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THE SHEAR FLEXIBILITY OF CORRUGATED STEEL SHEETING 

by J M Davies BSc, PhD, MICE, MIStructE, CEng* 

and R M Lawson BSc, ACGI** 

1. Introduction 

Corrugated steel sheeting possesses considerable strength and stiffness with respect 

to in-plane shear forces. This property has led. to the increasing use of sheeting not 

merely as cladding but as an integral part of the structure. The simplest and 

possibly most important application is the use of an assembly of roof sheeting and its 

supporting members as a shear diaphragm as shown in Fig 1. The design of 

diaphragms for both flexibility and strength has been fully quantified analytically by 

Bryan(
1

) and refined by Davies(
2

) and it has been verified by extensive testing and 

comprehensive analysis that the flexibility 'c' of the complete assembly can be obtained 

as the sum of 

cl. 
1 

the flexibility due to distortion of the corrugation profile 

cl. 
2 

the flexibility due to shear strain in the sheeting 

c
2

.
1 

the flexibility due to slip at the sheet/purlin fasteners 

c
2

• 
2 

~ the flexibility due to slip at the scam fasteners 

c
2

• 
3 

the flexibility due to movement in the connections to the rafters 

c
3 

the flexibility due to axial strain in the purlins 

Each of these components of flexibility can be calculated from a simple expression. 

In particular, the expression for c1.
1 

is:-
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(1) 

where a and bare the overall dimensions of the diaphragm (Fig 1) 

d the pitch of the corrugations 

E Young's Modulus 

the net thickness of the sheeting 

K is a dimensionless constant which is a property of the cross-section 

of the sheeting and is independent of the length b of the diaphragm. 

The value of K depends on the way the sheeting is fastened to the supporting structure. 

Values for all trapezoidal profiles in common use in Britain have been tabula ted (
1

) 

for discrete fasteners in every, alternate and every third trough. 

This paper is an attempt to assess the adequacy of equation 1 as a practical approach 

to diaphragm flexibility and, in particular, interest is concentrated on the tendency 

of K to vary with length b. In order to make this assessment it is necP,c;ary to 

consider how the true behaviour can be precisely defined. Three alternative approaches 

to the accurate determination of cl. 
1 

are discussed and typical results are compared. 

As a result of this comparison, the relative merits of these approaches are evaluated 

and an alternative expression for c1.
1 

is suggested. 

2. Approaches to the accurate determination of distortional flexibility 

Distortional flexibility arises because the centre of shear resistance of the profile 

is eccentric to the plane of application of the applied shear force and the corrugation 

is twisted out of shape by its own shear flow. The individual plates, whilst moving 

laterally, also rotate and bend in plane thus giving rise to longitudinal warping with 

accompanying shear displacement of the sheeting. 
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This complex behaviour is greatly influenced by the arrangement of fasteners and 

other restraints at the ends of the corrugations. Attention here is concentrated on 

the typical case where the sheeting is fastened down to a supporting member by a 

discrete fastener in every trough. Similar arrangements, with fasteners in alternate 

or every third trough, give rise to much greater flexibilities and can be treated by 

extensions of the methods described here. 

In the present state of the art, a precise and rigorous analysis cannot be made and 

there are three alternative approaches, each with its own particular advantages and 

disadvantages. 

2.1 Energy methods of analysis 

Energy methods of analysis are essentially approximate. Suitable displacement 

functions are assumed and the internal forces evaluated in terms of these displace­

ments. The total potential energy of the system can then be evaluated and minimised 

with respect to each assumed displacement function, this yielding an assessment of 

the deformations of the system. Thus, in the particular case of interest, an 

estimate of the shear deformations in the sheeting can be found. 

Evidently, energy methods depend for their accuracy on the validity of the assumed 

displacement functions and on any simplifying assumptions that are included in 

order to make the analysis tractable. Bryan's mcthod(l) is essentially a very simple 

energy analysis in which only linear plate movements are considered as shown in 

plan in Fig 2. This is now known to be applicable only to relatively short lengths 

of sheeting. For longer lengths of sheeting, bending of the individual flat plates 

in their own plane leading to curvature of the fold lines renders Bryan's analysis 

invalid. 



