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Sixteenth International Specialty Conference on Cold-Formed Steel Structures 
Orlando, Florida USA, October 17-18, 2002 

The Behaviour of Drive-In Storage Structures 

MHRGodleyi 

Abstract 

The paper describes the behaviour of Drive-in and Drive-thru pallet rack structures. It proposes a 
number of simplified two-dimensional models for the analysis of such structures. These models 
are shown to be conservative and take account of the non-linear behaviour of the structures. The 
paper makes some comparisons between the output from these and a 3-D finite element program. 
The effects of friction between the pallet and the supporting rail is discussed briefly. 

Introduction 

This paper is about Drive-in and Drive-thru storage stIT1ctures and their analysis and design. Both 
Drive-in and Drive-thru racks are structures that allow very high storage space utilisation at the 
price of reduced accessibility compared with conventional pallet racks. For normal pallet racks 
there are a number of design standards available in Europe .2, the USA3 and Australia4 but for 
Drive-in and drive-thru racks the SEMA2 standard is the only one in common use and has not 
changed significantly for many years. 

A Drive-in rack is shown in figure 1 in front and side elevations and in plan. Stability in the left
to-right direction is provided by the flexural stiffness of the portal beams and by the spine 
bracing at the rear. This is linked to forward parts of the rack by plan bracing over the top. 

The rack shown is 5 pallets deep, three pallets high and may have many bays. The pallets are 
stored on pallet rails by fork-lift trucks which enter the rack from the front (or the rear in some 
lanes) to deposit or collect a pallet. Access to any particular pallet is restricted by the presence of 
other pallets on the same rails and by those on rails above and below it. 

For this reason this type of racking is usually used for the bulk storage of goods all of the same 
kind where accessibility to a particular pallet is not a high priority. 

Drive-thru racks are similar to Drive-in racks but have no spine bracing. This has the operational 
benefit that access to the rack is the same from the front and the rear in all lanes. Now, however, 
the left-to-right stability is provided by portal frame action alone. 

In the front-to-back direction both types of rack are braced. In the example shown, pallet racking 
frame bracing is used to link adjacent columns and the pallet rails tie the frames together. 

iSenior Research Fellow, School of Architecture, Oxford Brookes University, Oxford, UK 
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~I Spine bracing Frame bracing 

Front Elevation Side elevation 

Plan 

Figure 1. Typical Drive-in structure 

Analysis of these racks is straightforward if a three dimensional package is used, but this is a 
rather cumbersome approach when accurate information about the load carrying capacity of any 
configuration is required at short notice for the purpose of costing and estimating. In this paper 
some alternative approaches to the analysis of such racks are presented which are efficient and 
accurate. 

Loading 

The primary loading on the rack comprises the weight of the pallets combined with the effects of 
frame imperfections. The latter may be modelled either by setting the columns out-of-plumb or 
by applying an equivalent horizontal load. In addition to this, account should be taken of the 
minor impacts that occur during placement of the load, and of course member imperfections. 
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The pallets are supported on the pallet rails, eccentric to the·columns. In the fully laden rack this 
means that the internal columns are centrally loaded and only the two lines of columns at the 
ends of the rack are subjected to offset loading. These end columns carry only 50% of the 
vertical load, however and are not usually critical. 

When a pallet is absent in any aisle, the internal column adjacent to the empty space is subject to 
eccentric loading and hence local bending, combined with reduced vertical loading, and may be 
critical. 

The effects of part loading, that is the effect of a single pallet being absent from an otherwise 
fully loaded rack, and placement are not included in what follows. Part loading is a local effect 
that does not have a sway component and may be dealt with by superposition. Placement loading 
may be dealt with either as a local effect or by the application of an additional distributed side 
load. 

Drive-thru racks 

The failure mode for Drive-thru racks is a sway failure from left-to-right as shown in figure 2. 
The elastic buckling load is dependent upon the stiffness of the portal beam and its connection to 
the column. This connection is often a semi-rigid pallet rack connection comprised of hooks 
which engage in slots in the front of the column. The base of the column is usually bolted to the 
ground and is very stiff, so that it behaves as a fixed base. The FEMI code describes test methods 
for determining the stiffness of such bases in cases of doubt. 

Figure 2. Sway failure mode for a Drive-thru rack 

The construction of a Drive-thru rack is regular and it may be analysed by considering a single 
column, loaded at each level and restrained by rotational springs at the top and bottom. Figure 3 
shows such a single column in isolation, fully loaded at each level. At the base it is fixed and at 
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W ---'cxH 

W ---.cxH H 

Figure 3. Single column model for a Drive-in rack 

the top the restraining effects of the beam and its connector are represented by a rotational 
spring. 

