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A REVIEW OF THE EFFECTIVE WIDTH FORMULA 
by 

* ** *** Niels C. Lind , A.M. ASCE, Mayaaandra K. Ravindra and John Power 

INTRODLJCTION 

The purpose of this paper is to present a comprehensive review 

of the effective width expression used in light gage st~el design. This 

study was made by the authors in connection with a review of the Canadian 

Standard S-136 for design of light gage steel structural members in 

buildings. 

If a long thin plate is longitudinally compressed, such as 

the top flange of a light gage hat section in simple bending, it will 

buckle in a regular wave-like manner when the axial stress reaches a 

critical value, but it will not collapse if the material is elastic-

plastic. The buckled plate can resist loads much larger than critical, 

with moderate additional deformation; with increasing load central 

strips of the plate deflect more, but they hardly participate in carrying 

the increase in load. The compressive stresses are continually redistri-

buted so that stresses are increasing at the edges while remaining nearly 

constant over a central zone. The width of this zone depends on 

several factors of the problem in a complicated way. 

The effective width concept for the design of such plates in 

compression was first introduced by von Karman [ l) in 1932.. The stress 

distrihution across the width can be replaced by an equivalent distri .. 

bution that is uniform over a portion, called the "effective width 0 , of 

the plate. While such a substitution is always possible in a problem 

of this kind, it is useful only if it simplifies the design calculations. 

By an approximate analysis of classical elegance, he showed that the 

effective width, b, if less than the total width w, at full axial load 

capacity should be nearly independent of the total width and of the 

applil:d stress; further, that it should depend only on geometry and a 

material constant in the following simple way: 

b = Bt~ 

where is the. plate thickness, 

the yield strength of the material. 

is Young 1 s Modulus and fy 

According to the theory B 

constant which von Karman determined to be approximately equal to 

nO - -i,})-~ where v is Poisson's ratio. B may be called the 

(1) 

is 

is a 

"nonnalized effective width (at stress fy)". Here the capital letter 

denotes a length that has been normalized with respect to a stress f 

(yi~?ld stress in Eq. 1): 

II , (b/t) -{[i"i:. (2) 

The flat width is normalized in the same way: 

W = (w/t)"(f/E. (3) 

Few and relatively crude experimental data were available when 

this theory was proposed. The results seemed to confi:nn the theory, 

particularly for relatively thin plates, with a tendency tc;JWards over­

estimating the strength in the region of transition to thick plates. 

The theory has since gained general acceptance in aircraft structural 

design. 
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After conducting a series of teats on light gage steel beams, 

Winter [2) in 1948 proposed an alternative to von Ka:nnan 1 s theoretical 

notion that B be constant if less than W. Winter's expression was 

used in the first light gage steel standard specification (AISI), and 

haa since been copied widely and modified only slightly. In this somewhat 

complicated expression the original aimplicity of von Karman's equation 

was sacrificed in favour of a more gradual transition to the thick plate 

region. Winter plotted 8 versus the reciprocal of W (Fig. 1). If 

there is a negative correlation between these quantities (as the 

experimental points would seem to suggest), a straight regress ion line 

in this graph will automatically give a (hyperbolic) relationship 

between B and W curved like the one given in the AISI specification. 

Since 1946 there has been considerable development in experi-

mental mechanics, in results available, in computing technology, in 

statistical inference, in reliability theory and in decision theory. 

Faced with the scatter of Fig, 1, the best that could be done 25 years 

ago was to have a competent engineer place a '•conservative" curve through 

Fig. 1 
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the data. This procedure is not necessary any more - nor is it sufficient. 

In the following, we shall re-examine the effective width, first 

from a scientific viewpoint to draw inference and, second, from an 

engineering viewpoint to select a "best" effective width rule for rational 

design. Each viewpoint has its own merit, and both are relevant in the 

proper choice of design specification parameters. We are, of course, 

primarily interested in making the best design decisions possible on the 

basis of available data, but the quality of the evidence for the chosen 

design rule cannot be disregarded; its evaluation is a scientific question. 

We now proceed to make a statistical study of several plausible 

hypotheses regarding the effective width, including those advanced by 

von Kaman and Winter. The results favour the simpler hypotheses. Sub .. 

aequently we develop a new effective width formula (Eq. 17) suitable for 

design use, based on second moment reliability analysis. 