538 THIRD SPECIALTY CONFERENCE 

A much more comprehensive energy analysis by Libove (
6

) revealed the deficiencies 

of Bryan's approach and led to the present investigation. An alternative and equally 

comprehensive energy formulation is outlined in section 3 and forms the basis for the 

present study. 

In many respects, energy methods offer the most satisfactory solution to the present 

problem but suffer from the disadvantage that unless an alternative precise method is 

available it is not clear what accuracy has been achieved and the relative merits of 

different approaches are difficult to assess. 

2. 2 Measurement of flexibility by testing 

Clearly, the testing of actual panels of corrugated steel sheeting in shear presents an 

apparently attractive means of obtaining reliable data by which to judge the merits of 

the different analytical techniques. However, testing is not without its difficulties 

for the reasons which follow. 

A fundamental difficulty in all of this work is the definition of the boundary conditions. 

If a single corrugation is considered it is clear that the longitudinal edge condition is 

different at the sides of the panel, where there is a tendency for the edge to be held 

straight by the framing members, to the condition internally, where there is a 

compatibility requirement with adjacent corrugations. Because of this situation, it 

is not possible to test a single corrugation. Instead a whole field of corrugations 

must be tested and it must be borne in mind that there will be corrugations at the 

edge of the field with non-typical boundary conditions. 

Furthermore, experiments cannot be set up to measure cl.l in such a way that all of 

the other components of diaphragm flexibility (cl. 
2 

to c
3

) are eliminated. Nevertheless, 
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testing provides a potentially reliable method of evaluating the distortional flexibility 

provided that the test set up is arranged in such a way that the other flexibility 

components are first minimised and then deducted analytically. It should be 

appreciated that the accuracy of this approach diminishes with increasing length as 

the magnitude of the distortional flexibility diminishes relative to the other components. 

A suitable test apparatus is described in section 5 and some typical test results arc 

presented in section 7. 

2. 3 Finite element methods 

Provided that the correct boundary conditions are inserted, a finite element model 

provides the potentially most accurate method of evaluating the flexibility due to 

corrugation distortion. No overall assumptions are made regarding the pattern of 

displacements and provided that a sufficient number of elements are used the true 

behaviour can be examined under a range of external conditions. 

A typical finite element model, in which a single corrugation is considered as a folded 

plate, is shown in Fig 3. It is evident that a considerable number of elements arc 

necessary to model the long and narrow individual plates that make up the complete 

profile. As the simpler folded plate elements are only accurate at relatively low aspect 

ratios the size of the analysis becomes very large as the length of the corrugation 

increases. 

For the finite element analysis described in section 6, the simplest suitable folded 

plate elements were used and a satisfactory arrangement of elements determined by 

a convergence study. It is considered that the results of this analysis provide a 

yardstick by which the accuracy of the other methods may be judged. 
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3. An Energy Method 

The approach developed here is an extension of the method described by Horne 

and Raslan (
4

). It has the advantage that the displacement functions arc expressed 

as terms of a Fourier Series and the increase of accuracy may be examined as 

additional terms are included in the analysis. 

It is assumed for the purpose of this study that a typical cross section of a corrugation 

can distort freely with the total displacement being expressed as individual plate 

displacements UT, US and UB as defined in Fig 4. 

The individual plate displacements due to in-plane bending are expressed as a 

Fourier Series superimposed on the linear plate movements shown in Fig 2. Thus:-

. §2r.y 
Sill b 

· .i2!:Y + a b s in §2r.y 
Sill b 86w b •••• (2) 

b · ~ + a ...£. · .i2!:Y + a b sin §2r.y 
Sill b 10 4w Sill b 11 Gw b 

where y is the distance along the corrugation measured from its centre line. 

It may be noted at this stage that the influence of the supporting members resisting 

downward movement at the ends of the corrugations is considered in section 4 where 

an appropriate reduction factor is introduced. 