In the sway mode the portal beam is put into double curvature which is anti-symmetric for a rack 
with a significant number of bays, so that the spring stiffness is given by, 

in which, 

kb = stiffness of the beam end connector 

EIb = flexural rigidity of the portal beam 

4 = span of the portal beam 

The slenderness of such racks is usually quite high and consequently a second order analysis is 
recommended. This may be carried out on the single column and the normal interaction design 
checks made to ensure structural adequacy. The use of a single column is conservative because 
the stiffening effect of the part-loaded end columns are neglected. This may be accounted for by 
enhancing the flexural properties of the columns. 

When a second order analysis is made the effect of member imperfections may be included in the 
global analysis. Alternatively they may be included by using a column curve. In that event the 
system length, H, could be used to determine the compressive strength, but when a buckling 
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analysis shows that the actual buckling length for the column is less than the system length, the 
true buckling length may be used. 

The SEMA2 code recommends that for fully loaded columns of the type shown in figure 3 the 
effective length may be taken as 0.7SH provided the centre of mass of the payload is at less than 
2/3H, where H is the height of the rack. This is then used in a linear analysis to design the 
column. 

To show the significance of the stiffness of the portal beam, the model in figure 3 has been 
analysed with the axial load equally shared on 10 levels. Full fixity has been assumed at the base. 
In terms of the non-dimensional stiffness, KbHlEIc the variation of the non-dimensional total 
buckling load Perit=Perit H2/Elc is plotted in figure 4. In these expressions Elc is the flexural 
rigidity of the column. 
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Rotational stiffness at the top of the column K.HlEI, 

Variation of elastic buckling with rotational stiffness at the top 

As expected the elastic buckling load increases as the rotational stiffness increases. The range of 
values of perit is from 6.84 when the top is pinned to about 17 when both ends are fixed. For the 
pinned case Timoshenk05 provides a solution, perit= 6.48 for a uniformly distributed axial load. 
From the same curve it can be seen that for values of the spring stiffness above 10, the elastic 
buckling load is still more than 90% of the full fixed end value. For efficient use of the section 
the top stiffness should be as large as possible. 
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It may be noted that the effective length of such a column does not reduce to 0.75H until the non
dimensional stiffness is about 30. This requires quite a high stiffness for the portal beam 
assembly and it may not always be reached. 

For a typical Drive-thm rack with the proportions shown in figure l(but with no spine bracing) 
7.2m high, a buckling analysis using the single column model gives an effective length factor for 
the column of 0.94. Using this length to determine the compressive strength of the column, based 
on a typical set of section properties, the payload per level is 5.31kN. This will provide a basis 
for comparison with a Drive-in rack of the same proportions. A 3-dimensional analysis by finite 
elements gave an effective length for the column of 0.81. 

Drive-in racks. 

Models for analysis 

For a Drive-in rack, the spine bracing provides some horizontal restraint at the top so that sway is 
restricted. The stiffness of this restraint is an important factor in determining the elastic buckling 
load factor for the rack. 

Several alternative models may be adopted to simplify and speed the design of a Drive-in rack. 
The simplest is a single column model of the type shown in figure 5. This is the same as the 
Drive-thm single column model but has an additional horizontal spring at the top of the column 
to represent the restraining effect of the bracing system. Care must be taken to obtain an accurate 
estimate of the spring stiffness. This stiffness is dependent upon the linked stiffnesses of the 
plan, spine and frame bracing in the structure. 

W ---+aH 

W ---+aH H 

W ---+aH 

Figure 5. Single column model for a Drive-in rack 
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An alternative approach is to unfold the bracing system to make a plane frame structure which 
has all the essential features of the original 3-dimensional frame. 

Unfolded rack 

The rack is unfolded in the manner shown in figure 6. Here the plan bracing is rotated upwards 
about the axis of the rearmost portal beam and rigid ties link from the plan bracing to the tops of 
the appropriate columns. The front face of the rack now appears at the top of the diagram 

Plan bracing 

Frame bracing springs 

Spine bracing 

Figure 6. Arrangement for the unfolded rack 

The plan bracing is prevented from rotating about the vertical axis as a rigid body by the 
resistance of the lines of braced columns running from front to rear of the rack. This resistance is 
modelled by a linear spring at each node ofthe plan bracing grid. (only one line of these is 
shown in figure 6 for the sake of clarity) 

The flexural properties of the columns are the aggregated properties of all the columns in that 
line. The loads and the stiffnesses are also aggregated. This model is now a plane frame on 
which a second order analysis can be made. 