WINTER'S TESTS AND FORMULA 

Von Karman •a investigations were concerned only with the deter-

mination of the ultimate atrengt:h of such plates. In practical design 

it is alao necessary to determine the effective widths at amaller loads 

as well, for example, in the analysis of deflection at service loads. 

,37. 



For this purpose, Winter {2) conducted a series of tests on cold formed 

1 iKht ~ot•uKe member~ o[ hat section and other profiles. The effective 

width was calculated for various loads from measurements of the positions 

of the neutral axis. 

As a very useful Keneralization of Eq. 1, Winter expressed the 

t•t h•ctivt> width of the plate at stress f as 

Kt{im, (4) 

when• is the calculated maximum longitudinal stress in the plate, 

occurring along tht.> 1 ines of support. 

Winter reasoned that the coefficient B should depend primarily 

on tht• non-dimensional parameter W, (Eq. 3). However, the experimentally 

detE>rmi1wd coefficients were plotted (F'ig. 1) against the parameter 

l/1~. possihl\' to eftect a smoother transition to fully effective plateR. 

~·or l'ach test specimen H was found at yield load, at one half and at 

tw~, thirds of the vi£-ld lo<Jd. There is considerable scatter in the test 

rt•sults, apparently due to high sensitivity of the method to minor 

t•xperimcntal deviations. such as errors in the determination of the 

locdt ion of neutral axis, 

Based on the test results, Winter proposed a fltraight line 

n.·L1t ior1ship bttwcen ~1 and 1/W. This produces a "reasonable and somewhat 

..:unscrvutive hut slmph• formula" for the effective width. Tn the notation 

o t this p.lpt•r 

l.4t1(FR [1- 0.475(t!Wl1{FJfl. (5) 

Siuc{· b o..:an1HH cxcl"ed w. Eq. (S) indicates that a compression plate 

i•, lt11l·· t·fft•ctive for values of wit smaller than 0.9S'{Elf. 

Till: 1-:XPERIMJ:NTAl. DATA 

,\-; .~ 1<rst ·;tt·p in this study all aV<lllable relev<J.nt data 

kr•,1wn tP tht· .1t1thor o~ttL·r ca litt>rature sParch "'a~ screPned for inclusion 

ex..:lusinn .ls d.Jt..l tur the nnalysi~. 

Tlu· t•.\r 1 i.~·sl t.l·St ... to checl< von Kctrman '~ tht-ory SL·em to be thos~ 

r'ldth· IJ, Sc·Lhlt·r {'/. !Irs n•sults have not bet.'n includ('d as data in this 

... tud·. I'~C-llht· t"ht"'" Pxhibit much more experimentdl scatter than the rest 

Ld thP litt>r.tttlr(•. All rt>:-,ult~ of Winter's tests published in 1q4s {2] 

h<lV!' ho•en includ('d. From his C'arlicr (1947) paper [4], the tPsts on 

built-up lippPd 1-hedms \,j'~rl" included. The !'ll"ries A tests \ol"t"re excluded 

From tt11· p;tpt•r b:c f>wight and R.1ctliffe 151 all thl• "aA-rolled 11 

-:pt·c imt..•Tt'-' Wf•rt• inc lurlf'd opposed to welded speC' imens, bl•cause the 

rl'o.;JdtJal :;tn•c;s in th£' weld zon('s render the analysis inapplicuble 

bornt• llllt conclusively also in the paper by Dwight and Moxham [bl. 

\.Jeld~d Sl"Ct ions \oil 11 be treatPd !'leparat~ly. 

Similarly. the tests hy Johnson and Winter (71 on stainless 

s tel· 1 havt! ht>en excluded for separate treatment. These authors note 

.1pparent agr£"ement betwt>en the conservative formula due to Winter and 

tlw mean curve for their test resuits; there is, however, a marked 

difference to the mean curves for the carbon steel data. 

Chilver 1 s column tt>st results [8] \ol"ere not included, although 

the t•ffec::tivt• wldth formula is used in column design as well. It was 

felt hetter to have a fairlv accurate representation for beams alone, 

used as a conservative approximation in column design than to use the best 

fit to combined beam and column data, which ~ould be unconaervative for 

beam design. 