In-plane shear strain 'Y in the plates is expressed by means of the relationships: 
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YT = yl + Yz cos~ 

Ys =y
3

+y
4

cos ~ 
b •••• (3) 

YB = y5 + y6 cos ~ 
b 

The total deformation of the single corrugation is therefore expressed in terms of a 

set of functions with 17 variable coefficients which can be expressed in terms of a 

coefficient vector V where 

v ~ •••• (4) 

It then follows from considerations of compatibility that the end shear displacement 

6., defined in Fig 2 is 

•••• (5) 

A necessary requirement for compatibility between adjacent corrugations is that 

the relative shear displacement between the two longitudinal edges should remain 

constant along the total length. This implies that equation (5) can be simplified thus:-

6. = 2bT (al + yl) + 4bs (a5 + y3) + 2bL Y5 

and that: 

0 

•••• (6) 

• • • • (7) 
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The total strain energy of the deformed corrugation may be expressed as the sum 

of the energies due to:-

(a) bending of the cross-section 

(b) longitudinal bending of the plate elements 

(c) longitudinal axial strains in the plate elements 

(d) shear strain in the plate elements 

3. 1 Bending of the Cross Section 

The bending or distortional energy at any cross-section arises as a result of the 

portal frame-like movements associated with UT, US and UB. It follows that the 

bending moment at any point can be expressed in terms of these three parameters 

and the total strain energy of bending obtained by integrating around the section 

and along the length. Thus the distortional strain energy ED may be expressed as 

ED ib [ C(1,1) UT
2 

+ C(1,2) USUT + C(1,3) UTUB 

C(2,2) US
2 

+ C(2,3) USUB + C(3,3) UB
2 J dy (8) 

where C(1, 1) .•.• etc are readily derived(
4

) functions of the cross-sectional 

dimensions bT, bs, bL etc 
a and the plate bending stiffness Et 

112
. 

A typical integration within equation 8 takes the form 

+ (9) 
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3. 2 Longitudinal bending of the plate elements 

The longitudinal bending strain energy is given by 

E = L~i ib 
B . 2 

l 0 
( 

d2Ui) dy 
dy2 

where i refers to the top, side and bottom plates respectively. 

3. 3 Longitudinal axial strains in the plate elements 

543 

(10) 

• • • • (11) 

The bending displacements giving rise to the above expression fo~· EB imply a 

potential incompatibility of longitudinal strain at the plate joints. It is therefore 

necessary to include an additional energy term corresponding to the appropriate 

membrane extension of the side plate which takes the form 

E = 1!"2bsEt [( b b b b )2 
L b a2 T- a9 T + Ty2 - Ly6 

+ 4(a3bT- a1obrJ2 + 9(a4bT- ~ObL) J • • • • (12) 

3. 4 Shear strain in the plate elements 

Here, the total strain energy is 

"s ~ 'f lih 2 
y ds dy 

. . . . (13) 
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3. 5 Summation of the energy expressions and solution for c1.
1 

An examination of equations (8), (9), (11), (12) and (13) reveals that the total 

energy E may be expressed as follows 

(14) 

where V is the vector of coefficients in the displacement functions (equation (4)) and 

[ D J is a square symmetric matrix of coefficients dependent only on the dimcns ions of 

the corrugation. 

The minimum potential energy condition is obtained by minimising the energy with 

respect to variations of each of the displacement coefficients. 

Thus, 

dE ~ 2da 
i 

0 

where da. are small variations in each of the displacement coefficients 
1 

a 1 , a
2

, .... y
6 

in turn and Di is a vector of the terms in row i of [ D J 

(15) 

It may be noted that the compatibility conditions (implied in equation (6) and given 

in equations (7) demand that 4 of the coefficients are not independent and the 17 

equations (15) may be reduced by 4 using equations (6) and (7) and their differentiated 

form shown below. 
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da
5 

- bT da - bT dy1- dy3 - bL dy5 
2b

8 
1 

zb
8 

zb
8 

- bT b _ 2b
8 da

6 
zb

8 dy4 - dy6 da
9 

da
2 

-_I dy
2 

bL bL bL bL 
. . • . (16) 

da10~ - bT da
3 

-
zb

8 da
7 

bL bL 

da
11 

~ - bT da - Zbs da
8 4-

bL bL 

This gives a set of 13 simultaneous equations in the 13 independent coefficients. 

