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Fourteenth International Specialty Conference on Cold-Formed Steel Structures 
St. Louis, Missouri U.S.A., October 15-16, 1998 

BUCKLING MODE INTERACTION IN COLD-FORMED 
STEEL COLU1VlNS AND BEAMS 

J. M. Davies(l), C. Jiang(Z) and V. Ungureanu(3) 

Summary 

The buckling behaviour of cold-fonned steel columns and beams is far from simple. The three 
generic fonns of buckling, namely local buckling, distortional buckling and overall buckling, 
generally have different wavelengths and are usually restricted to different span ranges. 
However, there is also the possibility of interaction among these buckling modes at a certain 
span length. Thus, local plate buckling and distortional buckling may occur together with lateral
torsional buckling in such a way that they all have an influence on the ultimate load carrying 
capacity of a member. The influence of local buckling is taken into consideration in design codes 
by using either an effective width or an effective thickness for the plate element under 
consideration. However, the consideration of distortional buckling is less-well developed in the 
codes and the effect of its interaction with other buckling modes is far from clear. 

Another factor which influences the ultimate load carrying capacity of a thin-walled section is 
the interaction of compression force and bending moment. In current design codes, this is usually 
limited by a certain allowable stress in the extreme fibres of the cross-section. For a stocky 
member which is not subject to buckling, this is a reasonable assumption. However, for 
potentially unstable members, the behaviour is complicated and, in most cases, the test results are 
scattered high above the predictions given by the design codes. 

Generalised Beam Theory (GBT) [1-3] can provide explicit analytical expressions for the 
problems associated with the various interactions of the alternative buckling modes and also the 
interactions associated with combinations of axial load and bending. This paper, therefore, 
makes particular use of GBT in assessing the influence of local buckling and distortional 
buckling on lateral-torsional buckling and the interaction of compression force and bending 
moment. Based on analyses using GBT together with comparisons with available test results, 
conclusions are presented which the authors hope will be of benefit for future design codes. 
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Romanian Academy of Sciences, Timisoara Branch, M. Viteazul 24, Timisoara, RO 
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1. Explicit expressions for buckling interaction using Generalised Beam Theory 

The basic differential equations of Generalised Beam Theory (GBT) with the second-order tenns 
included are: 

E·kc.kY""_G·kD·ky"+kB·ky + f::t ijkK .(Wjy,)'=kq 
i=lj=2 

where a forward superscript k is used to denote the mode mmlber (k = 1, 2, ... n) and 

E and G= Young's modulus and shear modulus respectively; 
kC = generalised warping resistance; 
kD = generalised torsional resistance; 
kB = transverse bending resistance; 

(1) 

ij~ = second order tenns representing the deviation forces which are caused by axial 
stress together with defonnation of the member; 

kW = stress resultant eW = compression force, 2W and 3W = bending moment about 
the major and minor axes respectively, ~ = torque); 

ky = generalised defonnation resultant. 

For bifurcation problems, as there is no load causing defonnation prior to buckling, the right 
hand side tenn kq is zero and we have buckling with a constant stress resultant iW: 

m 

E.kc.kV''''_G-kD.ky,,+kB·ky+iWL: ijklC.iy"= 0 (2) 
i=l 

If a thin-walled member is assumed to have pinned end conditions and to buckle in a half sine 
wave, the above equation gives rise to explicit expressions for member buckling with mode 
interaction. As a special case, if only the single mode ''k'' is considered, the minimum critical 
stress resultant and the corresponding half wavelength are [3-4]: 

(3) 

(4) 

From equation (4~ it can be seen that the half wavelength depends only on the cross-section 
properties kC and B which are independent of the load. 

If two modes 'j" and "k" are allowed to buckle interactively in a single half sine wave, there are 
two cases to consider: 

a) for iiiK "* ° and ikkK "* 0, The minimum critical stress resultant is: 

(5) 

where 



and 

ijk K ikiK 

1- ijjK ikkK 
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(6) 

i.kW 
O)=~~ (7) 

'·JWor 

In equation (5), r is a coefficient which has a value less than or equal to 1 and which reflects the 
amount of mode interaction. The value of ~ varies between 1 lind 00. The lowest possible value 
ofr is 0.5 when ~=1 and 0)=1, which is the maximum interaction of two modes. These explicit 
interaction expressions were first obtained by Schardt [4]. 

b) For iliK = i~ = 0, equation system (2) can be written as: 

{

iP.i Y -iijK.ijkW .ky =0 
m or m 

_ijkK·iikWcr.iYm+kp.kYm = 0 

(8) 

where 

kP=E.kC{~2 +G.kD+kB{;:f (9) 

and L is the length of member. 

