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Strain and Stress Distributions in Composite Deck Slabs:  
A Numerical Study 

Vitaliy V. Degtyarev1 

Abstract 
 
This paper describes results of a study on strain and stress distributions in 
compact and slender composite deck slabs using nonlinear three-dimensional 
finite element models. The slabs were modeled as flexural members made of 
steel deck units and structural concrete fillings interconnected at the interface 
with nonlinear springs representing bond between two materials. The models are 
capable of accounting for partial interaction between the deck and the concrete, 
discrete concrete cracking in the slab tension zone, and nonlinear behavior of the 
materials and the interface. They were validated against published test data and 
have proved to be effective in predicting load-deflection responses of composite 
deck slabs. The study showed that the strain and stress distributions are greatly 
affected by concrete cracking and slip between the deck and the concrete. The 
study provides information that may be useful in understanding composite slab 
behavior and in developing analytical models for predicting slab strength and 
stiffness. 
 
Introduction 
 

Concrete slabs over steel composite decks are widely used in steel-framed 
buildings. The slabs are designed as steel-concrete composite slabs with the 
deck acting as positive external reinforcement. Strength and behavior of 
composite slabs have been investigated by many researchers both 
experimentally and numerically. References to the papers describing the studies 
can be found in Yu and LaBoube (2010).  
 

The vast majority of studies conducted to date have focused on slab strength and 
load-deflection response. Relatively little research has been reported on strain 
and stress distributions in steel-deck-reinforced composite slabs. Only one paper 
was found that contained detailed experimental data on strain and stress 
distributions in composite slabs at different behavior stages (Chen et al. 2011). 
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While the importance of the experimental results cannot be overemphasized, 
they may not give a full picture of the stress-strain state of a composite slab due 
to technical difficulties in obtaining such data from tests. Finite element analysis 
(FEA) may supplement the laboratory testing and significantly reduce the 
number of experiments.  
 

FEA has been used by several researchers to investigate the behavior of 
composite slabs (Abdullah and Easterling 2009, Chen and Shi 2011, Daniels and 
Crisinel 1993, Tsalkatidis and Avdelas 2010, Veljkovic 1998, and Widjaja 
1997). The published numerical studies, however, have also focused on slab 
strength and load-deflection behavior and provided limited data on strain and 
stress distributions in the slabs. 
 

Available slab design methods are either semi-empirical, which require a large 
number of tests, or analytical developed using simplified assumptions, which in 
some cases may not be capable of capturing the important characteristics 
affecting slab strength and behavior. The knowledge of strain and stress 
distributions in deck-reinforced composite slabs is essential for understanding 
slab behavior and developing accurate and reliable analytical models and design 
methods.  
 

The objective of this paper is to present results of a study on strain and stress 
distributions in compact and slender composite deck slabs using nonlinear three-
dimensional FE models, which are capable of accounting for partial interaction 
between the deck and the concrete, discrete concrete cracking in the slab tension 
zone, and nonlinear behavior of the materials and the interface. 
 
Numerical study program 
 

The numerical study described in this paper was performed on nonlinear three-
dimensional FE models of two composite slabs tested by Abdullah (2004). The 
modeled slabs consisted of a 0.0598 in. (1.5 mm) thick 2 in. (51 mm) deep 
trapezoidal composite deck with 2 in. (51 mm) and 4½ in. (114 mm) normal 
weight concrete topping. The 6½ in. (165 mm) and 4 in. (102 mm) deep slabs 
are referred to as the compact and slender slabs, respectively. Table 1 shows 
main properties of the modeled slabs. All other test specimen and test procedure 
details can be found in Abdullah (2004).  
 

