

Missouri University of Science and Technology Scholars' Mine

International Specialty Conference on Cold-Formed Steel Structures (1994) - 12th International Specialty Conference on Cold-Formed Steel Structures

Oct 18th, 12:00 AM

Web Crippling of Stainless Steel Cold-formed Beams

S. A. Korvink

G. J. van den Berg

Follow this and additional works at: https://scholarsmine.mst.edu/isccss

Part of the Structural Engineering Commons

Recommended Citation

Korvink, S. A. and van den Berg, G. J., "Web Crippling of Stainless Steel Cold-formed Beams" (1994). *International Specialty Conference on Cold-Formed Steel Structures*. 5. https://scholarsmine.mst.edu/isccss/12iccfss/12iccfss-session9/5

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in International Specialty Conference on Cold-Formed Steel Structures by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

Twelfth International Specialty Conference on Cold-Formed Steel Structures St. Louis, Missouri, U.S.A., October 18-19, 1994

WEB CRIPPLING OF STAINLESS STEEL COLD-FORMED BEAMS

S. A. Korvink¹ and G. J. van den Berg²

ABSTRACT

The results of an investigation on the web crippling strength of cold-formed stainless steel channel sections are presented in this paper. The steels under consideration are AISI Type 430 stainless steel and a modified AISI Type 409, designated Type 3CR12 corrosion resisting steel.

The lipped channel sections were manufactured by a press braking process. Beams were tested in pairs, lips facing, in an interior-one-flange loading configuration.

Experimental results were compared with the theoretical predictions given in the 1991 edition of the Specification for the Design of Cold-Formed Stainless Steel Structural Members¹. It was concluded in this study that the experimental results compare reasonably well with the theoretical predictions. For longer bearing lengths the theoretical strengths appear to be conservative.

INTRODUCTION

The usefulness of cold-formed structural members lies basically in its high strength-to-weight ratio compared with structural materials such as concrete and timber.

Beams with large plate width-to-thickness ratios are used more generally in the structural steel industry. When designing for flexure it is more economical to minimise the material in the web. Because of this trend in the reduction of web material the designer has to focus more thoroughly on checks for web buckling, web crippling, buckling due to shear, vertical buckling of the compression flange into the web as well as buckling due to the linear flexural stress distribution⁹.

^{1.} Lecturer of Civil Engineering in the Faculty of Engineering at the Rand Afrikaans University, Republic of South Africa.

^{2.} Associate Professor of Civil Engineering, Chairman of Civil Engineering of the Faculty of Engineering at the Rand Afrikaans University, Republic of South Africa.

Because of the high strength-to-weight ratio, cold-formed steel sections are ideally suited where lightweight construction is of primary importance. This implies the use of thinner sections. The thinness of sections leads to local instability and therefore web crippling as a general problem.

Local instability can occur where members have high width-to-thickness and high height-tothickness ratios so that, in designing such members, care should be taken where stresses are excessive. Such excessive stresses are often induced by point loads, either applied or as reactions.

The use of stiffeners in these cold-formed steel members is more often than not impractical³. Where such loads are applied to channel sections and other sections with large web depths, web buckling, web crippling and often a combination of web buckling and web crippling can occur.

OBJECTIVE OF THE INVESTIGATION

The 1991 ASCE Specification for the Design of Cold-Formed Stainless Steel Structural Members¹ makes provision for the design of flexural members against web crippling based on the 1989 AISI Specification for the Design of Cold-Formed Steel Structural Members with Commentary⁴. The 1989 AISI⁴ design specification may not be directly applicable to stainless steel structural members. The 1991 ASCE Specification for the Design of Cold-Formed Steel Structural Members¹, however, uses the equations for the evaluation of web crippling loads from the 1989 AISI⁴ design specification. The validity of Section 3.3.4 "Web Crippling" of the 1991 ASCE Specification needed to be researched.

It is clear that⁵, no matter which design specification one refers to for the calculation of web crippling loads, the calculations tend to be loaded with constants that need to be precalculated resulting in a tedious design procedure. To assist designers it is therefore necessary to develop equations that provide a reasonably fast and efficient web crippling check for a small but important part in the design of cold-formed structural flexural members.

