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Nineteenth International Specialty Conference on Cold-Formed Steel Structures 
St. Louis, Missouri, U.S.A, October 14 & 15 2008 

 
STRENGTH OF COLD-FORMED STEEL JAMB STUD-TO-

TRACK CONNECTIONS 
 

A.V, Lewis1, S.R. Fox2 and R.M. Schuster3 
Abstract 

Cold-formed steel structural members are often used in building construction, 
with a common application being wind loadbearing steel studs. The studs frame 
into horizontal steel track members at the top and bottom of the wall assembly, 
with the stud-to-track connection typically being made with self-drilling screws. 
The design of the wall stud must include a check of the web crippling capacity 
at the end reactions, and there are design rules in place for the typical stud-to-
track connection. However, at every opening in the wall assembly such as a 
window or door, there are jamb stud members that must also be designed for the 
stud-to-track connection strength. These jamb studs can occur at the termination 
of the bottom track or at an interior location, and can be single or multiple 
members. Reported in this paper are the results and analysis of a collection of 
end-one-flange loading tests of common jamb stud-to-track connections. Design 
expressions are proposed to predict the capacity of this connection for these 
structural members. 
 

Introduction 

Cold-formed steel structural members are used extensively in building 
construction throughout the world due to a combination of their high strength-
to-weight ratio, stiffness, recyclability, and the relatively low cost associated 
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with their supply and installation.  Infill wall framing is a common application 
for a subset of cold-formed steel structural members referred to as ‘wind 
loadbearing’ studs used to support the exterior wall finish and transfer lateral 
loads, such as those imposed by wind pressure, to the main structure.  These 
studs ‘infill’ the space between the main structural elements from floor-to-floor. 

 
In wind loadbearing applications, there is some type of deflection connection at 
the top track to accommodate the anticipated movement of the upper floor and 
prevent the wall studs from being axially loaded.  One type of deflection detail 
is illustrated in Figure 1, which uses a double top track arrangement. The 
behaviour of these deflection connections is not included in the scope of the 
experimental work reported in this paper. 
 

Bottom track

Floor slab

Knock-out

Built-up jamb studs

Window sill

Interior lateral 
bracing

Exterior lateral 
bracing

Steel Beam

Inner top track
Outer top track

Connection of interest

 
 

Figure 1: Typical Wind Loadbearing Wall Application 
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The research presented in this paper focuses on the connection between built-up 
jamb members and the bottom track, both at interior locations, as shown in 
Figure 1 for a window opening, and at end locations, such as would be found at 
a doorway or building corner. 
 
The design of cold-formed steel structural members in North America is 
governed by the North American Specification for the Design of Cold-Formed 
Steel Structural Members, referred to as the NASPEC [ASISI 2007a; CSA 
2007]. Previous research [Fox and Schuster 2000] has studied the single stud-to-
track connection strength, and a design procedure has been adopted in the North 
American Standard for Cold-Formed Steel Framing – Wall Stud Design [AISI 
2007b]. However, neither the NASPEC nor the Wall Stud Design standard have 
design expressions for determining the strength of the built-up stud-to-track 
connections used as jamb studs. 
 
Experimental Investigation 
 
An experimental study was performed at the University of Waterloo 
concentrating on the behaviour of jamb stud-to-track connections in curtain wall 
construction [Lewis 2008].  The objective of this investigation was to develop 
design provisions for calculating the strength of this connection. The parameters 
considered in the test program were as follows: 

• stud and track thickness (0.8mm to 1.9mm); 
• stud and track web depth (92mm and 152mm); 
• configuration of jamb studs (back-to-back, toe-to-toe and single); 
• location of jamb studs in the track (interior and end); 
• screw size (#8, #10 and #12); 
• screw location (both flanges and single flange); 
• stud and track the same thickness; 
• yield strengths from 300 to 450 MPa. 

 
Test specimens were constructed of C-shaped studs with edge stiffened flanges 
and track sections with unstiffened flanges.  For each different member type, 
tensile coupons were taken from the webs and tested in accordance with ASTM 
A370 [ASTM 2005] to determine the mechanical properties of the base steel 
material.   
 