Table 1. Main properties of modeled slabs 
 

Slab Type Test ID h, in. (mm) L, in. (mm) LV, in. (mm) fy, ksi (MPa) f’c, ksi (MPa) 
Compact 2VL16-7-6.5 6.5 (165) 84 (2134) 28 (711) 47 (324) 4.5 (31) 
Slender 2VL16-12-4 4.0 (102) 144 (3658) 46 (1168) 47 (324) 4.3 (30) 

Notes: h is total slab depth; L is center-to-center span length; LV is shear span length; fy is yield 
strength of deck steel; f’c is concrete compressive strength. 
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surface. The multilinear isotropic hardening material model (MISO) was used 
for the deck, which was assumed to be elastic until the yield stress was reached 
and elasto-plastic in the stress range between the yield stress and ultimate 
strength. An elastic modulus of 29500 ksi (2.03·105 MPa) and a Poisson’s ratio 
of 0.3 were used for the deck. The engineering yield stress, ultimate strength, 
and ultimate strain were taken from Abdullah (2004). The engineering yield 
strain was calculated as a ratio of the engineering yield stress to the elastic 
modulus. The engineering stresses and strains were converted into true stresses 
and strains and entered into the models.   
 
Tested slabs were supported by W21×68 beams, only the top flange of which 
was modeled as a steel supporting plate. The plate was assumed to be elastic-
perfectly plastic with a Poisson’s ratio of 0.3, an elastic modulus of 29000 ksi 
(2·105 MPa), and a yield strength of 50 ksi (345 MPa).  
 
Flexible-flexible contact pairs consisting of TARGE170 3-D target segments 
and CONTA173 3-D 4-node surface-to-surface contacts were created between 
the following surfaces: the deck top flange and the concrete, the deck bottom 
flange and the concrete, each deck web and the concrete, and the deck bottom 
flange and the supporting plate. All the contacts were frictionless except for the 
deck bottom flange-to-concrete contact over the supporting plate and the deck 
bottom flange-to-supporting plate contact, which were friction contacts with an 
interface coefficient of friction of 0.6. The Coulomb friction model was used. 
All the contacts were modeled as “no separation” contacts except for the deck 
bottom flange-to-supporting plate contact, which was modeled as a standard 
unilateral contact. In “no separation” contacts, the target and contact surfaces are 
tied together during the analysis, while sliding is permitted. Standard unilateral 
contacts allow for separation of the surfaces.  
 
The separation between the deck bottom flange and the supporting plate was 
allowed in the models because testing showed that the deck attachment to the 
supporting beam failed at some point during the tests, after which the slab end 
rotated and was bearing only on the beam flange edge (Abdullah 2004). The 
deck attachment to the beam was modeled with eight COMBIN39 nonlinear 
spring elements installed between the deck bottom flange and the supporting 
plate. The force-deflection curve of the COMBIN39 elements was determined 
for each slab during model calibration. This approach allowed the author to 
capture the slab end rotation and bearing on the beam flange edge observed in 
the tests (Fig. 2).   
 
Only webs of the tested composite deck profiles were embossed. Therefore, the 
mechanical interlock between the deck and concrete was modeled with 
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strength, respectively. The deck stresses were averaged across the flange width 
and the deck thickness. The concrete top and bottom face stresses were averaged 
across the slab width and the concrete rib width at the bottom, respectively. The 
longitudinal slab coordinate with the origin at the center of the slab support was 
normalized by the span length. Each graph shows four lines representing stresses 
at four behavior stages: before concrete cracking, after concrete cracking, 
service stage, and ultimate stage. The ultimate stage corresponded to the 
maximum load supported by the slab models, whereas the service stage was 
assumed to correspond to 0.6 of the maximum load. Due to the slab rotational 
restraint at the support, the slab model portion near the support was in negative 
bending (see Fig. 5). 
 

Concrete and deck strain distributions through the slab and deck depths in the 
cracked sections at the load application line (that is, in the major crack section) 
and in the sections between cracks are shown in Fig. 6. The strains were 
averaged across the slab width. Fig. 7 shows variations of slip between the deck 
and the concrete and shear bond forces at the deck-concrete interface, Fbond, 
along the half span. The slip and the shear bond forces were averaged across the 
slab width and through the deck height. The shear bond forces were normalized 
by the maximum shear bond forces, Fbond,max, for each slab. The strain and stress 
distributions at each behavior stage are analyzed further in the paper. The 
analysis relates to the constant moment region unless noted otherwise.  
 
Strain and stress distributions in slabs before concrete cracking  
 

Before concrete cracking, the stresses in the deck and in the concrete repeated 
the bending moment diagram. Slip between the deck and the concrete and shear 
bond forces were relatively small and zero at the slab mid-span. They increased 
towards the support and then decreased again near the support due to the slab 
rotational restraint used in the tests and in the models. Because of the small slip, 
the composite sections had one neutral axis; and the strain distributions 
conformed to the hypothesis of plane sections. 
 