These may be expressed in matrix form as 

[n] ;;- ~ B • . . • (17) 

where [ H J is a square symmetric matrix and B a column vector both involving 

only the dimensions of the corrugation and where 

a a1/.0. 
• • • • (18) 

a2/.0. 

a3/.0. 

a4/.0. 

a6/.0. 

a7/.0. 

aB/.0. 

y1/.0. 

y6/.0. 
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These equations can be solved for the coefficients al/6 ...• etc. When the 

values obtained are substituted back into the expression for the total energy E, the 

shear flexibility c is obtained as 

c (19) 

To extract the distortional shear flexibility c from c, the pure shear flexibility 
1.1 

c must be subtracted where 
1.2 

(20) 

3. 6 Influence of the number of Fourier terms 

If, in the analysis described above, only a
1 

and a
5 

are retained and the remaining 

variable coefficients a
2

, a
3 

.•.. etc removed from the analysis, Bryan's analysis(!) 

leading to equation (1) is obtained. Fig 5 shows how, in a typical analysis, an 

increase in the number of Fourier terms results in an increase in the distortional 

flexibility and hence in the apparent value of the sheeting constant K. It is very 

clear that as the length of the corrugation increases more terms are required to 

accurately reproduce the displacement pattern. Physically, as the length increases, 

the non-linear part of the total distortion becomes more concentrated near the ends 

of the corrugation and more terms are required to reproduce this behaviour. 

The most important single factor in the increase of K with length appears to be the 

horizontal displacement UB of the bottom plate. If a
9

, a
10

, a
11 

are removed 

from the analysis a large reduction in K is obtained, in many cases reducing K 

almost to its base value (Bryan's theory). It is apparent that in a real situation, 

where the sheeting may be fastened to intermediate purlins as well as at its ends, 
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horizontal movement of the bottom plate will be restrained and a reduction of K 

may be expected. Initial investigations suggest that at least two intermediate 

purlins are required before this reduction becomes significant and pending 

further study, it is suggested that the effect be ignored. 

4. The effect of supporting members at the corrugation ends 

547 

Corrugation distortion reaches a maximum at the ends of the corrugations and any 

factors that influence the patterns of displacement in these critical areas may 

have a significant influence on the shear flexibility. In section 3 it was assumed 

that complete freedom of vertical movement existed at the bottom of the side plates 

over the whole length of the corrugation whereas Fig 6 shows that, at the ends of 

the corrugations, vertical downward movement is prevented by the presence of the 

supporting members. 

This leads to a reduction of shear flexibility which may be accounted for by 

multiplying the value obtained according to section 3 by a factor (1 - r) where r is a 

reduction factor that has been found to be very nearly constant with length. Edge 

beam reduction factors can thus be readily calculated on the basis of linear plate 

displacements and values calculated on this basis(S) will be utilised to modify the 

predictions of section 3 in the subsequent discussion. 

Naturally, finite element methods can take account of this effect and this allows the 

accuracy of the reduction factor approach to be evaluated more precisely in section 7. 

5. Experimental determination of flexibility 

Some of the difficulties inherrent in the determination of cl. 
1 

by testing have been 
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outlined in section 2. 2, and means of overcoming them suggested. A suitable 

arrangement for a test programme is shown, without any sheeting in place in Fig 7. 

The left hand longitudinal member and the jacking point were bolted down to the 

strong floor of the Structures Laboratory at the University of Salford. The right 

hand longitudinal member was free to move over needle bearings on the supports. 

The following points may be noted:-

(a) The framing members were of substantial proportions in order to 

minimise flexibility due to axial strain. 

(b) The joints between framing members were pinned so that the unclad 

rig had negligible stiffness. 

(c) Provision was made to measure any rigid body rotation of the rig 

as a whole. 

(d) Provision was made to vary the width of the rig so that widths from 

150mm (single corrugation) to 1250mm (7 or 8 corrugations according 

to pitch) could be tested. 

(e) Provision was made to vary the length of the rig from 1 to 6 metres 

in steps of 1 metre. In Fig 7, intermediate purlins are shown in 

all possible positions. In any test only purlins at the ends of the 

sheet would be in place together with a single purlin at midspan to 

prevent excessive sagging. 

(f) The tops of the purlins were set at the same level as the tops of the 

rafters in order to minimise any eccentricities of loading. 