The literature on cold formed stainless steel design¹ is very clear on the lack of experimental data available for the evaluation of web crippling of stainless steel structural members. It was decided, for this particular investigation, to research AISI Type 430 stainless steel and a modified Type 409 steel designated Type 3CR12 corrosion resisting steel in order to gain more knowledge on the behaviour of such steels under web crippling loading conditions.

The experimental work reported on in this paper forms part of an on-going research project on

the web crippling of stainless steel cold-formed structural members.

THEORETICAL BACKGROUND

The theoretical analysis of web crippling under concentrated loading conditions is very complex. This can clearly be seen in the literature available on web crippling. Most research and therefore predictions as well as recommendations have been based on experimental results resulting in empirical solutions^{6, 7, 8, 9}. These solutions have been generated over a number of years, initially with the investigations of plates that buckle under in-plane loading conditions.

Further development lead to the research of web crippling as well as the combined effects of web crippling and bending of flexural members.

The analysis of cold-formed steel structural sections require different attention compared to hot rolled structural steel sections. Because of the high width-to-thickness ratios of cold-formed structural steel sections, local instability at relatively low loads (for example loads that are transferred from purlins to girders and rafters) is not uncommon. Where loads are not transferred evenly into webs, web crippling failure, either bearing failure or buckling failure, can occur. Web crippling is caused by high localised stress concentrations, which in turn are caused by concentrated loads or reactions applied on a short length of beam. This condition can reduce the load carrying capacity of flexural members⁹ as the bearing capacity of a beam on a support is governed by the web crippling resistance of such a beam⁶. The use of stiffeners is not always possible due to section geometry such as shape and thickness.

In 1986 Santaputra, Parks and Yu⁹ investigated web crippling of high strength steel beams. Tests were carried out to determine the web crippling strength of webs of cold-formed steel beams fabricated from high strength sheet steels commonly used in the automotive industry. The high strength steels used in this investigation had yield strengths of 414 MPa to 1138 MPa (60 ksi to 165 ksi). The sections under consideration were hat sections as well as I-beams.

The investigation covered the following loading conditions (refer to Figure 1):

- * Interior one flange loading (IOF);
- * End one flange loading (EOF);
- * Interior two flange loading (ITF);
- * End two flange loading (ETF).

Santaputra et al⁹ observed the following failure mechanisms:

- * bearing failure or overstressing which occurs just under the bearing plates with small lateral deformations of the webs of the hat sections. I-sections show no lateral movement of the webs before ultimate loads are reached. The bearing plate penetrates the web as the load increases to ultimate and remains there;
- * buckling failure: the load increases steadily until the ultimate load is reached. At the ultimate load the web becomes unstable and buckles, the load dropping suddenly thereafter.

ANSI/ASCE-8-901 DESIGN SPECIFICATION PROVISIONS

The 1991 Specification for the Design of Cold-Formed Stainless Steel Structural Members¹ published by the American Society of Civil Engineers (ASCE) covers web crippling of flexural members based on the 1989 Specification for the Design of Cold-Formed Steel Structural Members⁴ published by the American Iron and Steel Institute (AISI). The design specifications in the AISI Specification are for the design of cold-formed carbon steel sections.

The conditions for application as well as the equations given in the 1991 ASCE Specification¹ pertaining to this particular investigation are the following:

For members consisting of single webs, of which opposite loads are spaced at a distance greater than 1,5 times the depth of the flat portion of the web measured in the plane of the web, h, and of which the interior reactions are the concentrated loads, the nominal strength, P_n , for a concentrated load or reaction for one solid web connecting top and bottom flanges is given by equation (1):

$$P_n = t^2 c_1 c_2 c_0 \left(3,71 - 0,005 \left(\frac{h}{t} \right) \right) \left(1 + 0,007 \left(\frac{N}{t} \right) \right)$$
(1)

For
$$F_y \le 631$$
 Mpa
 $C_1 = (1, 22 - 0, 22k) k$ (2)

