton-Raphson iterations with a constant arc-length 
constraint is presented. The method developed traces the sequence of 
local buckling and member buckling until eventual failure of the entire 
structure. 

INTRODUCTION 

Space truss systems have been found to be very effective in 
structures requiring large, unobstructed areas of useful space. 
Unfortunate failures of truss systems in the past (Lev Zetlin and 
Associates, 1978), however, have clearly shown that a wide variety of 
factors affect the stability and carrying capacity of a truss system. 
Space truss stability has been the focus of much research work in the past 
(Task Committee on Latticed Structures, 1976). Most research work has 
been in two general areas: snap-through behavior of curved, dome-type 
structure and the collapse of layered grid due to progressive failure of 
the member. 

Snap-through behavior has typically been modeled by considering 
member properties to be elastic (Chu and Rampetsreiter, 1972; Rosen and 
Schmidt, 1979). Other researchers (Jagannathan, Epstein, and Christiano, 
1975; Papadrakakis, 1983) incorporated material nonlinearities. Layered 
grids were analyzed under the influence of member failures (Lev Zetlin and 
Associates, 1978; Prickett and Mueller, 1983). Only recently, the effects 
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of local buckling coupled with column buckling on the stability and post 
buckling behavior of space trusses were considered by Bevins ( 1985) ; and 
Wang and Bevins (1987). An incrementalJj terati ve solution strategy wi th a 
constant arc-length oonstraint t,as developed by Blandford, Wang and Hill 
(1988) for the analysis of elastic space trusses with large displacements. 

The behavior of space truss systems can only be adequately evaluated 
with all factors, i.e. first and second-order geometric nonlinearity, 
member failure (yielding or buckling) and local buckling of the component 
plates of the truss member, are consideed simultaneously. The purpose of 
this paper is to present an investigation to account for these fact.ors 
together utilizing the incremental/iterative solution procedure with a 
constant arc-length constraint. The method developed traces the sequence 
of local buckling and member buckling until eventual failure of the entire 
structure. Interesting results have been obtained to shed light on the 
effects of such factors on the carrying capacity of the space truss 
structures. 

ELFMENT BEHAVIOR 

Accurate representation of space truss behavior necessitates using 
accurate models for element behavior. The element modes of behavior to be 
modeled include tension yield, elastic member post;-buckling response and 
post-Iocal-buckling of the the member component plates. Each of these 
topics are discussed in the following paragraphs. 

Tension yield and post-yield behavior 
Ramberg-Osgood type stress-strain equation 
Blacklock (1969) which is eA~ressed as 

EE 

is represented using 
developed by Richard 

the 
and 

(1) 

where E is the initial elastic modulus; Ep is the plastic modulus; Ok is 

the stress level at which plastic region begins; n is a shape parameter (n 
In(2)/ln(ok/oo)); E is the axial strain and 00 is the stress level at 

the end of the elastic region. Equation 1 is shown schematically in Fig. 
1. 

Elements subjected to compressive loads may at some point begin to 
fail in any one of three different column buckling modes. Members that 
are relatively short will typically fail first in torsional or torsional­
flexural buckling. Members of intermediate length will commonly fail by 
torsional-flexural or weak axis Euler buckling and long members will fail 
by weal, axis Euler buckling. Since the failure mode of any particular 
member is unknown prior to the analysis, the inclusion of member failure 
requires calculating all three buokling loads for the appropriate cross 
section, j .e. nonsymmetric, singly symmetric or doubly symmetric which are 
provided in Timoshenko and Gere (1961). 



297 

Elastic pre- and post-buckling behavior is modeled using the stress­
strain relationship of Eq. 1. The smallest of the three buckling stresses 
for the appropriate cross section is used as crk in Eq. 1 to model compres-

sion behavior up to buckling and E is the post-buckling tangent modulus. 
p 

Compression members consisting of plate elements with large width­
to-thickness ratios, as is typically the case for cold-formed sections, 
often ex~rience local buckling of the member component plates. Post­
local-buckling strength is modeled using the effective width concept 
(Winter, 1968). As local buckling of the member plates develop, the 
stress distribution across the width of the locally buckled plate becomes 
non-uniform. The effective width is the plate width on which an 
equivalent uniform stress acts to approximate the original non-uniform 
stress distribution. The effective width equation is expressed as (Wang, 
Errera and Winter, 1975) 