The critical value of the stress resultant iJkW cr can be obtained by solution of equation (8): 

(10) 

Finally, the interaction expression will be 

(11) 

The interaction of compression force and bending moment can be obtained by considering 
combinations of the applied loads IW, 2W and 3W in solutions of equation (2). 

2. Mode interaction for a compressed column 

Taking a lipped channel section column with cross-section dimensions: lip width bl = 15 mm, 
flange width br = 50 mm, web depth bw = 90 mm and material thickness t = 1.5 mm as an 
example, in which the material of the member has a modulus of elasticity E = 200000 N/mm2 

and Poisson's ratio v = 0.3, the cross section properties computed using GBT are listed in Tables 
1 and 2. The corresponding buckling modes are illustrated in Figure 1 in which the first four 
modes are global buckling (rigid body) modes, the fifth and sixth modes are the symmetric and 
asymmetric cross-section distortional buckling modes respectively and the seventh mode is the 
local web buckling mode. The eighth and ninth modes are the asymmetric and the symmetric lip 
buckling modes respectively. 
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Mode interaction only occurs when the relevant off-diagonal terms in the 1jkk matrix are non
zero. It follows from Table 2 that 123K = 132K = 156K = 165K = 178K = 187K = 167K = 176K = 169K = 196K 
= 0 which means that, for a symmetric colunm, there is no mode interaction between the 
symmetric or asymmetric modes. However, there is potential interaction between the symmetric 
buckling modes and between the asymmetric buckling modes. 

The interaction between lip and flange distortional buckling is trivial because the buckling half 
wavelengths of the lip and flange modes are in most cases quite different. For the same reason, 
there is very little interaction between the local or distortional buckling and the global buckling 
modes. However, the interaction between local and distortional buckling may be significant. For 
example, the interaction coefficient y for symmetrical distortional and local web buckling is 
0.804 when the colunm length is 200cm. 

k= 
1 
2 
3 
4 
5 
6 
7 
8 
9 

C(cm4) 
3.3000 
45.903 
12.845 
252.69 
0.1674 
0.2018 
0.0013 
0.0006 
0.0005 

D(cm2) 

0.0000 
0.0000 
0.0000 
0.0248 
0.0006 
0.0007 
0.0010 
0.0021 
0.0021 

B(kN/cm2) 
0.0000 
0.0000 
0.0000 
0.0000 
0.0626 
0.2024 
0.9123 
2.8189 
3.0703 

Table 1 - Section properties of a lipped channel section 

[ CCC 
Mode 1 Mode 2 Mode 3 Mode 4 

ecce 
Mode 5 Mode 8 Mode 7 Mode 8 

C 
Mode 9 

Fig. 1 - Buckling modes for a lipped channel section subject to uniform compression 
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Figure 2 shows some results obtained for the channel section. column with two ends pinned. It 
shows that the column buckles in the local mode for shorter lengths and in the torsional mode for 
the longer lengths. There is no interaction between the rigid body mode 4 and the local web 
mode 7 or the distortional mode 5 because they are asymmetric and symmetric modes 
respectively. For global (rigid body) buckling, only modes 2 and 4 couple and their coupled 
critical stress is 2,40-cr = 10.577 kN/cm2 for 200 cm span according to equation (5). There is 
relatively trivial interaction between rigid body mode 4 and asymmetric distortional mode 6 
because their interaction parameter y = 0.953, and the interaction between local mode 7 and 
distortional mode 5 is more significant with an interaction parameter y = 0.810 according to 
equation (5). 