For
$$F_y > 631$$
 MPa
 $C_1 = 1, 69$ (3)

$$C_2 = \left(1,06 - 0,06\frac{R}{t}\right) \le 1,0$$
(4)

$$C_{\theta} = 0,7 + 0,3 \left(\frac{\theta}{90}\right)^2$$
 (5)

$$45^{\circ} \le \theta \le 90^{\circ} \tag{6}$$

where

- C₁ function of the yield strength of the material
- C₂ dimensionless function of (R,t)
- C_{θ} dimensionless function of (θ)
- F_v yield strength of material
- h depth of the flat portion of the web measured in the plane of the web
- k F_y/228
- N bearing length
- P_n theoretical web crippling load
- R inside bend radius
- t web thickness
- θ angle between plane of web and plane of bearing surface

The following limitations are applicable to equations (1) to (6):

h/t	≤	200
N/t	≤	210
N/h	≤	3,5
R/t	≤	6

where (refer to Figure 2)

- h depth of the flat portion of the web measured in the plane of the web
- N bearing length
- R inside bend radius
- t web thickness

In the above-mentioned equations the value of F_y adopted by both the 1974¹⁰ and 1991¹ specifications is that of longitudinal compression. The 1974 Specification¹⁰ states that: "...Since no research work has been done in the Cornell project to study the problem of web crippling of beams made of high yield strength steels, a conservative approach has been taken by using the longitudinal compressive yield strength of the stainless steel which is the lowest value of the four yield strengths...".

The 1991 Specification¹ suggests the use of the longitudinal compression value without any particular reason. It is therefore assumed that the reason is as quoted above.

EXPERIMENTAL PROGRAM

Mechanical Properties

Uniaxial tensile and compression tests were carried out to determine the mechanical properties of the steels. Two specimens were taken from each plate from which the beams were fabricated, in both the longitudinal and transverse rolling directions. Therefore the specimens and results are designated longitudinal tension, LT, longitudinal compression, LC, transverse compression, TC, and transverse tension, TT. All specimens were tested using an INSTRON 1195 Universal Testing Machine⁵.

Results

The initial modulus, E_0 , the proportional limit F_p , defined as the 0,01 % offset strength, the yield strength, F_y , defined as the 0,2 % offset strength, were calculated for each specimen and the statistical data is given in Table 1. Refer to Figure 3 and Figure 4 for tensile and compression test results of Type 3CR12 corrosion resisting steel and Type 430 stainless steel respectively.

WEB CRIPPLING TESTS

Preparation of Test Specimens

Channel sections were fabricated using stainless steel Type 430 and Type 3CR12 corrosion resisting sheet steel. The channels were fabricated by the press brake method. The material thickness was kept constant at 1,6 mm and the web heights varied from 100 mm to 325 mm at increments of approximately 25 mm. Five specimen sets were prepared for each steel type, and

each set was tested on a constant bearing length. The bearing lengths varied from 20 mm to 100 mm, at increments of 20 mm. Flange widths and lip widths were kept constant at 50 mm and 20 mm respectively. The ratios of the web heights and bearing lengths to the web thickness (h/t and N/t) are given in Table 2 and Table 3.

The beams were tested in pairs as shown in Figure 5, open ends facing.

The beam lengths were chosen such that the distance between the load application and the reaction areas were greater than 1,5h.

For some of the tests, small flat plates were bolted to the top flanges at quarter lengths to prevent lateral instability. Plates were also bolted to the bottom flanges at half distances between bearing plates and loading plates to prevent the bottom flanges from buckling outwards.

Bearing plates were bolted to the beam flanges and were simply supported on rollers.

Experimental Procedure

The beams were tested using an Avery-Denison loading apparatus. The loading rate was kept constant at 5 kN/min and the failure load was recorded digitally by the Avery-Denison.

Both beam webs buckled at the load application points before failure. At failure a large and sudden deformation occurred in the beams with larger web depths. This last deformation was also permanent.

A statistical average of 1,275 mm was calculated from 100 measurements and used as the inside bending radius throughout the calculations that followed.