After a second order analysis of the rack, an inspection of the column members shows that the 
first fully loaded column in each lane nearest the front of the rack is usually critical. The columns 
on the front face of the rack perceive the lowest horizontal bracing stiffness, but they carry only 
half the vertical load of the internal columns. The first column in from the face of the rack is 
fully loaded and it sees the lowest stiffness from the bracing system of all those in its lane. 

Using the same set of section properties and loads as for the Drive-thru rack, the elastic buckling 
load factor for the unfolded rack is 2.08. This is the same as that obtained from a buckling 
analysis of the three dimensional rack using a finite program. It corresponds to an effective 
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length factor of 0.46. fu the SEMA2 code of practice the recommendation is for an effective 
length factor of 0.75 for a structure of this type. 

When this buckling length is used to determine the compressive strength of the columns, the 
payload per column per level becomes 15.0kN, nearly three times the payload for the unbraced 
Drive-thru rack. 

Single column model 

In any single column model of this structure, it is the apparent stiffness of the horizontal bracing 
system at the top of this column that must be calculated. The rotational stiffness of the portal 
beam is the same as for the Drive-thru column. 

Under the action of horizontal loads such as those caused by frame imperfections, the columns 
tend to sway. This sway is resisted by the plan bracing which in turn is restrained from horizontal 
movement by the spine bracing. The plan bracing is prevented from rotating about the vertical 
axis by the resistance of the frame bracing to sway in the down-aisle direction. 

Figure 7 shows the loading pattern to which the bracing system is subjected in a regular rack. 
The inner columns are all fully loaded while the peripheral columns carry 50% of the vertical 
load. Side loads are essentially proportional to the vertical loads, hence the pattern shown in 
figure 7 in which the load transmitted at the top of each fully loaded column is given by f. The 
number of columns in one row of one lane is Nu. The total shear applied to the plan bracing is 
(Nu-l)2f. This load distribution appears to hold good at all stages of loading. 

---.O.5f(Nu-l) 

-+(Nu-l)f 

1 ! -+(Nu-l)f 

~ .................. ·······1\··=:::;:::::~{-~~s::-=1i-=············· .. ]\ -+ (Nu-l)f 

-+(Nu-l)f 

---.O.5f(Nu-l) 

Figure 7. Horizontal loads on the bracing and body rotation of the plan bracing 
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The significance of the different components of the bracing system depends upon the geometry 
of the rack structure as well on the geometrical properties of the structural sections. The braced 
part of the rack behaves linearly and so the deflections of the different components may be 
computed by hand and explicit expressions can be derived for each of them. 

The stiffness of the plan bracing system is usually relatively very large and can be calculated 
assuming that the flexibility of all but the diagonal members is negligible. The bracing system is 
assumed to behave linearly and members are all taken to be pin-jointed. Then, under the action 
of the set of loads in figure 7, the deflection of the front face of the rack due to distortion of the 
plan bracing is, 

Ll = fLd(N u _1)2 
P 4ApEsinap cos 2 a p 

in which ApE is the axial rigidity of the plan bracing diagonals, and Up their angle of inclination. 
Ld is the depth of the rack from front to back. 

In calculating the stiffness of the spine bracing system, the flexibility of the members which form 
part of the bracing system is significant when the aspect ratio (ratio of height to width) is more 
than unity, because then the bracing forces induced into the columns are significant. For this 
reason it is often desirable to link several spine braced bays together. The horizontal 
displacement of the top of the rack due to spine bracing distortion is given by, 

Ll = f(Nu -1)2H~ 1 + tan 2a s(2(N; +1)+1)} 
s E L As sin as cos2 as 3Ac 

The plan bracing is supported by the tops of the columns and under side load, tends to rotate in 
the manner shown in figure 7. Shear forces are applied in the front to back direction to the tops 
of the braced frames. The resistance to this rotational movement is provided primarily by the two 
rows of columns at the ends of the plan braced panels. 

In these rows there are frame braced panels and if these are fabricated from standard pallet 
racking components the bracing connections may be quite flexible, reducing the effectiveness of 
the bracing system to as little as 15% of the full theoretical value. For this reason a shear test of 
the kind set out in the FEMI code of practice may be advisable to measure the stiffness of these 
panels. The flexibility of the columns is relatively insignificant. 