Figure 2 shows the data; results for specimens with a 

normalized flat width W less than 1. 75 show that this width is fully 

effective, admitting some intrinsically one-sided experimental scatter. 

These results have therefore been left out of the subsequent analysis. 

STATISTICAL INFERENCE FROM THE DATA 

The data constitute a set of n "po1nts 11 , i.e., pairs Bm, W 

where Bm and W are the measured effective width and flat width, 

respectively, normalized with respect to stress as in Eqs. (2) and (3). 

We accept the notion that there exists an (unknown) unique normalized 

true effective width that is a function of W only. This defines 

the experimental error ll,B: 

AB B • B. 
m 

(6) 

The experimental error is a random process over the domain of W; it 

is the sum of a systematic experimental error (which we assume to be 

identically zero) and a random error. We further assume that the process 

ll.B is stationary and Gaussian; it is therefore completely characterized 

for our purpose by its variance. Thus, B is assumPd Gaussian with 
m 

mean B = B(W) and standard deviation a8 "" const. The problem is to 

infer the value of a 8 and the function B(W) from the data set. 

A scientifically accepted approach to solve this kind of 

problem (statistical inference) proceeds by pairwise comparison of all 

elements in a set of hypotheses [H1 } ~ [!B1 (W),a1 J. [B1 (W),a2 J. ..• 

[ Bp(W) ,crp]} where B1 •••• Bp are alternative hypothetical functions of 

W, and a 1 • "p are associated values of a5 • The method of comparison 

is based on the likelihood ("" hypothetical probability) of observations 

of the data assuming the truth of the hypotheses. Many methods to solve 

typical problems of this kind are available in the literature [9}. 

The problem therefore reduces to the selection of a suitable set 

of hypotheses \Hi 1 to choose from. There is no standard approach to this 

selection; it is unfortunately a matter of insight, intuition, philosophy 

and taste. Some of the desirable qualities of a representation are: 

accuracy, stability, efficiency and plausibility. Obviously, the more 

accuracy (i.e., lower a ) in a representation, the better. For example, 

if we represent R by a polynomial in W, a can be reduced by increasing 

the order of the polynomial until equal to the number, n', of different 

abscissas W in the data set; orders higher than n' - 1 are unnecessary 

and are rejected on philosophical grounds following the principle of 

"Occam's razorn, A polynomial of order n' - 1 is rejected by considerations 

of stability: the perfect fit of which it ls capable is likely to be 

upset by addition of one more data point. Stability is thus one aspect 

of efficiency in use, ease of calculation is one of many others. For 

example, a lengthy polynomial might be preferable to a conceptually 

simple, "exotic" function that is hard to evaluate. Nevertheless, the 

exotic function might be preferred if it is justified by theory over the 

less plausible polynomial that is just the outcome of a curve-fitting 

process. 

Based on these considerations, a reasonable procedure is to 

generate the hypotheses H1 in order of decreasing simplicity. Some 

subjective aspects remain, but first attention should clearly be given 

to the two families of polynomial structure: 

(7) 

i 
(Hi} = (B • l:: •l-jJ. 

0 
(8) 



In Eq. (7), B is a polynomial function of W: 

P(W). (9) 

Mathematically, the family W "" P(B) is just as simple as Eq .. 

( 7), but it seems to reverse the role of cause and effect 1 and it is 

therefore rejected. Winter's relationship, Eq. (5) belongs to the 

family 

8 • P(l/W) (10) 

of polynomials with argument 1/W; consider this family for comparison 

with B = P(W). Finally, we note that 1/B = P(l/W) would seem just as 

reasonable, but it is left out of consideration together with 1/W = P(B), 

etc. 

First, compare the first two hypotheses in the set in Eq. (7), 

of the type in Eq. (9). This amounts to a test whether or not the 

slope a 1 is significantly different from zero in the relationship 

(11) 

The null hypothesis is that a 1 equal zero; the alternative hypothesis 

is that a 1 is different from zero. 

A regression line fitted to the data has for a 1 the value 

-0.006. A t-test of significance on the coefficient shows that we cannot 

reject the null hypothesis that a 1 equals zero, even at a 10'7~ level of 

significance. In other words, there is no reason to suggest, with the 

given data, that B is in any way dependent upon W. 