Web Crippling Test Results

Experimental crippling loads, P_e , for Type 430 stainless steel and Type 3CR12 corrosion resisting steel are tabulated in Tables 2 and 3 respectively.

The failure mechanisms were bearing failures, equivalent to those described by Santaputra et al⁹ mentioned earlier on in this report.

558

THEORETICAL COMPARISONS

ANSI/ASCE-8-90

In the calculation of web crippling loads according to the 1991 Specification for the Design of Cold-Formed Stainless Steel Structural Members, ANSI/ASCE-8-90¹ the following parameters and equations have been used:

- * Longitudinal compression yield strength, F_v (LC) as given in Table 1.
- * Average web thicknesses, average web heights as well as an average inside bend radius.
- * Bearing length-to-web thickness ratios as given in Tables 2 and 3.
- * Equations (1) to (6).

The web crippling loads, P_{nL} , obtained by applying the equations of ANSI/ASCE-8-90¹ as well as the ratio of the experimental web crippling loads, P_e , to the theoretical web crippling loads, P_{nL} , obtained by applying the equations of ANSI/ASCE-8-90¹ are given in Tables 2 and 3.

Figure 6 and Figure 7 present the theoretical web crippling loads for the different bearing lengths, P_{nL} , as solid lines and the experimental web crippling loads, P_{e} , as symbols.

* ANSI/ASCE-8-90

The calculation of web crippling loads according to ANSI/ASCE-8-90¹ has been repeated using the transverse compression yield strength, F_y , (TC). All other parameters were kept constant as before.

The theoretical web crippling loads, P_{nT} , obtained by applying the equations of ANSI/ASCE-8-90¹ as well as the ratio of the experimental web crippling loads, P_{e} , to the theoretical web crippling loads, P_{nT} , are given in Tables 2 and 3. Figure 8 and Figure 9 present the theoretical web crippling loads, P_{nT} , as solid lines and the experimental web crippling loads, P_{e} , as symbols.

DISCUSSION OF RESULTS

The channel sections failed because of flange bearing failure, with a clear imprint of the bearing plate in the flange.

The channel sections with larger web heights buckled in the top section of the web, creating

buckle lines from the bearing plate in two opposite directions towards the beam ends. The extent of these lines were proportional to the web heights of the beams.

There is a gradual transition between bearing failure and buckling failure as a clear transition between these two mechanisms could not be observed.

The ratio of the experimental web crippling loads, P_e , to the theoretical web crippling loads, P_{nL} , obtained by applying the equations of ANSI/ASCE-8-90¹ are conservative except the values obtained for Type 3CR12 corrosion resisting steel where the longitudinal yield strength F_y (LC) was substituted by the transverse compression yield strength, F_y , (TC).

The web crippling loads tend to be more conservative with an increase in web slenderness ratio as well as an increase in bearing length. Refer to Tables 2 and 3.

CONCLUSIONS

The literature reveals different approaches in the theoretical analysis of the web crippling of flexural members. The literature also reveals the difficulty associated with the theoretical analysis of the web crippling of flexural members. Most of the studies rely on experimental evidence for the verification of a certain idea or approach.

The direct improvement brought about by a substitute yield strength indicates that the web crippling resistance of a stainless steel channel section is in some way dependent upon the transverse compression yield strength of the material. The general increase in accuracy of prediction failure loads with an increase in web slenderness indicates that, in the equations of ANSI/ASCE-8-90¹ more emphasis should be placed on the web slenderness section of the equation.

The web crippling modes observed in the experimental part of this study are in accordance with those observed by Santaputra⁹ and include the following:

- * bearing failure or overstressing which occurs in the sections with smaller web slenderness ratios. The bearing plates are imprinted in the flanges of the beams and small lateral deformations can be observed in the section of the beam webs adjacent to the position of the bearing plates,
- * buckling failure where the bearing plates do not become imprinted in the flanges of the

beams. The web of a beam subjected to the crippling load buckles and this instability leads to the resulting failure of the beam web.

The transition between the two failure mechanisms cannot be distinguished clearly enough to draw a definite conclusion.