(g) Where seams between adjacent sheet widths were necessary, a large 

number of seam fasteners were used in order to minimise the 

influence of slip in these fasteners. 
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Three separate sheet profiles, each of 35mm depth, were used in the test series 

described in this paper. In Fig 8 the entire rig is shown clad with British Steel 

Corporation Longrib 700 decking. Tests were also carried out with this same 

profile inverted to form a sheeting and with an intermediate profile (Briggs 

A mas co profile ST 35) as shown in Fig 9. Details of these profiles are shown on 

Figs 10 to 13. 

Each profile was tested in order to establish the flexibility over the whole range 

from one to six metres. In general the full width of the rig was used but in the 

case of the Briggs Amasco sheeting, widths of one corrugation and four corrugations 

were tested as well as the full width of eight corrugations. For each test the load 

was increased in increments and then unloaded several times until a steady linear 

response was obtained so that the bedded-in value of fastener flexibility could be 

confidently used in subsequent analysis (3 ). 

For each test the components of shear deflection other than that due to corrugation 

distortion were calculated according to current theory(Z) and deducted from the 

measured deflection. The results of these tests arc presented, together with 

appropriate theoretical comparisons, in Figs 11, 12 and 13. In each case the 

results are presented as effective values of the sheeting constant K assuming 

equation (1) to hold good. 

6. Finite Element Analysis 

For the analyses described in this paper, simple rect.'l.ngular elements were used 

as shown in Fig 3, each element having five degrees of freedom per node(
7

). 

The finite element mesh was generated by a specially written data generator which 

avoided tedious checking and eliminated the possibility of data errors. Each 
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complete corrugation required only four data cards to describe its boundary 

conditions, length and cross-sectional geometry, material properties and the way 

it was divided up into elements. 

Of particular note in Fig 3 is the provision of edge members having high axial 

stiffness and zero bending stiffness in order to ensure compatibility of edge strain 

with adjacent corrugations. These correspond to the assumption of constant relative 

shear displacement between the two edges of the corrugation that was made in 

section 3 leading to equations (6) and (7) and represent the only method discovered 

to date of obtaining the necessary compatibility with adjacent corrugations. 

The provision of the roller supports R shown in Fig 3 is optional in the data generator 

which can also deal with the case of the edges held straight. Thus all the cases 

necessary for a useful comparison with experiment and energy methods are available 

using finite elements though at a substantial cost in computing time as the number of 

degrees of freedom can quickly run to several thousand. 

6.1 Convergence tests 

In order to establish a suitable arrangement of elements, convergence tests were 

carried out for the two sheeting profiles used in the test series described in section 5. 

A length of 4 metres was chosen as being reasonably representative of the range of 

interest and an analysis carried out with 1, 2, 3 and 4 elements per face around the 

perimeter of the profiles and 60 elements in the length. As can be seen in table 1, 

the flexibility, expressed in terms of the apparent value of the sheeting constant K, 

is remarkably insensitive to the number of elements per face. Because any increase 

in the number of elements per face itself causes a dramatic rise in computing costs 
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as well as necessitating an increase in the number of elements in the length in order 

to preserve a satisfactory aspect ratio, it is advantageous to keep the number of 

elements per face to a minimum. On the bas is of this convergence study, there 

appeared to be no advantage gained by having more than one element per face but 

this seemed a little unrealistic bearing in mind the simple elements used. It was 

accordingly decided to standardise on two elements per face for the remainder of the 

work. 

Number of Apparent value of K 
elements per 

face Longrib 700 sheeting Briggs Amasco ST35 

1 • 903 1. 797 

2 • 898 1. 791 

3 • 900 1. 787 

4 • 899 1. 782 

Table 1 Convergence Tests -Varying number of elements per face 

Further convergence tests were then carried out varying the number of elements 

along the length from 30 to 120 in steps of 30. The results of this investigation are 

plotted in Fig 10. It was clear that 90 to 120 elements were necessary for full 

convergence but that results sufficiently accurate for practical purposes could be 

obtained with 60 elements in the length. It was therefore decided to adopt 60 elements 

in the length (i.e. 600 elements in total) for a length of 4 metres and to maintain 

this element size for the other analyses (e. g. 30 elements x 2 per face = 300 for a 

length of 2 metres and 90 elements x 2 per face = 900 for a length of 6 metres). 
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The results of the finite clement analyses described are incorporated with the test 

results and the energy method analyses in Figs 11, 12 and 13. 