:e = 0.95 j cr: [ 1 - 0.95 ( ~ j cr: ] (2) 

for 

¥ 2 0.64 j cr: (3) 

in which w is the width and be is the effective width of the compression 

plate element; t is the plate thickness; crmax is the maximum edge stress; 

stress; k is a coefficient determined by boundary conditions and aspect 
ratio for the compression plate element; E is the elastic modulus; and ( 
is a modification factor based on experimental evidence and engineering 
judgement t.o incorporate local imperfections into the equation. For 
values of wit smaller than 0.64 kE/crmax ' be = w. Equation 2 has been 

shown through experimental verificati.on to be applicable to both stiffened 
and lmstiffened plate elements i.f k is appropriately adjusted. For uni­
formly compressed sections, k varies from 4.00 to 6.97 for stiffened plate 
elements and from 0.425 to 1.28 for unstiffened plate elements. For 
design considerations, ( may be considered equal t,o 0.22 and k may be 
ta\,en La be 0.50 and 4.0 for unstiffened and stiffened plate elements, 
respectively. 

The stress which will initiate local buckling, crIb' may be derived 

from Eq. 3 by replacing crmax with crIb and solving for crIb' The local 

buckling stress can therefore be expressed as 

kE 
alb = 0.41 --2 

[ ¥ ] 
(4) 

Axial stress in excess of alb as defined by Eq. 4 initiates the calcula­

tion of effective widths for each of the component plates of the member 
whioh are then used to modify the member cross-sectional properties. 
Effective oross-seotion properties are used to evaluate buokling loads for 
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the locally buckled sections and an effective area is used in calculating 
the element stiffness coefficients discussed in the next section. 

FINITE ELliMENT F<IHJlATIOO 

The stiffness equations used to represent the behavior of a typical 
space truss element are generated using a linear variation of the trans­
lational displacements (see Fig. 2), i.e. 

floe} = [N] {p'} (5) 

where floe} is the local element displacement vector Lu v wjT; {p'} is the 

local element nodal displacement vector Lu' v' w' u' v' w' jT. [N] is a 
1 1 1 222 ' 

matrix of linear shape functions; { } signifies column vector; 
signifies row vector; and [ ] represents matrix. 

A nonlinear, large-displacement analysis of space trusses is 
achieved using an elastic stiffness matrix and a geometric stiffness 
matrix representing the linear and nonlinear portions of the structure 
force-displacement relationship, respectively. The geometric stiffness 
matrix incorporates the secondary shear forces induced at the element 
nodes as a result of the combination of axial force and large relative 
nodal displacements, referred to as the P-delta effect. Elastic and 
geomet.ric stiffness matrices are generated using the strain-displacement 
equation 

(6) 

Many researchers have neglected the axial displacement gradient in Eq. 6 
assuming it to be insignificant when strain is small. This assumption is 
valid only if rotations also happen to be small. (Ani tting the axial 
gradient in Eq. 6 produces strain in the element under a rigid body 
rotation (Jagannathan, Epstein and Christiano, 1975). Therefore, for 
structural elements undergoing large rotations, as may be expected in 
evaluating limit loads, all terms in Eq. 6 should be retained. 

The element elastic stiffness matrix, [kE] , and the element geo­

metric stiffness matrix, [kG]' can be obtained using Eq. 6 and the first 

theorem of Castigliano to give 

{F'} = [ [~] + [kG] ] {p'} 

where {F'} is the element force vector, 

F = :[ I I -I ] 
=-iTI ' 

(7) 

II is a 3x3 matrix in which all coefficients are zero except the 1,1 

coefficient which equals I" , I is the 3x3 identity matrix; Er is the 
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tangent elastic modulus (Rr = d"jdE); A is the effective cross section 

area; ~ is the element length; and F is the element axial force. In 
arri ving at Eq. 7, the quartic inner products of the displacement grru:li­
ents have been neglected. 

Using standard coordinate transformation procedures for 
trusses (e.g. Gere and Weaver, 1980) on Eq. 7 leads to 

space 

(8) 

e e e e where (F ) is the global element force vector; [k I = lkil + [kG I is the 

global coordinate element stiffness matrix; and {pel is the global element 
displacement vector. Assembling Eq. 8 over all the elements using direct 
stiffness assembly leads to the structure stiffness equations which are 
e};pressed as 

(P}=[KI(p) (9) 

where {P} = L (Fe) is the structure concentrated force vector; (p) is the 

structure displacement vector; and [KI = L [kej, consistent with direct 
stiffness assembly, is the structure stiffness matrix. 