k= j=2 3 4 5 6 7 8 9 

lj~ 

2 1.0000 0.0000 -4.4281 0.0000 0.2854 0.0000 -0.1190 0.0000 
3 0.0000 1.0000 0.0000 0.1735 0.0000 -0.2217 0.0000 -0.0918 
4 -4.4281 0.0000 37.4086 0.0000 -1.4720 0.0000 0.7891 {>.DOOO 
5 0.0000 0.1735 0.0000 0.2567 0.0000 -0.0941 0.0000 0.0226 
6 0.2854 0.0000 -1.4720 0.0000 0.2619 0.0000 -0.0299 0.0000 
7 0.0000 -0.2217 0.0000 -0.0941 0.0000 0.1913 0.0000 0.0001 
8 -0.1190 0.0000 0.7891 0.0000 -0.0299 0.0000 0.0837 0.0000 
9 0.0000 -0.0918 0.0000 0.0226 0.0000 0.0001 0.0000 0.0788 

2j~ 

2 0.0000 0.0000 0.0000 0.0931 0.0000 -0.0202 0.0000 0.0347 
3 0.0000 0.0000 0.9999 0.0000 0.0396 O~OOOO 0.0106 0.0000 
4 0.0000 0.9999 0.0000 -0.4964 0.0000 0.0552 0.0000 -0.2464 
5 0.0931 0.0000 -0.4964 0.0000 0.0717 0.0000 -0.0145 0.0000 
6 0.0000 0.0396 0.0000 0.0717 0.0000 -0.0090 0.0000 0.0091 
7 -0.0202 0.0000 0.0552 0.0000 -0.0090 0.0000 0.0109 0.0000 
8 0.0000 0.0106 0.0000 0.0145 0.0000 0.0109 0.0000 -0.0214 
9 0;0347 0.0000 -0.2464 0.0000 0.0091 0.0000 -0.0214 0.0000 

3jkK 

2 0.0000 0.0000 -0.9997 0.0000 0.1952 0.0000 -0.0295 0.0000 
3 0.0000 0.0000 0.0000 -0.0202 0.0000 0.1219 0.0000 -0.0388 
4 -0.9997 0.0000 11.7961 0.0000 -1.2668 0.0000 0.4106 0.0000 
5 0.0000 -0.0202 0.0000 0.1346 0.0000 0.0313 0.0000 0.0093 
6 0.1952 0.0000 -1.2668 0.0000 0.1717 0.0000 0.0023 0.0000 
7 0.0000 0.1219 0.0000 0:0313 0.0000 -0.0805 0.0000 -0.0236 
8 -0.0295 0.0000 0.4106 0.0000 0.0023 0.0000 0.0434 0.0000 
9 0.0000 -0.0388 0.0000 0.0093 0.0000 -0.0236 0.0000 0.0414 

Table 2 - Second order cross-section properties for a channel section 

For a uniformly compressed column of relatively short length with an axis of symmetry, there is 
a general tendency for the member to buckle in a symmetrical local or distortional mode. 
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Fig. 2 - Buckling curves for a pin-ended lipped channel column (CH90 x 50 x 15 x 1.5) 

3. Mode interaction for a beam 

In contrast to the case of column, for a beam with a symmetrical cross-section, single mode 
buckling cannot occur if the bending moment is applied normal to the axis of symmetry because 
the relevant diagonal terms in the 2jkk matrix are all zero, i.e. 222K = 233K = 244K = 255K = 266K = 277K 
= 288K = 299K = O. In this case, the buckling of the beam takes the form of an interaction of two or 
more modes but the interaction occurs only between the symmetric modes or the asymmetric 
modes. 

Again taking the above lipped channel section as an e)l.ample, when a constant bending moment 
is applied about its symmetric axis, rigid body buckling is an interaction between modes 3 and 4 
and distortional buckling is the interaction of modes 5 and 6. For a 200cm span, the critical stress 
3.4(jcr = 29.59 kN/cm2 can be obtained from equation (11). 

The curve of distortional buckling interaction in Figure 3 is obtained using the finite difference 
method because the distortional buckling curve is not a pure sine curve and equation (11) is not 
valid. From Figure 3 it can be seen that the buckling interaction between local or distortional and 
global buckling is not significant in this case. 