APPENDIX : REFERENCES

- American Society of Civil Engineers. Specification for the Design of Cold-Formed Stainless Steel Structural Members. ANSI/AISI-8-90. ANSI Approved March 5, 1991. ASCE, NY.
- Dewolf, J.T.; Gladding, C.J.; Post-Buckling Behaviour of Beam Webs in Flexure. Journal of the Structural Division, Proceedings of the American Society of Civil Engineers, 104, No. ST7., (July 1978), 1109-1121.
- 3. Yu, W.W.; Cold-Formed Steel Design; John Wiley and Sons, 1985.
- 4. American Iron and Steel Institute. Specification for the Design of Cold-Formed Steel Structural Members with Commentary, 1989.
- 5. Korvink, S.A.; Web Crippling of Stainless Steel Cold-Formed C-Section Beams, M.Ing. Dissertation, Rand Afrikaans University, Johannesburg, South Africa.
- Hetrakul, N.; Yu, W.W.; Webs for Cold-Formed Steel Flexural Members: Structural Behaviour of Beam Webs Subjected to Web Crippling and a Combination of Web Crippling and Bending. Final Report: Civil Engineering Study 78-4, Structural Series, Department of Civil Engineering, University of Missouri-Rolla, Rolla, Missouri, June 1978.
- 7. Packer, J.A.; Web Crippling of Rectangular Hollow Sections, *Journal of Structural Engineering*, ASCE, 110, No.10, (October 1984), 2357-2373.
- Wing, B.A.; Web Crippling and the Interaction of Bending and Web Crippling of Unreinforced Multi-Web Cold-Formed Steel Sections. Vol. 1 Text, Vol. 2 Tables. PhD. Thesis, University of Waterloo, Waterloo, Ontario, Canada, 1981.
- Santaputra, C.; Parks, M.B.; Yu, W.W.; Web Crippling Strength of High Strength Steel Beams. *Eighth International Specialty Conference on Cold-Formed Steel Structures*, St. Louis, Missouri, U.S.A., November 11 - 12, 1986.
- American Iron and Steel Institute. Stainless Steel Cold-Formed Structural Design Manual. 1974 Edition.

APPENDIX : NOTATION

- C₁ function of the yield strength of the material
- C₂ dimensionless function of (R,t)
- C_{θ} dimensionless function of (θ)
- F_v yield strength of material
- h depth of the flat portion of the web measured in the plane of the web
- k F_y/228
- N bearing length
- P_n theoretical web crippling load
- P_{nL} theoretical web crippling load using ANSI/ASCE-8-90¹ with the longitudinal compression yield strength, F_{v} , (LC)
- P_{nT} theoretical web crippling load using ANSI/ASCE-8-90¹ with the transverse compression yield strength, F_{v} , (TC)
- R inside bend radius
- t web thickness
- θ angle between plane of web and plane of bearing surface

Figure 4. Stress-strain curves for Type 430 stainless steel

Figure 6. Experimental and theoretical web crippling loads for corrosion resisting steel Type 3CR12. ANSI/ASCE-8-90¹.

Figure 7. Experimental and theoretical web crippling loads for stainless steel Type 430. ANSI/ASCE-8-90¹.

Figure 8. Experimental and theoretical web crippling loads for corrosion resisting steel Type 3CR12. * ANSI/ASCE-8-90¹.

Figure 9. Experimental and theoretical web crippling loads for stainless steel Type 430. * ANSI/ASCE-8-90¹.

TABLE 1. MECHANICAL PROPERTIES of STAINLESS STEELS USED.