The deflection at the top of a row of frames, under the action of a force Fv, is given by, 

Ll = 2FvH 
f NuAfEsinaf cos2 a f 

and this imparts a rotation to the plan bracing, <\>, given by, 
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Due to the action of the set of horizontal forces shown in figure 7, 

F = f(Nu -l)Ld 
v 2Lb 

and the deflection at the front face of the rack is, 

which may be written as, 

~ = 2tHL~ 
~ NuL~AfEsinuf cos 2 u f 

The critical column is not usually the front face column which carries only a 50% load, but the 
column immediately behind it which is fully loaded. For this line of columns the horizontal 
deflection at the top is given by, 

~ = ~ + (~ + ~ ) (N u -I) 
s p ~ (Nu -2) 

and for one column the horizontal stiffness, kb at the top is, 

f 
k =, ~ 

In the example shown in figures I and 6 there are only 5 bays and six columns in each bay. In 
plan the aspect ratio is nearly square. In many such installations there are many bays and the 
shape is rectangular with the long side parallel to the front face of the rack. In such cases the 
significance of the plan bracing rotation diminishes and it is only necessary to provide an 
adequate number of spine braced bays. 

A typical set of section properties and dimensions were used in the example shown in figure 6 
and the stiffness calculated, so that, 

k, =0.0177kN/mm 

This compares with the figure of 0.0202kN/m measured from, an analysis of the model in figure 
6. Hence the single column model is conservative. 
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Using this stiffness in the single column model shown in figure 5 the elastic buckling load factor 
is found to be 1.85, about 10% lower than the unfolded model. A check on the columns in the 
same manner as before gives a payload of 14.2 kN per column per level, some 5% lower. 

Other design considerations. 

So far this paper has considered only the behaviour of a typical foully loaded column. Other 
important design considerations are the strength of the semi-rigid connection at the column base 
and at the portal. In addition, consideration must be given to the strength of the bracing members 
and to the effect of loads induced into the columns by the action of the bracing systems. This is 
especially true of the columns that form part of the spine bracing system which may be subjected 
to significant overturning forces. Uplift of the column on the leeward side of the spine bracing 
can be a major problem in a part loaded rack. 

In the service condition, consideration must be given to sway deflections and also to the potential 
for flexure of the columns to allow a pallet to fall between the rails if the tolerances are 
incorrectly chosen. Some recommendations for this situation are contained in the FEM6 
specifiers' guide. 

Pallet friction has played no part in the foregoing calculations. The coefficient of friction 
between timber and steel is quoted in BS 59756 as 0.2 and in DIN 44217 as 0.5. These figures are 
used in the falsework industry where surface finishes may be a little different from those used in 
racking systems. However they indicate that frictional resistance is substantial. Even with a 
coefficient of 0.2, frictional forces at 20% of the vertical loads are large in comparison to the side 
loads that are used in the design of a Drive-in rack. 

Any fully loaded pallet in position on the pallet rails effectively introduces its own set of plan 
bracing at that level. Provided all the pallets are in place between that pallet and the rear of the 
rack so that this plan bracing links up with the spine bracing, there will be a substantial 
stabilising effect to the columns. However, if not all the pallets are in place, the bracing effect 
remains local one and makes little contribution to the overall stability of the rack structure. To 
benefit from this effect would require very close management of the stored goods and this is not 
normally practicable or desirable. 

Conclusion 

This paper has discussed methods of design and analysis for Drive-in and Drive-thru racks. 
Alternative methods of analysing both types of rack, avoiding the use of a large general purpose 
analysis program are proposed. For Drive-thru racks a simple single column model is shown to 
be adequate for regular configurations while for Drive-in racks a two dimensional unfolded 
model is offered in addition to the single column model. 
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Appendix - Notation 

Ae Cross-sectional area of column 
Ar Cross-sectional area of frame bracing diagonal 
Ap Cross-sectional area of plan bracing diagonal 
As Cross-sectional area of spine bracing diagollal 
Ar Cross-sectional area of frame bracing diagonal 
a frame imperfection angle 
ar angle of inclination of frame bracing diagonal 
Up angle of inclination of plan bracing diagonal 
Us angle of inclination of spine bracing diagonal 
tl horizontal displacement of the penultimate column 
~ horizontal displacement due to rigid body rotation of the plan bracing 
tlr horizontal displacement of the frame bracing 
tlp horizontal displacement of the plan bracing 
tls horizontal displacement of the spine bracing 
E elastic modulus 
<I> rigid body rotation of the plan bracing 
f horizontal reaction at the top of a fully laden column 
Fv horizontal load on the frame bracing 
H rack height 
Ib second moment of area of the portal beam 
Ib second moment of area of the column 
kb rotational stiffness of the beam end connector 
kt horizontal stiffness at the top of the penultimate column 
Kb effective stiffness of the portal beam 
Lt, bay width 
Ld rack depth 
Ns number of pallet levels 
Nu number of columns per lane 
Perit elastic buckling load of one column 
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