Using the same method it can be seen that: 

1) If a bending moment is applied parallel to the axis of symmetry, there are individual 
distortional buckling modes and their interaction behaviour is similar to that of a 
column, but there are no individual global modes 2 and 3 because 322K = 333K = O. 

2) The buckling interaction of a cold-formed member under an applied torque can be 
analysed in a similar way based on the value of4j~ but this is not included in this paper. 

3) For a member with a point-symmetric cross section, for instance a Z-section, there is no 
single mode buckling and such a section always buckles by the interaction of two or 
more modes. 
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Stress (kNlcmA2) 
150 

rigid body 

100 

distortion 

50 

O+-----~----~----_+----~------rl----~I 
o 50 100 150 200 250 300 

Length (cm) 

Fig. 3 - Buckling curves for a simply supported lipped channel beam subject to 
bending about the axis of symmetry (CH90 x 50 x 15 x 1.5) 

4. Interaction of bending and compression 

Now let us consider whether there is linear relationship for interaction between axial load and 
bending, as used in typical codes: 

P Mx My 
+---+-- ::;; 1 

Pc Mcx Mcy 
(12) 

where P is the axial compressive force, Mx and My are bending moments about the x and y axes 
respectively; Pc is the ultimate resistance in pure compression and Mcx· and Mcy are the ultimate 
moments of resistance in pure bending. 

Assuming that above lipped channel section member has pinned end boundary conditions and 
that its major and minor axes are denoted by x and y respectively, two representative lengths are 
chosen for consideration, namely 70cm and 200cm, in which the member buckles firstly in a 
local or distortional mode and secondly in a flexural-torsional mode. By systematically changing 
the ratio of the compression force to bending moment, load interaction curves can be obtained by 
solving equation (2) and these are illustrated in Figures 4 and 5. GBT, of course, gives elastic 
bifurcation loads and, in order to introduce a yield criterio~, the Ayrton-Perry formula is used to 
convert the GBT results into failure loads: 

1 . 2 112 
Pull = 2" [(P, + (l+Tl)PE)- {(P,+ (1+ 11)PE) -4p,PE} ] (13) 

where: P ult = the failure load of the member; 
p. = the "squash" load evaluated using the effective cross-section; 
PE = the Euler buckling load evaluated for the full cross-section; 
11 = an imperfection parameter. 

11 = 0.002· (~E -40) ~O (14) 
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My/Mcy (Mx/Mcx for PlPc-Mx/Mcx curve) 

1.2 --,------,---,---------,--c-----,------, 

0.8 

0.6 

0.4 

0.2 

_P e- ex 
-+- PlPe-MylMey vs lips 
_ MxlMex-MylMey 
__ Theory 

o +-_-+ __ +-_-+ __ ~-~-~ 
o 0.2 0.4 0.6 0.8 1.2 

PlPc (Mx/Mcx for biaxial bending) 

Fig. 4 - Interaction of compression force and bending moment in a 200 cm long 
lipped channel section (CH90 x 50 x 15 x 1.5) 

Three curves are given in Figures 4 and 5, namely: 

PIPe - MxlMcx 
PIPe - MylMcy vs.lips 

= combination of axial load with bending about the symmetric axis; 
= combination of axial load with bending about the asymmetric axis 

(lips in compression); 
= combination of bending about the two principal axes. 

The line indicated "theory" is, of course, the linear interaction relationship given by typical 
codes. 

My/Mcy (Mx/Mcx for P/Pc-Mx/Mcx curve) 

1.2 I---:--~-~-~==~::=;;;:::J....._,____,.-.---_ 
_ PxlPex- xIM ex 

0.8 

0.6 

0.4 

0.2 

-+- PlPe-MylMey vs web 

_ PlPe-MylMey vs lips 
__ Theory 

O+-_--I __ --+-__ +-_--+ __ ~-__I 
o 0.2 0.4 0.6 

PlPc 

0.8 1.2 

Fig. 5 - Interaction of compression force and bending moment in a 70 cm long 
lipped channel section (CH90 x 50 x 15 x 1.5) 
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From Figures 4 and 5, it can be seen that the interaction relationship in each case is a curve rather 
than the straight line assumption of equation (12). The interaction here is far from sinlple and 
depends on the stress distribution in the cross-section rather than the stress value in the extreme 
fibre in compression. Clearly, a member subject to a combination of modest compressive force 
and bending moment about the axis of symmetry may have a much greater stability than is 
predicted by the codes. 