Development of the nonlinear element stiffness equation (Eq. 7) is 
based on a large-displacement formulation. Neglecting the higher order 
terms (i.e. the quartic products of the displacement gradients) resulted 
in a first-order nonlinear system of element stiffness equations. Inclu­
sion of the higher order terms results in an additional stiffness matrix, 
[ki l , providing a small-strain (large strains can only be accurately 

modeled if the effect of distorting the member area is included; Bathe, 
1982), large-rotation, large-displacement system of second-order element 
stiffness equations (i.e. {F'} = ([~I + [kbl + [kLl) (p'}) in the context 

of a total Lagrangian (T.L.) formulation. In lieu of a T.L. formulation, 
a second-order analysis can be developed using an updated Lagrangian 
(V.L.) formulation. 

An V.L. formulation consists of updating the reference coordinate 
system in which the small-strain, small-rotation, large-displacement 
first-order stiffness equations, Eq. 7, are evaluated from one iteration 
to the next in the incremental solution algorithm. While coordinate 
updating is usually done between load steps in an incremental solution to 
account for the higher order terms that have been neglected in the stiff­
ness matrix, i.e. [ki l , inclusion of the axial displacement gradient in 

the current analysis requires a coordinate transformation for each 
iteration. Provided each iterative step is small enough to prohibit 
significant second-order effects from being generated in the individual 
truss members, Eq. 7 remains valid over the entire step length and is 
therefore an appropriate approximation to the equilibrium equations for 
the structural configuration at the beginning of the iteration. The V.L. 
scheme is well suited to the modified Newton-Raphson iterative strategy 
since the coordinate transformation only influences the balanced force 
calculations within a load step. Therefore no additional evaluations of 
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the structure stiffness matrices, [~J and [RQ]' need to be performed 

l,ithin a load step. 

Updating the structure coordinates at the end of each iteration 
causes changes in the "stiffness" associated with the structure free 
degrees of freedom. In order to maintai.n consistency in the analysis, the 
element forces developed by application of Eq. 7 over the previous itera­
tion must be transformed. to coincide with the "stiffness" of the updated 
coordinat.e system ·for the structure. Transformation of the local coordi­
nate element forces from the coordinate system in load step m+l iteration 
i to that of load step m+l iteration i+l requires a reference frame common 
to iterations i and i+l. The global coordinate s~~tem serves as the 
common reference frame to achieve the transformation. Element force 
transformations from iteration i to i+l are e:ll.-pressed in the following 
two-step process. Step one involves calculating the global coordinate 
element forees, i. e. 

(10) 

where m+1{F,}(i) is the loeal coordinate element force vector at the end 

of iteration i in load step m+1; m+1[R](i) is the element rotation matrix 
corresponding to the coordinate system of iteration i in load step m+l; 

and m+l{Fe }(i) is the global coordinate element force vector at the end of 
iteration i in load step m+l. Step two involves calculating the local 
coordinate element forces in terms of the geometry at iteration i+l in 
load step m+l, i.e. 

m+l{F,}(i+l) = [m+l[R](i+l)( m+l{F}(i) (11 ) 

where m+1{Fe }(i) is defined by Eq. 10; m+l[R](i+l) is the element rotation 
matrix corresponding to the updated coordinate system for iteration i+1 in 

load step m+l; and m+l{F,}(i+l) is the transformed loeal coordinate ele­
ment force vector for use in i.teration i+l of load step m+l. 

OONLINEAR ANALYSIS 

A nonlinear analysis which includes only the elastic and geometric 
stiffness matrices is referred to as a first-order nonlinear analysis. A 
second-order analysis is obtained usi.ng an updated Lagrangian (U.L.) 
formulation on the first-order nonlinear stiffness equations. An U.L. 
formulation consists of updating the reference coordinate system for the 
small-strain, small-rotation, large-displacement first-order stiffness 
equations, Le. 

where 

{6p} iterative displacement vector, 

{P} reference external load veetor, 



(F) 

x 
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equilibrated internal force vector, 

load multiplier, 

and the pre-superscript signifies the load level with m+1 being the 
current. load step whereas the supercript in parentheses signifies the 
iteration nl~ber. Accumulated incremental displacement and load vectors 
along with the load multiplier X are generated using the constant spheri­
cal arc-length formulation of Crisfield (1983) with a modified Newton­
Raphson iteration strategy. Coordinate updating is usually done between 
load steps in an incremental solution to account for the neglected higher 
order terms. However, performing a coordinate transformation for each 
iteration results in a better approximation. This is particularly impor­
tant in the present formulation since the axial strain gradient has been 
included in the geometric stiffness matrix. The U.L. scheme is well 
suited to the modified Newton-Raphson iterative strategy since the coor­
dinate transformation only influences the balanced force calculations 
within a load step. Therefore, no additional evaluations of the structure 
stiffness matrices, [KE] and [KG]' need to be performed within a load 

step. 