Next, the nu 11 hypothesis is made that a 0 equal 1. 90 as 

suggested by the approximate theory of von Karman. The alternate 

hypothesis is that a 0 differs from 1. 90, The mean of the sample of 

13 values is l. 880. We the means of all samples of B to be 

random variables, and normally distributed, and find that at a 10% level 

of significance we cannot reject the null hypothesis that a0 equal 1.90. 

In other words, we are "90% confident" that the true value of a 0 lies 

between the limits l. 880 ± . 392. 

It should be noted that with a scatter of the B values as 

observed, approximately 18,000 samples would be required to establish 

if 1. 90 was the exact true mean. If the mean of these 18,000 values were 

-....... 
..0 

equal to or less than l. 880 we would reject the null hypothesis that 

equals 1.90 at the 10'/, level of significance. The less stringent 5% 

le.vel of significance cotllllonly used would, of course, require a much 

greater amount of data. 

1\.trning to the family of hypotheses in Eq. (10) 1 it may be 

asserted that there is no significant dependence of B on 1/W using 

a 
0 

a similar test; before, B ::: 1. 90 cannot be rejected on the basis of 

the data. 

Next, representatives of the two families, Eqs. (9) and (10) 

may be compared. Linear regression lines are, respectively 

" = !.9os- o.006W (11) 

1.94- 0.19W-l (12) 

while the mean of the data gives the value 

B • l. 880 (13) 

as a member of both families. 

The sample standard deviation of the test results from Eqs. 

(11), (12) and (lJ) is 0.241, 0,240 and 0.242, respectively. Evidently, 

there is no basi.s for asserting that one representation is more accurate 

than the other. 

COMPARISON OF BTAS 

An attractive method to select a suitable curve to represent 

experimental data has recently been presented by Dvlewski. [ 10]. 

lt the laws of nature pertaining to a phenomenon unknown, 

bias b; almost sure to exist in the representation of data hv an arbilr<~ry 

Bias is a systematic discrepancy between the fitted curve and the 

true equation governing the data. Bias can arise both from oversrnoothing 

or from undersmoothing. Oversmoothing means that deterministic 

variation has been regarded as random variation and discarded, while under-

smoothing means that some random variation has been regarded d.S 

detenninjstic and has been retained. To illustrate this poinl, let 

the points in Fig. J represent a set of experimental data (12 points 

in total) to be fitted by a polynomial of degree n. Evidently, 

• AISI 1970 • • • • 
----------

1·65 
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and n • 11 would oversmooth and undersmooth the data. re•pecttvely. 

The least-square• method of curve-fitting readily provides the ''best 

fit" polynomial of any degree n to a eet of points. but it does not 

give any guide to the selection of n. 

Dylewski defined the ~of a fitted curve with respect to 

a data set as the rat to of the sums of squares of the deviations from 

the curve fitted over all the points divided by the sum of two such 

sums calculated for two curves of the same type, each fitted to half 

the data points. Dylewski suggested that minimum bias indicates a curve 

that i.s smoothed correctly. We accept this as a convention. 

Table 1 shows the bias calculated for the curves of best fit. 

Unfortunately, bias is not defined for other than such curves (e.g •. 

lS "' l. em in each of the two families of Eqs. (9) and (10). The constant 

value of B has less bias than the regression line in both families; 

i.t is concluded th.H the linear expressions do not smooth the data 

correctly. 

• 
• • 

• 
• 

n = 0 • • 
• • 

n II 

n • 2 
• • 

TABLE 1 

1. 880 1.01 

1. 905 - 0. OObW 1.08 

1. 552 + 0.152W - O.Ol4w2 1.01 

1. 721 + 0.034W + 0.010W2 - 0.001w 3 1.06 

1. 880 

1. 9)6 0. 190/W 

1. 075 8.64/W - 21.060/W2 

1.01 

1.07 

1.02 

1. 320 + S. 854/W - lb. 60/W2+ lJ. 34/WJ 1.02 

• 

Cone luding that the attempts to identify a statistically 

significant dependence of B on W in the data have been un1ucceeeful, 

we proceed to select a constant value of a· suitable for design. Two 

possible approaches are followed here; the results are then compared 

and a selection made on the basis of judgement. 

FlRST ALTERNATIVE 

The first alternative is to select the value that gives the 

same number of data points below the line as the curve in the operating 

standard. It may be argued (11] that the sample reliability is then 

unaltered, and that it may reasonably be taken as an indication that the 

present unknown reliability of the design standard would be maintained. 