Test Specimen Configurations 

Framing an opening in the wall for a window usually requires leaving a solid 
surface at the jambs for the attachment of the window itself.  To save time and 
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material, framers prefer using jamb studs in a toe-to-toe configuration to 
eliminate the need for an additional track section to close off the opening.  
However, in some cases due to the strength requirements or the framing 
methods, the jamb studs will be connected back-to-back. This configuration 
makes it easier to connect the members together to act as a built-up section, but 
does require an additional piece of track to close off the opening. Illustrated in 
Figure 2 are two jamb configurations at a window opening showing the studs 
framing into a bottom wall track that is continuous past the jamb. 
 
 

 
 

Figure 2: Jamb Studs at a Window Opening  
 
When the jamb is made from back-to-back members, a piece of track is added to 
the inside stud to provide the solid surface in the opening required for the 
installation of the door or window. This track may be continuous along the 
length of the jamb stud, but is cut short at the top and bottom since a track 
section cannot frame into another track section as a stud can do. Consequently, 
while the track adds to the flexural strength of the jamb, since it is not connected 
to the top and bottom wall track, the jamb track does not transfer any shear at 
the ends. The entire reaction at each end of the jamb is taken through the 
members that frame into the top and bottom wall track, specifically the studs. 
Even though it is very common for a built-up jamb to include track sections, 
these members do not contribute to the strength of the jamb stud-to-track 
connection and so were not included in this test program.  
 
In a similar manner to the window framing, the built-up jambs at a doorway can 
also be configured in toe-to-toe or back-to-back shapes, but in a door opening 
the bottom wall track terminates at the jamb stud. Given that the bottom track is 
no longer continuous, the strength of the stud-to-track connection will be 
affected. Illustrated in Figure 3 are the configurations of jamb studs at a door 
opening that were tested. In addition to the built-up configuration, two 
configurations of single member were also tested. 
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Figure 3: Jamb Studs at a Door Opening 
 
 

Screw Size and Location 

Standard practice for steel stud framing is to use a self drilling screw to connect 
both flanges of the stud to the track into which it frames, and the minimum size 
(diameter) for these screws is #8. For some of the thicker steel sections, a #8 
screw is not recommended since the diameter is too small and it can shear off as 
it is being installed. To avoid this limitation, most of the tests in this program 
used #10 screws to make the connections. A series of tests were carried out with 
#8 and #12 screws to investigate whether the screw size does affect the strength 
of the connection.  
 
In practice it may be possible to find installations where the screws had been 
inadvertently omitted from one side of the stud or the other. Without the screws 
connecting both flanges of the stud to the track, the load transfer within the 
connection will be different and the ultimate strength may change. A series of 
tests were run where screws were only installed in one flange of the stud. 
Illustrated in Figure 4 are the test configurations that investigated the various 
screw sizes and placement.  
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Figure 4: Test Configurations with Varying Screw Size and Placement 
 

 
Test Procedure 

The test procedure involved conducting a series of single point loading tests on 
simply supported built-up jamb assemblies. The jamb studs were cut to 1220mm 
lengths and connected in the toe-to-toe or back-to-back configuration. For the 
single stud tests, the single stud was reinforced with a second stud, but the end 
of the reinforcing stud was kept back 152mm from the track, and the single 
jamb stud made the stud-to-track connection. 
 
To prevent a flexural failure or a web crippling failure of the jamb stud at the 
point of applied load, the assemblies were reinforced with additional pieces of 
track.  The track into which the jamb studs framed was bolted to an 8mm thick 
steel angle with two 12.7mm steel bolts and 25mm washers, spaced no more 
than 152mm apart, with a bolt on either side of the stud-to-track connection. 
Connecting the track to the supporting structure in this manner avoided potential 
flexural failure of the track or failure of the track-to-structure connectors.  
 
The unconnected end of the test specimen was supported on a load cell. The 
readings from this load cell subtracted from the load cell measuring the total 
applied load gave an accurate reading of the load at the stud-to-track 
connection.    The photograph in Figure 5 and the sketch in Figure 6 illustrate 
the test setup.   
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Figure 5: Photograph of a Typical Test Setup 

 
 

1220mm (48")

305mm (12")915mm (36")
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Figure 6: Schematic of a Typical Test Setup 
 

The ultimate load recorded for each test was determined when the test specimen 
was no longer capable of carrying an increasing load or when the deflection was 
considered excessive.  In addition to the ultimate load, an effort was made to 
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record the onset of web crippling, and to record other failure modes as they 
occurred.  For example, as some samples began to fail in web crippling, track 
punch-through began, and then screw failure occurred, effectively ending the 
test.  The modes were noted, and the applied load at the onset of each mode 
recorded when possible. 
 