Convergence to an equilibrium condition in Eq. (12) is evaluated in 
terms of the internal energy (Bathe, 1982), i.e. 

lop/i) (m+\(i){p) _ m+1{F}(i» 

l6PJ(1) (m+lx(l){p) _ m{F}) 
(13) 

where EE is the energy error tolerance (1 x 10-10 ~ EE ~ 1 x 10-6 ). 

NlMERICAL RESULTS 

Truss system performance is investigated for four space trusses 
labeled T1 - T4. The various material and geometric nonlinearities dis­
cussed in the development sections of the paper are considered. Member 
types used for trusses Tl - T4 are presented in Table 1 with the corres­
ponding member properties given in Table 2. Based on the solution 
procedures outlined, a finite element program STAP (Space Truss Analysis 
Program) has been developed and is used in this study. 

The toggle truss of Fig. 3 (T1) 
ers. Recent work by Kondoh and 
current analysis and will be used 
comparison, elastic post-buckling is 

has been analyzed by many research­
Atluri (1985) is compatible with the 
for comparison. For purposes of 
modeled by setting E in Eq. 1 equal 

p 
to the elastic post-buckling stiffness coefficient derived by Kondoh and 

Atluri. Based on their derivation E = u2EI/(2~3) for a member buckling 
p 

elastically. As presented in Fig. 4, the load/deflection response of 
truss Tl with both members buckling elastically shows excellent agreement 
with the results of Kondoh and Atluri (1985). Since truss T1 has no 
internal redundancy, buckling of the truss members leads to immediate 
failure of the truss. However, the results presented in Fig. 4 show the 
capability of the nonlinear solution strategy to trace structural response 
beyond limit points associated with member failure and to remain stable 
while tracing post-critical member behavior. Additionally, Eq. 1 is shown 
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to be quite adequate in modeling elastic post-buckling behavior. Results 
for truss Tl represent "snap-through" behavior. Figure 4 also shows the 
elastic load/deflection path for truss T1 as determined by STAP. 
Comparison with the results of Kondoh and Atluri indicates a discrepancy 
of approximately 1.2 percent at the limit point. The discrepancy is 
attributable to the finite element approximation made in the current 
research as opposed to the analytical formulation of Kondoh and Atluri. 
While it is undesirable to perform the analysis in many very small 
increments, it is important to note that results have been obtained 
indicating the current analysis will converge to the analytical results of 
Kondoh and Atluri when small increments are used. Therefore, any degree 
of accuracy desired can be obtained in the analysis at the expense of 
additional computer time. 

Analysis of the Thompson strut (T2) shown in Fig. 5 demonstrates the 
importance of considering local buckling in truss analysis. Neglecting 
the nonlinearity associated with local buckling can result in erroneous 
prediction of the space truss systems response to loading. Figure 6 shows 
a comparison between the linear elastic, geometric nonlinear and geometric 
nonlinear with local buckling responses of truss T2. The results are in 
excellent agreement with that obtained by Wang and Bevins (1987). Local 
buckling results in a reduction in the truss limit load frOll\ 729 kips to 
510 kips as shown in Fig. 6. This is a reduction of approximately 30 
percent. The necessity to incorporate local buckling effects in truss 
analyses is highlighted by such a substantial reduction in the load 
carrying capacity. 

Results obtained for the tower truss (T3) shown in Fig. 7 further 
illustrates the significant influence of local buckling on space truss 
load carrying capacity. Local buckling influences can be seen in Fig. 8. 
Clearly the reduction in the truss stiffness associated with local 
buckling is the dominant factor in the response of truss T3 provided no 
member failures occur. While the geOll\etric softening experienced by the 
truss is almost undetectable, local buckling begins to soften the truss at 
small loads and substantially reduces the load carrying capacity of the 
truss. (However, with the cross section properties used for this 
illustrative example, collapse of the truss occurs at a load level far 
below the region in which local buckling effects begin to become 
significant.) The progressive failure of truss T3 when member failures 
(i.e. member buckling with E = 0) are considered is shown in Fig. 9 

P 
illustrating the nature of a truss systems response to loading as load 
redistribution occurs. As reflected in Fig. 9, members 18, 19, 20, 21, 26 
and 29 fail nearly simultaneously causing a change in the response of the 
truss. Redistribution of the applied load is reflected by a change of 
course in the load deflection path. Internal redundancy enables the truss 
to remain stable under increasing load as the structure deforms along the 
altered response path. Loading continues until the remaining internal 
redundancy is eliminated by the failure of members 2 and 3 resulting in 
failure of the truss at an applied load of 2.1 kips. 