Number of Specimens 430 3CR12		21 14			21 13			12 17			10 17	
MECHANICAL PROPERTY	TON	IGITUDIN/	TL I	TRA	NSVERS ENSION	<u>н</u>	CON	GITUDIN	IAL DN	TR	ANSVERSI	m Z
	MEAN	STD DEV	cov %	MEAN	STD DEV	cov %	MEAN	STD DEV	cov %	MEAN	STD DEV	cov %
nitial Modulus E ₆ [GPa] 430 3CR12	192,35 195,24	9,19 7,04	4,78 3,60	213,65 212,29	5,78 3,99	2,70 1,88	210,08 204,14	13,77 8,74	6,55 4,28	233,70 229,48	8,06 6,46	3,45 2,82
field Strength F _y [MPa] 430 3CR12	319,48 275,36	6,75 5,48	2,11 1,99	347,33 313,42	5,44 7,00	1,57 2,23	307,13 289,82	10,37 11,42	3,38 3,94	361,71 329,17	4,05 13,46	1,12 4,09
portional Limit F _p [MPa] 430 3CR12	212,36 207,29	7,88 19,52	3,71 9,42	274,31 275,63	9,51 10,14	3,47 3,68	186,87 212,22	11, <i>27</i> 13,80	6,03 6,50	281,92 279,25	16,16 23,25	5,73 8,33
timate Strength F _a [MPa] 430 3CR12	495,54 443,22	14,43 12,69	2,91 2,86	524,14 459,99	5,99 10,73	1,14 2,33						
Elongation 430 3CR12	29,13 31,10	1,43 2,26	4,93 7,27	29,50 30,59	1,31 2,48	4,45 8,11		1			'	,

566

N/4			ANSI/ASCE-80-901		*ANSI/ASCE-80-901	
N/t	h (mm)	P (kŇ)	P _{nL} (kN)	P _o /P _{nL}	P _{nT} (kN)	P _o /P _{nT}
10,34	102,1 126,0 150,2 201,6 225,5 251,1 274,9 301,3 325,7	12,60 12,20 12,45 11,60 11,35 11,00 10,75 10,75 10,75 10,75	10,902 10,384 10,005 9,611 9,620 9,379 8,992 8,753 8,614 8,367	1,156 1,175 1,244 1,207 1,180 1,173 1,196 1,154 1,271 1,285	11,921 11,354 10,939 10,509 10,519 10,255 9,832 9,570 9,418 9,148	$1,057 \\ 1,075 \\ 1,138 \\ 1,104 \\ 1,079 \\ 1,073 \\ 1,093 \\ 1,055 \\ 1,163 \\ 1,175$
20,54	101,8 126,4 150,8 176,4 202,2 225,4 250,4 275,4 301,1 325,6	14,15 14,05 13,80 12,55 13,15 12,60 11,75 13,25 13,25 12,70	11,646 11,232 10,966 10,686 10,129 10,014 10,013 9,471 9,324 9,186	1,215 1,251 1,258 1,273 1,239 1,313 1,258 1,241 1,421 1,382	12,734 12,281 11,990 11,684 11,075 10,949 10,948 10,355 10,194 10,044	1,111 1,144 1,151 1,164 1,133 1,201 1,151 1,135 1,300 1,264
30,46	102,2 126,4 150,7 176,4 201,7 225,5 251,1 275,2 301,2 324,8	15,25 15,25 15,50 15,15 14,95 14,65 13,85 13,00 14,75 14,05	12,485 12,051 11,766 11,610 11,024 10,888 10,308 10,167 10,140 9,861	1,221 1,265 1,317 1,305 1,356 1,345 1,344 1,279 1,455 1,425	13,651 13,176 12,865 12,694 12,053 11,905 11,270 11,117 11,087 10,782	$\begin{array}{c} 1,117\\ 1,157\\ 1,205\\ 1,193\\ 1,240\\ 1,231\\ 1,229\\ 1,169\\ 1,330\\ 1,303\\ \end{array}$
39,92	102,1 126,5 150,5 176,3 201,3 225,7 250,6 274,1 301,4 326,1	16,35 16,75 16,45 16,20 16,25 15,50 14,75 13,80 16,00 15,15	13,164 13,014 12,558 12,236 11,922 11,470 11,306 11,012 10,815 10,504	1,242 1,287 1,310 1,324 1,363 1,351 1,305 1,253 1,479 1,442	14,393 14,229 13,731 13,378 13,036 12,541 12,362 12,040 11,825 11,485	1,1361,1771,1981,2111,2471,2361,1931,1461,3531,319
50,24	102,1 126,2 150,8 176,4 201,7 225,3 251,4 274,5 301,4 325,9	16,00 17,25 17,70 17,00 17,30 16,70 15,90 14,85 16,90 17,00	14,096 13,918 13,443 13,100 12,619 12,304 11,956 11,786 11,564 11,234	1,1351,2391,3171,2981,3711,3571,3301,2601,4611,513	15,412 15,218 14,698 14,323 13,798 13,453 13,073 12,886 12,643 12,283	1,038 1,134 1,204 1,187 1,254 1,241 1,216 1,152 1,337 1,384
		MEAN C.O.V.		1,297 6,794		1,186 6,794