The test fixture was not appropriate to assess the track deflection nor was that 
the intent of these tests; however, to qualify failure modes, it was decided to 
record the deflection of the connection itself—excessive deflection of the 
connection being considered a failure mode.  The deflection data was obtained 
by placing a low-voltage displacement transducer (LVDT) directly above the 
junction of the stud and track connection (shown in Figure 5). 
 
Failure Modes 

The observed failure modes were:  
(a) web crippling;  
(b) track punch-through; 
(c) excessive deflection at the stud-to-track connection; 
(d) screw pull-out; 
(e) combination of screw shear and tension failure.  

 
Web crippling: 
Web crippling of the jamb stud was the most common failure mode, and 
occurred in all cases where studs were paired toe-to-toe, or when single stud 
configurations were tested. Web crippling would also occur when the studs 
were paired back-to-back but only with the thinner stud sections.  The 
photograph in Figure 7 shows the web crippling failure mode. 
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Figure 7: Photograph of Web Crippling Failure 

 
Track Punch-through: 
Track punch-through (where the corners of the jamb stud sheared through the 
track flange) occurred in the back-to-back configurations, both interior and end 
locations, where there were fasteners in both the top and bottom flanges. With 
one exception, punch-through failure only occurred in material 1.52mm and 
1.91mm thick. Previous research [Fox and Schuster 2000] found that for single 
stud connections punch-through would not occur if the track was the same 
thickness as the stud or greater. In all the tests being described in this paper the 
track thickness was the same as the stud thickness. The photograph in Figure 6 
shows the back-to-back studs punching through the track without web crippling. 
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Figure 8: Photograph of Track Punch-Through Failure 

 
Deflection: 
In some cases, the test specimen was able to carry additional load after web 
crippling had occurred, although with increased deflection at the stud-to-track 
connection. In the end location tests there was no web crippling and failure was 
due to track deformation alone. Illustrated in the photograph in Figure 9 is an 
example of excessive track deflection. Deflections in excess of 12.7mm were 
not uncommon and would certainly be considered unacceptable from a 
serviceability perspective.  
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Figure 8: Photograph of Excessive Track Deflection 

 
Screw Failure: 
Of the three screw failure modes observed, screw pullout was the easiest to 
characterise, and always occurred in conjunction with web crippling and/or 
excessive deflection.  The pull-out occurred in the screw loaded in tension 
connecting the top flange of the stud. With the thicker stud sections some 
configurations failed in a combination of screw tension and shear. Next to track 
punch through, screw shear was the most frequent failure mode.  
 
Web Crippling Predictor Equation 

The basic web crippling equation from the Wall Stud Design standard [AISI 
2007b] was used with new regression coefficients determined from the test data. 
Web crippling coefficients are proposed for each test configuration that 
exhibited web crippling failure. The applicability of these design expressions 
should not be extended beyond the limits of the material properties and sizes of 
the tested specimens as shown. The web crippling predictor equation is given in 
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Eqn. 1 and the coefficients are provided in Table 2. Note that Eqn. 1 is non-
dimensional and can be used with any consistent system of units.  
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where,   

Pn = Nominal web crippling strength per stud web 
C = Web crippling coefficient (see Table 2) 

 Ch = Web slenderness coefficient = 0.019 
 CN = Bearing length coefficient = 0.74 
 CR = Inside bend radius coefficient = 0.19 
 Fy = Yield strength of the stud material 

h = Flat dimension of the stud web measured in the plane 
   of the web 
 N = Bearing length = 32mm (track flange width) 
 R = Stud inside bend radius 
 t = Base steel thickness of stud 

Ω  =  1.70 for ASD for single stud interior configuration 
 = 1.90 for ASD for all other configurations listed in Table 2 
φ  =  0.90 for LRFD for single stud interior configuration 
 = 0.85 for LRFD for all other configurations listed in Table 2 
 = 0.75 for LSD for single stud interior configuration 
 = 0.70 for LSD for all other configurations listed in Table 2 