This is strictly correct only if the data can be considered as a simu­

lation of a random sample of the values of W for the designs that will 

be built according to the standard. It is believed that this assumption 

is practically fulfilled because the majority data points were selected 

practical shapes with an empirical curve in mind (rather than a set 

of shapes designed to put a theory to a more crucial test), and because 

each of many specimen shapes, through the dependence of W on stress, 

gives rise to several points covering a range of W. This gives (see 

Fig. 2) for design 

B = 1.65 • (14) 

An F- test (and Heel's test) applied to the variances indicates no 

difference at the 57~ level of significance between any new design rule 

satisfying Eq. (14) and the formula currently in use. The comparison can 

be made on two bases. First (considering the actual data points to be 

in error)y relative to the formula value B = 1.65, the mean error is 

~0.147 and the standard error is 0.147. Using the same viewpoint for the 

AISI fonnulay mean and error are -o.l54 and 0.157, respectively. 

Alternatively (considering the data as the correct values which 

the formula imperfectly manages to represent), the mean errors are 0.115 

(0.116) and the standard errors 0.115 (0. 128), for the value B = l. 65 (for 

the A lSI fornrula), respectively. All these tests indicate that Eq. 

(14) is as least as accurate, if not better, than the old rule. 

SECOND ALTERNATIVE 

It has recently become possible to select safety margins by 

rational analysis on the basis of a well-defined small set of propo~ 

sitions regarding the nature of loads, strengths, structural behaviour 

and design objectives [12]. A standard design format has been proposed 

to the lnternational Standards Organisation, recorrmending the use of a 

set of partial safety factors typically of the form (1 + CV) where C 

is a constant and V is the coefficient of variation, hereinafter 

called the dispersion, of the uncertain quantity being considered. 

Cornell [lJ] has proposed a first·order second moment reliability 

analysis that considers all uncertainty separated into five mutually 

independent random factors: material strength M, load T, structural 

analysis, P, strength of materials analysis E, and fabrication F. 

lf these quantities are provided with safety factors (1 + CVM), 

(1 + CVF) where C is a CODIDOn constant, it has been 

shown fl2J that the reliability can be made practically independent of 

the dispersions Vi over a wide range of variation. 

Since the dispenions can be estimated fairly accurately, it 

h possible to estimate the coefficient C implied in an existing 

code from the total safety margin. Tile appropriate safety factor for 

another technology, with a different value for one or more of the dis~ 

peratons, ie therefore euily calculated. In the following, the method 

will be used to calculate the safety factor on the effective width that 

would yield approximately the I&IH reliability as fully effective sections. 

The firat step ia to determine the change in stress in a member 



when the normalized effective width ratio B is increased by a given 

small percentage. This analysis for bending is quite elementary. It is 

easily shown that the stress in a partially effective compression flange 

is reduced approximately by the same percentage, while the stress in the 

tension flange is nearly unaffected. If tension governs, neither initial 

cost nor safety are affected appreciably by a change in B; such flexural 

members can therefore be left out of the discussions. It follows that 

the safety factor (1 + CV8) to be applied to B is identical with the 

factor to be applied to the strength for a member using the effective 

width concept in the analysis. 

Table 2 shows estimated values of the dispersion for the various 

uncertainties in two contexts, viz. design when dead load is dominating, 

and the tests that gave the results plotted in Fig. 2. Some of these 

estimates are based on extensive data (e. g., material strength), while 

others are quite subjective, 

The values of C implied in the dispersions are easily calculated 

from dead load design. The nominal safety factor 1. 67 is the product of 

five partial safety factors, and C is a solution of the fifth order 

equation 

1. 67 (15). 