TABLE 2. WEB CRIPPLING LOAD RATIOS P/P, FOR TYPE 3CR12 CORROSION RESISTING STEEL

Refer to text for symbols and *

NI/+	h	р	ANSI/ASCE-80-901		*ANSI/ASCE-80-901	
	(mm)	(kŇ)	P _{nL} (kN)	P _o /P _{nL}	P _{nT} (kN)	P _o /P _{nT}
10,34	102,3 127,4 151,8 174,7 201,1 225,4 248,1 275,7 301,2 325,8	$\begin{array}{c} 11,80\\ 12,05\\ 12,65\\ 11,9\\ 11,65\\ 11,75\\ 12,05\\ 11,90\\ 12,00\\ 12,20\\ \end{array}$	11,914 11,639 11,372 11,122 11,013 10,567 9,970 9,844 9,911 8,967	0,990 1,035 1,112 1,070 1,058 1,112 1,209 1,209 1,211 1,361	12,391 12,105 11,828 11,567 11,454 10,990 10,369 10,238 10,307 9,326	0,952 0,995 1,070 1,029 1,017 1,069 1,162 1,162 1,164 1,308
20,54	102,0 126,2 151,3 175,7 201,1 225,4 250,5 274,9 300,7 325,2	13,55 14,20 13,25 14,80 13,75 14,15 14,95 13,75 14,70 14,80	13,064 12,198 12,477 12,188 11,697 11,410 11,298 10,110 11,066 9,532	$1,037 \\1,164 \\1,062 \\1,214 \\1,176 \\1,240 \\1,323 \\1,360 \\1,328 \\1,553$	13,587 12,687 12,977 12,676 12,165 11,867 11,751 10,515 11,510 9,914	0,997 1,119 1,021 1,168 1,130 1,192 1,272 1,208 1,277 1,493
30,46	101,6 151,0 175,4 200,4 251,3 275,7 300,1 326,9	15,15 15,60 16,60 16,80 16,55 16,50 16,75 16,35	13,582 12,962 12,852 12,731 11,325 11,583 11,088 10,386	1,115 1,204 1,292 1,320 1,461 1,425 1,511 1,574	14,126 13,481 13,367 13,241 11,778 12,046 11,532 10,802	1,072 1,157 1,242 1,269 1,405 1,370 1,453 1,514
39,92	101,1 126,8 152,1 176,0 200,6 249,7 225,7 275,1 300,8 325,1	17,35 16,65 17,00 18,00 18,25 18,10 17,85 18,40 17,85 18,30	14,907 14,349 14,008 13,078 13,152 12,692 12,815 11,765 12,397 10,728	1,164 1,160 1,214 1,376 1,388 1,426 1,393 1,564 1,440 1,706	$15,504 \\ 14,924 \\ 14,569 \\ 13,601 \\ 13,678 \\ 13,201 \\ 13,329 \\ 12,236 \\ 12,893 \\ 11,157 \\ 13,504 \\ 12,893 \\ 11,157 \\ 12,893 \\ 11,157 \\ 12,893 \\ 11,157 \\ 12,893 \\ 11,157 \\ 12,893 \\ 11,157 \\ 12,893 \\ 11,157 \\ 12,893 \\ 11,157 \\ 12,893 \\ 11,157 \\ 12,893 \\ 11,157 \\ 12,893 \\ 11,157 \\ 12,893 \\ 11,157 \\ 12,893 \\ 11,157 \\ 12,893 \\ 11,157 \\ 12,893 \\ 12,893 \\ 11,157 \\ 12,893 \\ 12,893 \\ 12,893 \\ 11,157 \\ 12,893 \\ 12,893 \\ 12,893 \\ 11,157 \\ 12,893 \\ 12,893 \\ 12,893 \\ 12,893 \\ 12,893 \\ 11,157 \\ 12,893 \\ 12,893 \\ 12,893 \\ 12,893 \\ 12,893 \\ 11,157 \\ 12,893 \\ 12,893 \\ 12,893 \\ 12,893 \\ 11,157 \\ 12,893 \\ 12,893 \\ 12,893 \\ 12,893 \\ 12,893 \\ 12,893 \\ 12,893 \\ 12,893 \\ 12,893 \\ 12,893 \\ 12,893 \\ 11,157 \\ 12,893 \\ 1$	$\begin{array}{c} 1,119\\ 1,116\\ 1,167\\ 1,323\\ 1,334\\ 1,371\\ 1,339\\ 1,504\\ 1,384\\ 1,640\\ \end{array}$
50,24	$101,6 \\ 126,1 \\ 150,8 \\ 175,7 \\ 199,6 \\ 226,0 \\ 251,3 \\ 275,5 \\ 300,3 \\ 326,5 \\ \end{array}$	18,65 18,50 19,50 19,20 19,25 20,35 19,65 17,55 18,95	15,816 15,859 14,144 14,556 14,406 13,836 13,098 12,570 12,219 11,847	1,179 1,167 1,379 1,333 1,333 1,391 1,554 1,563 1,436 1,600	16,449 16,494 14,711 15,139 14,983 14,390 13,623 13,073 12,708 12,321	1,134 1,122 1,326 1,281 1,281 1,338 1,494 1,503 1,381 1,538
MEAN C.O.V.			1,275 19,752		1,226 19,752	