7. Comparison of experimental and theoretical results 

A full comparison of experimental and theoretical results for the three profiles is 

given in Figs 11, 12 and 13. In the case of the Briggs A mas co sheet, Fig 13, 

comparisons with the work of Libovc (
6

) are also included. 

From these graphs it can be concluded that:-

(a) In the absence of the supporting member effect, agreement between 

energy methods and finite element methods is good and the refinement 

of finite element methods is unnecessary for practical purposes. 

(b) The reduction factor (section 4) gives an adequate account of the 

influence of the supporting members over the range of lengths considered. 

(c) In the comparisons made to date, the energy method outlined in this 

paper has given similar results to Libove's somewhat different method(S) 

and the two must be considered equivalent. 

(d) With the full width of the test rig, the experimental flexibilities lie 

remarkably close to the theoretical values with edg~ member effect 

included. This is considered to add further weight to the evidence that 

prm es the adequacy of the energy approach described in this paper. 

(e) As the number of corrugations considered reduces, the experimental 

flexibilitics also reduce becoming very close to the edges held straight 

condition for a single corrugation. 

(f) Over the practical range of lengths (length greater than 1. 5 metres) the 
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variation of the sheeting constant K with length is almost exactly a 

straight line through the origin whether or not the influence of the 

supporting member is considered. This suggests that equation (1) may 

be profitably modified and such a modification is considered in section 8. 

8. Suggested improvements to the expression for cl. 1 

In section 7, it was shown that for all practical purposes, K is proportional to length 

and this suggests that equation (1) requires modification so that b
2 

rather than b
3 

should appear in the denominator. As this consideration arose out of a study of 

the variation of K with length it was decided to continue the parametric study and to 

consider the variation of K with thickness, other quantities being held constant. 

The energy method was used for this study and typical results are shown in Fig 14 

for the range of interest (0. 5mm :s; t :s; 1. 25mm). 

It was found that K was not constant with thickness t as implied in equation (1) but 

tended to vary with jt. 4 
As the d term in equation (1) is in fact a cross-sectional 

dimension that exists to preserve the dimensional integrity of the equation, it follows 

that a better equation for the distortional flexibility may well be:-

(21) 

In the above equation, K is alternative dimensionless sheeting constant which reflects 

the longitudinal bending properties of the profile as well as the cross-sectional 

bending properties. 

Further investigation of equation (21) confirms its suitability for dealing with the 

variation of flexibility with length over a range of situations and it is now suggested 

that it should replace equation (1) for the case of sheeting fastened in every corrugation. 
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In order to facilitate the practical use of equation (21), Table 2 has been prepared 

from which the constant K may be extracted with adequate accuracy for most 

commercially available profiles. In table 2, the reduction factor r for the effect of 

the supporting member is also incorporated. 

For the other important cases of sheeting fastened with a discrete fastener in 

alternate and every third corrugation it appears that the divergence with equation (1) 

is not so marked and that, pending the completion of the study of this case, the 

existing theory may be used. 

Conclusions 

The distortional shear flexibility of corrugated steel sheeting has been examined in 

detail using each of the analytical and experimental techniques currently available. 

It is concluded that a comprehensive energy analysis with a suitable reduction factor 

to allow for the supporting members at the ends of the corrugations provides a more 

than adequate prediction of the required flexibility and leads to a much improved 

expression for general use which accurately reflects the influence of panel length. 

Tables have been prepared which permit this improved expression to find 

immediate practical implementation. 
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Summary 

Distortional shear flexibility is an important part of the total flexibility of diaphragms 

fabricated using corrugated steel sheeting. A number of analytical techniques for 

determining this flexibility are available though their relative merits are not clear. 

In this paper, a further energy method of analysis is described and its accuracy 

justified by comparison with experiment and finite element analysis. The results 

included provide a yardstick by which other methods may be judged and a limited 

number of such comparisons are made. 