5. Comparison of tests and theoretical results 

The influence of local buckling is taken into account in cold-formed member design codes or 
standards, for instance, EC3 (Eurocode 3) [5] and AISI (American Iron and Steel Institute) [6] by 
using the concept of effective width or thickness. However, the interactions between local and 
distortional modes and between distortional and global modes of buckling are not included in the 
codes and standards. Recent research [7] has shown that both approaches could be used for 
sections which undergo distortional buckling before or at the same time as local buckling. 

Figures 6 to 10 show some comparisons between test results and the predictions given by GBT 
(Ayrton-Perry), EC3 and AISI. In these figures, N = A·fy is the short colunm yield load [8,9]. In 
general, the Ayrton-Perry formula with the elastic buckling forces obtained using GBT provides 
the best mean fit to the test results. The curves obtained according to EC3 and AISI, which are 
based on semi-empirical methods, experimentally calibrated, follow the trend of the test results, 
but tend to be rather conservative [14]. 

Load(kN) 
300 

250 

200 
N=A.fy 

150 

50 

___ EC3 

______ AISI 

_all modes 

_____ rigid body 

~ distorsional 
______ local web 

• experiments 

--f--Ayrton-Perry 

o +1 __ 1 C_Hl_71--1 _1 __ +I_~_j-1 -----t-I---+-I _Le_n--1gt~ (cm) 

o 50 100 150 200 250 300 

Fig. 6 - Comparison between test results, the GBT approach and available design methods 
For the CHl7 series of lipped channel columns [8] 
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• experiments 

· ___ EC3 

______ AISI 

_all modes 
______ rigid body 

-----)(-- distorsion 
____ local-web 

--+- Ayrton-Perry 

Length (cm) 

O+---~--~---r--~---+--~ 
o 50 100 150 200 250 300 

Fig. 7 - Comparison between test results, the GBT approach and available design methods 
for the CH20 series of lipped channel columns [8] 

Load(kN) 
500 

400 

300 N=A.fy 

• experiments 

___ EC3 

______ AISI 

_all modes 

______ rigid body 

-----)(-- distorsion 
___ local web 

~-----------~~~-----

• 
200 +1 -11-+1 -11-+--+-.... "-'--1-+-+-""'"-1--1.. 

100 

Length (cm) 

o +-------I-------r------+------,------~----__I 
o 50 100 150 200 250 300 

Fig. 8 - Comparison between test results, the GBT approach and available design methods 
for the CH24 series of lipped channel columns [8] 



63 

200 Moment (kNcm) ___ EC3 

Plastic Mom:nt Mpl=WpLfy 
f--------------'\------- - - - e- - _ all modes 

Yield Mom:nt _____ rigid body 

150 1----------------\----- ---)(- distorsional 

---)(- local-flange 
_______ AISI 

test results 
100 

50 -- - -.., -, 

IWvnLAI 
Length L (cm) 

0 

0 50 100 150 200 250 300 

Fig. 9 - Comparison between test results, the GBT approach and available design methods 
for the Lovell A series oflipped channel beams [9] 

300 
Moment (kNcm) ___ EC3 

Plastic Mom:nt Mpl=Wpl.fy ___ e- __ all modes 

250 
_____ rigid body 

Yield Mom:nt ---)(- distorsional 
_______ AISI 

200 • test results 
___ Ayrton-Perry 

150 • . ... 

100 

50 :IWvnLDI 
Length L (cm) 

O+-__ -+ ___ +-__ -+ ___ +-__ -+ __ ~ 

o 50 100 ISO 200 250 300 

Fig. 10 - Comparison between test results, the GBT approach and available design methods 
for the Lovell D series of lipped channel beams [9] 
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In order to consider the interaction between axial load and bending moment, data from 26 
eccc:<ntric compression tests carried out by Loughlan and Rhodes (1980) were used [10,11]. 
The test specimens were cold-formed lipped channel sections with both ends pinned. An 
eccentric axial load was applied so that the specimens were bent about the asymmetric axis 
with the web in compression. In the tests, the failure of all of the columns was controlled by 
flexural buckling. Another series of eccentric compression tests carried out by Loh [12,13] on 
lipped channel sections bent about the axis of symmetry were also used. The buckling lengths 
used in the determination of the compression and flexural buckling strength are Lex=L, 

Ley =0.5L and Ler=0.5L. 