Strain and stress distributions in slabs after concrete cracking  
 

The first flexural cracks occurred at the mid-span of both models. The first crack 
formation was accompanied by the transfer of tensile load from the concrete to 
the deck and the initiation of slip between the deck and the concrete in the 
cracked section. The bond forces increased significantly near the cracks. Due to 
the concrete cracking and the slip, one neutral axis developed in the concrete 
section and another in the deck section, which invalidated the plane section 
hypothesis in the slab cracked sections. The depth of the concrete compression 
zone significantly reduced after concrete cracking.  
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Fig. 7. Distribution
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The following changes occurred in the deck and concrete stresses in the first 
crack section as a result of concrete cracking: the concrete bottom face stress 
reduced down to zero, the deck bottom flange and concrete top face stresses 
significantly increased, and the deck top flange stress changed from tension to 
compression. Bond between the deck and the concrete gradually transferred the 
tensile load back to the concrete on either side of the crack, which reduced the 
deck and concrete top face stresses at a distance from the crack.    
 
Strain and stress distributions in slabs in service stage  
 
As the load increased, more cracks developed in the models. Locations of the 
cracked sections along the half span correspond to the stress peaks in the 
concrete top face, which can be clearly seen in Fig. 5. This shows that the 
“smear band” crack approach used in the ANSYS SOLID65 element was 
capable of modeling discrete cracks in concrete and the effects of the discrete 
cracks on strain and stress distributions in composite deck slabs.   
 
In the half of the constant moment region, the compact and slender slab models 
had two and five flexural cracks, respectively. The slender slab model also had 
one crack within the shear span. The average crack spacing for the compact and 
slender slab models in the constant moment region was 14 in. (356 mm) and 6.5 
in. (165 mm), respectively. Slip between the deck and the concrete and shear 
bond forces increased abruptly in the cracked sections. Slip increments in the 
cracked sections, which correspond to crack widths, were smaller for the slender 
slab model. This implies that crack width in composite slabs increased with an 
increase in crack spacing. Slip and shear bond forces within the shear span were 
larger than those within the constant moment region for the compact and slender 
slab models.  
 
The slab models had two neutral axes in the major crack sections. In the 
uncracked section of the slender slab model, only one neutral axis was observed 
and the plane sections hypothesis was valid, because of the relatively small slip 
between the deck and the concrete, which was approximately 0.003 in. (0.08 
mm). The slip in the uncracked section of the compact slab model was 
approximately two times larger. As a result, the plane section hypothesis was 
invalid for the uncracked section of the compact slab model even though the 
slab had only one neutral axis. The concrete compression zone was deeper in the 
uncracked sections. These observations confirm the well-known facts that the 
degree of composite action is a function of slip between two materials and that 
the plane section hypothesis becomes invalid when the slip becomes large.  
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Variations of the deck bottom flange and concrete top face stresses in the 
compact slab model show two distinct peaks in the cracked sections. The deck 
bottom flange and concrete top face stresses varied from 0.54fy and 0.56f’c, 
respectively, in the major crack section to 0.42fy and 0.17f’c, respectively, in the 
sections between cracks. Due to closer crack spacing, the deck bottom flange 
stress and concrete top face stress variations were smaller in the slender slab 
model when compared with the compact slab model. In the slender slab model, 
the deck bottom flange and concrete top face stresses varied from 0.59fy and 
0.46f’c, respectively, in major crack section to 0.53fy and 0.32f’c, respectively, in 
the sections between cracks.  
 
The deck top flange stresses in both the compact and slender slab models 
reduced near the major crack. They were equal to zero in the compact slab 
model and changed from tension to compression in the slender slab model, 
whereas deck top flange away from the major crack section remained in tension. 
The deck top flange stresses varied from 0 to 0.12fy in tension for the compact 
slab model and from 0.06fy in compression to 0.09fy in tension for the slender 
slab model. The concrete bottom face stresses in both models varied from zero 
in the cracked sections to the values approaching concrete tensile strength in the 
sections between cracks. 
 