TABLE 3. WEB CRIPPLING LOAD RATIOS P_{σ}/P_n FOR TYPE 430 STAINLESS STEEL

Refer to text for symbols and *.

SUMMARY

The results of an investigation on the web crippling strength of cold-formed stainless steel channel sections are presented in this paper. The steels under consideration are AISI Type 430 stainless steel and a modified AISI Type 409, designated Type 3CR12 corrosion resisting steel.

The lipped channel sections were manufactured by a press braking process. Beams were tested in pairs, lips facing, in an interior-one-flange loading configuration.

Experimental results were compared with predictions given in the American Society of Civil Engineers Specification for the Design of Cold-Formed Stainless Steel Structural Members, ANSI/AISI-8-90, 1991. It was concluded in this study that the experimental results compare reasonably well with the theoretical predictions. For longer bearing lengths the theoretical strengths appear to be conservative.

The literature reveals different approaches in the theoretical analysis of the web crippling of flexural members. The literature also reveals the difficulty associated with the theoretical analysis of the web crippling of flexural members. Most of the studies rely on experimental evidence for the verification of a certain idea or approach.

The direct improvement brought about by a substitute yield strength indicates that the web crippling resistance of a stainless steel channel section is in some way dependent upon the transverse compression yield strength of the material. The general increase in accuracy of prediction failure loads with an increase in web slenderness indicates that, in the equations of the American Society of Civil Engineers Specification for the Design of Cold-Formed Stainless Steel Structural Members, ANSI/AISI-8-90, 1991, more emphasis should be placed on the web slenderness section of the equation.

The web crippling modes observed in the experimental part of this study are:

- * bearing failure or overstressing which occurs in the sections with smaller web slenderness ratios. The bearing plates are imprinted in the flanges of the beams and small lateral deformations can be observed in the section of the beam webs adjacent to the position of the bearing plates,
- * buckling failure where the bearing plates do not become imprinted in the flanges of the beams. The web of a beam subjected to the crippling load buckles and this instability leads to the resulting failure of the beam web.

The transition between the two failure mechanisms cannot be distinguished clearly enough to draw a definite conclusion.

-