Two theoretical analyses were carried out using GBT and EC3 [5] in which the bending 
moment was taken to be the applied load multiplied by the eccentricity. In the analyses using 
EC3, the approach without lateral-torsional buckling was used and, in the GBT analyses the 
Ayrton-Perry formula was used to convert the linear buckling results into failure loads. The 
comparisons between test and prediction are given in Figures 11 and 12 for the Loughlan & 
Rhodes' tests and in Figures 13 and 14 for Loh's tests. In case of the Loughlan and Rhodes 
tests, the comparisons show that both theoretical analyses give good correlation with the tests 
and the mean values of the ratio of test to theoretical results are 1.076 for GBT and 1.188 for 
EC3. In case of Loh's tests the comparisons again show that the two theoretical analyses give 
good correlation with the tests and mean failure load ratios of 1.047 for GBT and 1.268 for 
EC3 were obtained. EC3can give a satisfactory prediction here because of the relatively small 
bending moment obtained in tests under eccentric axial load. If the ratio of bending moment to 
axial load is increased, the design codes generally give a conservative prediction and the 
advantage of using GBT can be seen to give a better effect. 

1.6 P exp/P Ayrton.Perry 

1.4 8 
• • 

1.2 $ $ • • • • • • • • 0.8 8 3 

0.6 • P exp/P Ayrton.perry 

0.4 --mean value m=1.076 

0.2 
L (em) 

0 
0 50 100 150 200 

Fig. 11 - Comparison between the Loughlan-Rhodes tests and the results given by GBT 
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18 ~ PexJPEc3 • 
1.6 • • • 
1.4 • • 
1.2 • • • • • 
0.8 

0.6 • Pexp/PEc3 

0.4 
--mean value m=1.188 

0.2 L (cm) 

0 I I I I 

0 50 100 150 200 

Fig. 12 - Comparison between the Loughlan-Rhodes tests and the predictions ofEC3 

1.4 P exp/P Ayrton.Perry 
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• • 0.8 

• • 
061 

• P exp/P Ayrton.Perry 

0.4 
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I 

0: t L (cm) 

I I I I 

0 50 100 150 200 250 300 

Fig. 13 - Comparison between Loh's tests and the predictions ofGBT 
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Fig. 14 - Comparison between Loh's tests and the predictions ofEC3 

6. Conclusions 

Mode interaction in both columns and beams has been analysed using GBT and some significant 
characteristics have been revealed. It can be seen that GBT offers a good tool to with which to 
analyse the interaction of buckling modes. 

The interaction relationship for compressive force and bending moment in thin-walled 
members is not as simple as is suggested by the assumptions in current design codes because 
the failure load depends on the stress distribution in the cross-section rather than the stress in 
the most highly stressed fibre in compression. This is the reason why test results tend to be 
scattered far from the prediction based on the maximum stress assumption. GBT offers a 
rational approach to this problem and the codes clauses may be improved as a result of further 
research. 

Appendix-Notation 

= transverse bending resistance; 
= generalised warping resistance; 
= generalised torsional resistance; 
= second order terms representing the deviation forces which are caused by axial 

stress together with defomlation of the member; 
= stress resultant (1 W = compression force, 2W and 3W = bending moment about 

the major and minor axes respectively, ~ = torque); 
= critical value of the stress resultant; 
= generalised deformation resultant; 
= Young's modulus; 
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= shear modulus; 
= the length of member; 
= the bending moments about the x and y axes respectively; 
= the ultimate moments of resistance in pure bending; 
= the axial compressive force; 
= the ultimate resistance in pure compression; 
= the Euler buckling load evaluated for the full cross-section; 
= the "squash" load evaluated using the effective cross-seetion; 
= the failure load of the member; 
= imperfection parameter. 
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