Strain and stress distributions in slabs in ultimate stage  
 
In the half of the constant moment region, one more crack developed in the 
compact slab model and none in the slender slab model. One and two additional 
cracks appeared in each shear span of the compact and slender slab models, 
respectively. The average crack spacing in the constant moment region of the 
compact slab model became 7 in. (178 mm), while the average crack spacing in 
the constant moment region of the slender slab model did not change.  
 
Slip between the deck and the concrete within the shear span increased 
approximately five times when compared to the service stage. Due to the 
significant slip increase, two neutral axes formed in both cracked and uncracked 
sections of the compact and slender slab models. Strain distributions did not 
conform to the plane section hypothesis. Shear bond forces within the shear span 
also increased and reached their ultimate values. 
 
In the ultimate stage, the deck bottom flange stresses in the major crack sections 
of both the compact and slender slab models consisted approximately 1.10fy. In 
the sections between cracks, they reduced down to 0.87fy and 1.03fy in the 
compact and slender slab models, respectively. Thus, the deck bottom flange of 
the slender slab model yielded over the entire length of the constant moment 
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region, whereas the deck bottom flange stresses of the compact slab model 
reached yield strength only in the sections near the major crack. The deck top 
flange stress varied from 0.46fy in compression to 0.03fy in tension and from 
0.32fy in compression to 0.15fy in tension for the compact and slender slab 
models, respectively. This demonstrates that deck stresses vary significantly 
along the constant moment region due to concrete cracking, slip, and nonlinear 
shear bond forces at the deck-concrete interface. 
 
The concrete top face stresses varied along the constant moment region with the 
maximum values in the major crack section. They were 0.89f’c and 0.98f’c in the 
compact and slender slab models, respectively. The minimum values of the 
concrete compressive stresses within the constant moment region were 0.46f’c 
and 0.71f’c in the compact and slender slab models, respectively. The concrete 
bottom face stresses in both the compact and slender slab models were close to 
zero.  
 
Conclusions 
 
Nonlinear three-dimensional FE models of compact and slender composite deck 
slabs were developed in this study using the commercial software ANSYS. The 
models account for partial interaction between the deck and the concrete, 
concrete cracking in the slab tension zone, and nonlinear stress-strain 
relationships of the steel, the concrete, and the interface. They were validated 
against published test data and have proved to be effective in predicting load-
deflection responses of compact and slender composite deck slabs. The “smear 
band” crack approach used in the ANSYS SOLID65 element was capable of 
modeling discrete cracks in concrete and the effects of the discrete cracks on 
strain and stress distributions in the slabs.   
 
The FE study showed that strain and stress distributions in the composite deck 
slabs were greatly affected by concrete cracking and slip between the deck and 
the concrete. Deck and concrete strain distributions through the slab depth in 
cracked sections differed from those in uncracked sections. Due to slip, the 
composite sections had two neutral axes in most cases. The plane section 
hypothesis was invalid for cracked sections. It was valid only for uncracked 
sections when slip between the deck and the concrete was relatively small. 

 
The deck bottom flange and concrete top face stresses had maximum values in 
the major crack sections. They also had peaks in other cracked sections, but the 
stress values were smaller than those in the major crack section. The minimum 
values of the deck bottom flange and the concrete top face stresses were 
observed in the sections between cracks. In the ultimate stage, the deck bottom 
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flange stresses of the slender slab model exceeded yield strength along the entire 
length of the constant moment region. In the compact slab models, they 
exceeded yield strength near the major crack section only.  The concrete top face 
stresses were close to concrete compressive strength but did not reach it. As a 
result of concrete cracking and slip between the deck and the concrete, the deck 
top flange stresses changed from tension to compression in the major crack 
sections when the load approached the ultimate value. The deck top flange 
stresses varied from tension to compression along the slab constant moment 
region. The concrete bottom face stresses were equal to zero in cracked sections 
and approached concrete tensile strength in sections between cracks.   
 
Shear bond forces were present in the constant moment region due to concrete 
cracking. Shear bond forces and slip were noticeably higher within the shear 
span when compared with the constant moment region. Slip between the deck 
and the concrete and shear bond forces increased abruptly in the cracked 
sections. 
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