The 200 member, 61 node layered grid truss (T4) shown in Fig. 10 is 
representative of a typical truss system encountered in practice. Pro­
gressive member failure in truss systems of this kind is a topic of much 
concern. An elastic analysis of truss T4 with elastic member buckling is 
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shown in Fig. 11. Again the original load redistribution that occurs as a 
result of member failures causes a change in the response of the truss. 
As expected, failure of members at symmetrical locations at the center of 
the truss, as shown in Fig. 10, occurs first. Failure of members 25, 30, 
31 and 36 at an applied load of 13.14 kips redistributes any additional 
applied load to the adjacent members in the truss. At an applied load of 
13.71 kips, merr~ers 14, 29, 32, and 47 are buckled. When members 3, 28, 
33 and 58 fail, the truss is unable to accept any additional load. STAP 
results show failure of the truss occuring at an applied load of 16.58 
kips. 

rnNCLUSIONS 

A significant result of the research is that an accurate analysis 
procedure to access the behavior of truss systems in their failure modes 
has been developed. An accurate estimate for the limit load of a truss 
can be genera.ted when nonlinear material and geometric nonlinear responses 
are included in the analysis. This will also include localized effects 
such as local buckling and column buckling. 

It has been found tha.t local buckling effects reduce the limit load 
of a truss anli the severity of this reduction depends upon the width-to­
thickness ratio of the component plates. When considering the effects of 
member buckling or yielding, the reduction in load carrying capacity of 
the truss is substantial. Unless the truss is highly redundant, the limit 
load of the truss is not much larger than the load at which the first 
member failed. Therefore, the geometry of the truss is an important 
factor to determine its carrying capacity. Consideration of this reserved 
strength can be important in quantifying the safety of truss systems, when 
subjected to overload conditions. Redundancy can provide additional 
insight into the mechanisms by which truss strength and safety can most 
effectively be increased. Design modifications such as geometry changes, 
cross section types and member dimensions can be investigated to evaluate 
alternative designs. 

The research presented in this paper was supported by the National 
Science FOlmdation through the EPSCoR program (Computational Science 
Center) at the University of Kentucky and the American Institute for Steel 
Construction through the AISC Fellowship program. Their support is 
gratefully acknowledged. 
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Table 1 - Cross section types used for space trusses 

Cross-section 
Truss Members Type 

Tl ALL SCl 

T2 ALL Il 

T3 1 to 4, 9 to 12 12 
5 to 8, 13 to 16 '12 

17 to 32 13 
33 to 36 12 

T4 Top Chords 12 
Bottom Chords 12 
Diagonals 14 

Table 2 - Member properties used for space trusses 
(units shown with elastic modulus) 

DIMENSIONS 

WEB FLANGE FLANGE ELASTIC 
MEMBER SECTION DEPTH THICKNESS WIDTH THICKNESS AREA MODULUS 

NAME TYPE (4) (~ ... ) (b~) (tf) (E) 

SCI SOLID N/A N/A N/A N/A 96.77 7.03E.5 K3,b,' CIRCULAR 

II :E-SECTION 4.15 0.15 2.50 0.15 1.3275 3.0E+4 KSI 

I2 
II 

8.075 0.15 4.00 0.075 1.7888 " 
I3 II 6.05 0.10 3.00 0.05 0.895 " 
I4 " 4.075 0.075 4.00 0.075 1.1888 " 
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STRAIN 

Fig. 1 - Stress-strain behavior modeling 
(Richard and Blacklock, 1969) 

v)v 

Fig. 2 - Local coordinate forces and displacements 
for a space truss element 
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65.99c," 

Fig. 3 - Geometry and loading for truss Tl 
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Fig. 4 - Load-displacement curve for truss Tl 
(displacements at node 2) 
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Fig. 5 - Geometry and loading for truss T2 
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Fig. 6 - Load-dsiplacement curves for truss T2 
(displacements at node 10) 
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120 IN 

Fig. 7 - Geometry and loading for truss 
T3 
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P = 1000 
IJ. - Elastic Analysis 
a - Geometric Nonlinear 
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• - Geometric Nonlinearity 

wi Coordinate Updating 
o - Geometric Nonlinearity wi 
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Fig. 8 - Load-displacement curves for truss T3 
(displacements at node 13) 
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Fig. 9 - Load-displacement curve for truss T3 with 
member failures (displacements at node 13) 
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Fig. 10 - Geometry, loading, and member failures for truss T4 
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Fig. 11 - Load-displacement curve for truss T4 with member 
failures 
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