 
Table 2: Web Crippling Coefficients for Jamb Stud-to-Track Connections 

Configuration Web crippling  
coefficient, C 

Single stud Interior 3.70 

Single stud Adjacent to wall opening with 
reinforcing lips facing opening 2.78 

Single stud Adjacent to wall opening with stud 
web facing opening 1.85 

Double stud Toe-to-Toe Interior 7.40 
Double stud Toe-to-Toe, Adjacent to opening 5.55 
Double stud Back-to-back, Interior 7.40 
Double stud Back-to-back, Adjacent to opening 7.40 
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Listed in Table 3 are averages of the tested web crippling failure loads (Pt) 
divided by the predicted web crippling strength (Pn), the coefficient of variation 
(COV) of these ratios, the number of tests and the geometric limits of 
applicability.  
 

Table 3: Web Crippling Prediction Results 

Test 
Configuration 

Avg. 
Pt/Pn COV 

No. 
of 

tests 

Stud 
Thicknes

s 
(mm) 

Stud 
Depth 
(mm) 

Toe-to-Toe, Interior 0.980 0.058 14 0.8 – 1.9 92 - 
152 

Toe-to-Toe, End 0.988 0.083 16 0.8 – 1.9 92 - 
152 

Single, End 
(web on opening) 1.03 0.129 8 0.8 – 1.9 92 

Single, End 
(reinforcing lips on 

opening) 
0.995 0.138 8 0.8 – 1.9 92 

Back-to-back, Interior 1.00 0.070 11 0.8 – 1.1 92 
Back-to-back, End 1.00 0.002 3 0.8 – 1.1 92 

 
Punch-Through Predictor Equation 
The punch-through failure mode is a function of the material properties of the 
track. The Wall Stud Design standard includes a design expression for this 
failure mode based on determining an equivalent bearing width. A different 
approach is proposed here as shown in Eqn. 2.  
 

ut
2
tnpt Ft2.15P =               Eqn. 2 

where,   
 Pnpt =  Nominal track punch-through strength 
 Fut =  Tensile strength of the track material 
 tt =  Base steel thickness of track 

Ω  =  2.10 for ASD 
φ   =  0.75 for LRFD 
  = 0.65 for LSD 
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Listed in Table 4 are averages of the tested punch-through failure loads (Pt) 
divided by the predicted strength (Pnpt), the coefficient of variation (COV) of 
these ratios, the number of tests and the geometric limits of applicability.  
 

Table 4: Punch-Through Prediction Results 

Test 
Configuration 

Avg. 
Pt/Pnpt 

COV 
No. 
of 

tests 

Stud 
Thicknes

s 
(mm) 

Stud 
Depth 
(mm) 

Back-to-back,  
Interior or End 1.00 0.192 19 1.1 – 1.9 92 

 
Effect of Missing Screws 
The other conditions investigated were the size and placement of the screws. 
The standard screw used for the majority of the tests was a #10. The failure 
mode varied depending on the test specimen configuration, but with a couple of 
exceptions, screw failure did not occur before one of the other limit states. In the 
test series with the #8 screws, screw shear became the failure mode for the 
thicker sections at a reduced load compared to the #10 screws. When the #12 
screws were used (in both flanges) the failure mode and load were comparable 
to the same configuration with the #10 screws. When a single screw was put in 
the bottom flange, this was sufficient to restrain the assembly and the failure 
mode was punch-through. When the single screw was put in the top flange, the 
failure mode was excessive deflection caused by the bottom flange of the track 
being unrestrained and bending under load. 
 
Conclusions 

The general conclusions from this work are as follows: 
• Design expressions are proposed for a range of jamb stud configurations 

based on a web crippling or punch-through failure mode. These design 
expressions should not be used beyond the limits of the material properties 
and sizes of the tested specimens. 

• The size of screws should be selected based on the thickness of members 
being connected. Screws should be placed in both flanges, but some usable 
capacity is available when only a single screw is used. 

 
Presented in the paper is a summary of a test program. For a complete 
presentation of the test data and analysis, refer to the original work [Lewis, 
2008].  
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