As a result of this work, a simple expression for shear flexibility is developed and 

tables provided so that it can find immediate application in practical situations. 
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Table 2 

0. 1 0.2 

. 014 . 033 

. 047 .111 

. 097 . 222 

. 172 . 371 

.244 .564 

0. 1 0. 2 

. 017 . 03[) 

. 071 . 121 

. 162 . 24~) 

. 259 . 40R 

.449 . S~l:~ 

0. 1 0.2 

. 022 . 036 

. 090 • 121 

. 190 . 224 

. 323 . 294 

. 357 . 293 

0. 1 0.2 

• 026 . 037 

. 100 . 098 

.134 .107 

• 065 
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0.3 0.4 

. 047 . 053 

. 158 .179 

. 318 . 364 

. 523 . 599 

• 862 .896 

0. 3 0.4 

. 046 . 048 

. 150 . 153 

. 288 . 2R2 

. 448 . 438 

. 66~l . 541 

0. 3 0.4 

• 044 . 042 

. 129 .119 

. 204 . 188 

• 225 . 203 

. 189 . 133 

0.3 0.4 

• 039 • 033 

. 089 • 066 

. 049 

c 
1.1 

0.5 0.6 

. 051 . 048 

. 178 . 180 

.360 . 36~) 

.597 . 613 

. 878 . 908 

0. 5 0.6 

. 043 . 051 

.142 . 166 

. 261 . 325 

. 3~)6 -GOG 

. G40 . G~lfl 

0.5 0. 6 

. 035 • 045 

. 097 . 182 

.190 • 205 

.184 

0.5 0.6 

. 033 • 037 

. 065 

0.7 

. 066 

.227 

. 436 

• 754 

1.10 

0. 7 

• 059 

.198 

.383 

.5D5 

.841 

0.7 

. 052 

. 164 

0. 7 

• 05 7 

0.8 0.9 

. 075 .100 

• 273 .374 

.570 .815 

.973 1. 65 

1. 49 2.20 

0.8 0. 9 

. 070 .109 

. 247 

.521 

0.8 

. 076 

Values of K including reduction factor for effect of supporting member 
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Symbols 

a width of shear panel measured across the corrugations (mm) 

a vector of coefficients in the displacement functions 

a
1 

,a
2
.•.•• coefficients in the displacement functions 

b length of shear panel measured along the corrugations (mm) 

bL, b8 , bT cross-sectiolli'l.l dimensions defined in Fig 4 

B column vector of coefficients in the dimensions 

c flexibility of shear panel (mm/kN) 

components of shear flexibility 

C(l,l), C(l,2) terms involving cross-sectional dimensions only 

d 

D 

E 

G 

H 

K, K 

r 

v 

y 

y 

pitch of corrugations (mm) 

matrix of coefficients in the energy analysis 

2 
Young's modulus (kN/mm ) 

components of total strain energy 

shear modulus 

matrix of coefficients in the energy analysis 

second moment of area 

non -dimensional sheeting constants 

reduction factor to allow for the influence of supporting members 

net sheeting thickness (mm) 

components of displacement defined in Fig 4 

vector of coefficients in the displacement functions 

distance along corrugation measured from centre line 

shear strain 

coefficients in the assumed strain functions 

shear displacement of corrugation 
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Fig 2 Distortion of corrugation in plan 

(with fold lines remaining straight) 

Edge member of high 

axial stiffness and 

zero bending 

stiffness. -......____ 

I 
R 

Fig 3 Finite element model of a single corrugation 
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r 
-----·----· ------~~ 

d 

Fig 4 Profile dimensions and displacements. 
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Fig 5 Illustrating the effect of increasing the nurnber of 

Fourier terms in the plate displacement functions 
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(a) Deformations assurned in energy analysis. 

(b) Real Situation- deforrnation restrained by 

supporting rnernber. 

Fig 6 Deformations at the end of a corrugation 

Fig 7 Test rig unclad 
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Fig 8 Tcsl rig clact with ESC Longrib 700 rkcking 

Fig 9 Test rig clad with Briggs Amasco profile ST 35 
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Effective sheeting 

2 constant K 

~~ !35 ~Briggs Arnasco ST35 ....J!i.l ~ 

30 

t=0.66rnrn l 152 l 
~ ~ 

700 sheeting 

t= 0.57 rnrn 

60 90 

~~5 
l 178 } 

120 

Fig 10 Convergence tests- varying nurnber of elernents in length 
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Fig 11 Summary of results Longrib 700 decking 
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Fig 12 Summary of results Longrib 700 Sheeting 
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Effective sheeting 
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Finite element results 
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Libove's analysis 
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Fig 13 Summary of results -Briggs Amasco ST 35 
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