TABLE 2 

DISPERSIONS (COEFFICIENTS OF VARIATION) 

Case onventional Dead Load Design Laboratory Beam Tests 

Estimated Estimated Best Estimated Estimated Best Estimate 
Dispersions,% ~inimum Estimate Maximum Minimum Estimate Maximum 

Load, T 5 10 15 0 2 5 

Force Analysis, 
5 10 20 0 2 5 p 

I 
Material 

Strength, M ,I 7 10 13 7 8 13 

I 
Fabrication, 5 10 15 1 6 10 

Stress Analys i5 
E J 7 10 J 6 10 

Implied C 2. 14 1. 15 0, 74 - - -
Observed Diapers ion of Sample, % 12.9 12. 9 12. 9 

Dispersion of Effective Width Analysis, 
Calculated (Eq. 16)' % 10 5 -

Table 2 shows the resulting C-values for two extreme cases, and the 

value C = 1.15 as resulting from the best estimate of dispersion. From the 

dispersions for the beam tests, iJSSuming an additional stochastic factor, 

independent of the factors listed, it is possible to calculate the dispersion 

of B that would yield the dispersion observed in the data (VDATA = 0.241/1.88 

= 12, 9/o) by USing 

(16) 

The best estimate gives VB = 5%; an extreme value is 10% calculated from 

the estimated minima. The value v 8 = 12.9% is an absolute upper limit 

if sampling uncertainty is neglected. Using C = 1.15 and V8 = 5%, gives 

the safety factor to be applied to B (1 + 1.15 (0.05)) • 1.06; this 

value is listed with others obtained in a similar way in Table 3. 

Comparing with the other partial safety factors it is concluded 

that the concept of effective width ratio as a function only of (w/t) !Vi/E 
for the element is not an oversimplification. Rather, it seems to be in 

harmony with the general level of uncertainty in structural design, at 

least insofar as flexure is concerned and reflected in the test data. 

41 

VB 

VB 

TABLE J 

NORMALIZED EFFECTIVE WIDTHS AND CORRESPONDING 
SAFETY FACTORS 

c ~ o. 74 c " 1.15 c 

B. 1. 81 1.77 

" 5% 
l. 04 l. 06 F. S. 

B. l. 76 1. 68 
" 10% 

F. S. 1.07 1. 12 

~ 2.14 

1. 70 

1.11 

1. 55 

l. 21 

While the calculation of VB is quite uncertain, it is clear 

that the safety factor on B should not be less than 1. 04 nor greater 

than 1.21. The value 1.06 resulting from the best estimates of dispersion 

would be quite conservative in the sense that it seems to compare rationally 

with the safety margins on all other factors combined as reflected in the 

overall safety factor 1. 67. The result is therefore the normalized effective 

width limit 
B • 1.77. (17). 
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1. The concept of normalized effective width (B = (b/trV'f/[) of an 

element of a cross-section in bending as a function only of normalized 

flat width (W = (w/t) -yfJE) due to Winter, is an appropriate simplification 

of actual behaviour in harmony with the general level of uncertainty in 

structural design. 

2. If an element of a section in flexure is only partially effective, 

the simplest hypothesis is that the normalized effective width is 

independent of the normalized flat width. This hypothesis has minimum 

bias, and it cannot be rejected on the basis of the data. Moreover, there 

is not sufficient data to reject von Karman's approximate theoretical 

value of the normalized effective width (B = 1. 90). It is therefore 

recommended for purposes of design that the normalized effective width be 



taken equal to the normalized flat width or a given constant B (containing 

appropriate safety factor), whichever is leas. 

3. The limiting value of B equal to 1. 65 will provide approximately 

the same reliability as the AISI foruula, in operation. now. 

4. A limiting value of B equal to 1. 77 will provide approximately the 

same level of reliability as in current conventional flexural design in 

steel for buildings. 

5. Since the use of the effective width formula is not confined to 

flexure of cold formed sections. but includes axial compression and 

welded sections, it is recoumended that the conservative value B = 1.65 

be used in design codes until sufficient data warrants a higher value. 

6. Experimental scatter prevents the detection of any dependence of B 

W. Modern experimental techniques could reduce this scatter somewhat 

but possible returns are limited, and the expense of further tests in 

flexure would not seem warranted from an engineering viewpoint. In 

contrast. the experimental basis for axial compression seems insuf-

ficient and might profitably be extended. 
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APPENDIX - NOTATION 

effective width 

B normalized effective width; Eq. 1 

measured normalized effective width; Eq. 6 

Young 1 s Modulus 

strength of materials analysis 

fy yield strength of the material 

fabrication 

M material strength 

structural analysis 

plate thickness 

T load 

coefficient of variation 

total width 

w normalized flat width; Eq. 3 

experimental error; Eq. 6 

Poisson 1 s ratio 

standard deviation of BM 
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