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ABSTRACT 

Ninth International Specialty Conference on Cold-Formed Steel Structures 
St. Louis, Missouri, U.S.A., November 8-9,1988 

STRENGTH OF COLD-FORMED STEEL OOX COLUMNS 

N.E. Shanmugam1 , M.ASCE, S.P. Chiew2 , S.L. Lee3 , F.ASCE 

Cold-formed steel box columns have two obvious modes of failure; 
they can reach the ultimate capacity either by overall column buckling 
or local buckling. This paper is concerned with a numerical method to 
predict the ultimate load-carrying capacity of cold-formed steel box 
columns subj ected to axial force and unequal end moments. The method 
accounts for the effect of local plate buckling and ini tial 
imperfections upon the ul timate strength of columns. 
Moment-curvature-thrust relationships are developed by using piecewise 
linear stress-strain curves; they are incorporated into the column 
-analysis in which the differential equation of bending is numerically 
integrated. Use of a suitable failure criterion and numerical procedure 
makes it possible to obtain column curves. For design purposes, column 
curves from which ultimate strength of column under axial or eccentric 
loading conditions can be easily obtained are presented. 

INTRODUCTION 

Thin-walled stiffened compression elements are commonly 
encountered in cold-formed steel box columns. When such columns are 
subj ected to compressive loading, with the onset of buckling the growth 
of out of plane deflections in the plate elements results in changes in 
the stress pattern which in turn reduces the plate stiffness. This 
reduction causes the failure of the column at a load less than its 
classical Euler buckling load. The design of cold-formed steel box 
columns, therefore, requires the consideration of local plate buckling, 
overall column buckling and the interaction between the local and 
overall buckling. A close-form evaluation of ultimate strength of such 
columns is well nigh impossible and the use of numerical procedure, 
therefore, becomes necessary. 

Numerous investigators (6,8,11,17) have studied the effect of 
local buckling on the strength of plate elements subjected to 
compressi ve loading. Rigorous methods using large deflection theory 
coupled with finite difference methods (12,14) and elasto-plastic finite 
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element formulations (5,7) have been proposed for the ultimate strength 
analysis of plate elements. For design office use, however, simple 
methods using the effective width concept were presented by Von Karman 
(16) and Winter (18). Ilimy of the design specifications (1,2,4) for 
cold-formed steel structural elements have accepted the effective width 
principle and it has been proved to yield satisfactory results. 

A simple analytical method was presented recently by the authors 
(10,15) for predicting the strength of thin-walled welded steel box 
columns subjected to axial load and end moments. The method accounts 
for local buckling of component plates, welding residual stresses and 
ini tial column imperfections. The method is extended for the 
analysis of cold-formed steel box columns in the present study. 
Homent-curvature-thrust relationships are developed by using piecewise 
linear stress-strain curves. They are incorporated into the column 
analysis in which the differential equation of bending is numerically 
integrated. Use of a suitable failure criterion and numerical procedure 
makes it possible to obtain the ultimate strength. Results are 
presented in the form of column curves which can be used readily by 
designers. 

THEORY 

An exact analysis for ultimate strength of cold-formed steel box 
columns is complicated because of the local buckling of component plates 
and the non-linearity of the stress-strain curves. However, the 
solution can be greatly simplified by adopting approximate linearised 
stress-strain curves. Box columns can be treated as an assemblage of 
long plates supported along the longitudinal edges as shown in Figure 1. 
Local buckling of the component plates, which are under axial 
compression, is allowed for by applying an appropriate load-shortening 
curve, while those under tension are treated by assuming an 
elastic-perfectly plastic stress-strain curve. 

Simplified piecewise linear stress-strain curves (Figure 2b) based 
on approximations of stress-strain curves by Moxham, Crisfield, 
Harding et al. and Little (3) were proposed by Shanmugam et al. (15). 
These curves represent unwelded plates having slenderness ratios equal 
to 80, 55, 40 and 30 or less, and initial imperfection of b/1 000, 'b I 
being the width of the plate in a direction normal to the compressive 
loadings. These curves have been used to account for the local buckling 
of the component plates of box columns and the moment-curvatures-thrust 
(H-~-P) relationships for column cross-sections were developed as 
explained in the following sections. 

MOMENT-CURVATURE-THRUST RELATIONSHIPS 

It becomes imperative to formulate the moment-curvature-thrust 
relationships for individual cross-sections in order to determine the 
equilibrium curves defining the domain of stable equilibrium of moment, 
thrust and column length. The M-~-P relationship is computed 
numerically using the method similar to that adopted by Nishino et al. 
(13). The following assumptions are made in the analysis which follows: 
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(i) the material is homogeneous and isotropic in both 
the elastic and plastic states, 

(ii) elastic-perfectly plastic stress-strain relation 
(Figure 2a) is assumed for flange plate under 
tension and the local buckling of the flange plate 
under compression is allowed by applying an 
appropriate stress-strain curve from the set of 
curves given in Figure 2b. The portion of the web 
plate under compression is treated in a similar 
manner to that of the compression flange by 
applying the stress-strain curve with the 
assumption that 'b' is equal to the depth of the 
compression zone, 

(iii) the iocal buckling of the plate due to shear is 
ignored, 

(iv) 

(v) 

(vi) 
(vii) 

the strain distribution is linear across the depth 
of the cross-section (Figure 3), 
the residual stresses in each component plate are 
assumed to be in self-equilibrium and distributed 
in the form shown in Figure 4, 
the effect of strain reversal is negligible, and 
the deflections are small so that curvature can be 
expressed by the second derivatives of deflections. 

Consider the cross-section as shown in Figure 3(a). The neutral 
axis is located at a distance R from the concave extreme fibre of the 
cross section. For purpose of obtaining the M-<j>-P relationship, the 
cross section is discretised into 'n' elements. The strain at any 
element 'i' can be expressed in the non-dimensional form 

in which e:. 
~ 

e: c 

(1 ) 

total strain at element i, positive if in tension 

strain at the centroid of the section 

<j> curvature non-dimensionalised by the curvature at 
initial yielding for bending, ~ ; 2e:y /d 

Yi distance of the centre of element i from the centroidal 
axis 

e:. residual strain at element i 
r~ 

e:y yield strain 

d depth of cross section 

The corresponding stress cr. is obtained by making use of the 
appropriate stress-strain curves ~i ven in Figure 2b, cr. being positive 
if in tension. ~ 
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The axial force and bending moment carried by the cross-section 
can be easily obtained by using the equilibrium equations 

n 
p E 2 (a) 

i~1 

1 
n 

m E 
Z 

i~1 

2(b) 

where p 

m 

n total number of elements 

A area of cross-section 

Z plastic modulus of section 

M. area of element i 
1 

P y squash load 

My plastic moment ~ ayz 

The moment developed about the centroidal axis of a cross-section 
can be determined numerically for any given value of axial thrust and 
curvature 4>. The computations involve the determination of the correct 
posi tion of the neutral axis. Successi ve values of R can be 
interpolated and the correct value is determined such that the net 
compressive force from the reSUlting strain distribution defined by R 
and 4> obtained from Eq. 2(a) together with Eq. 1 matched the given axial 
thrust. The resulting moment can be calculated from Eq. 2(b) and the 
procedure repeated for other values of 4>. Typical M-4>-P relationships 
obtained are given in Figure 5. The variation of m ~ M/My wi th respect 
to 4> ~ ~/~ for p ~ PIP ~ 0.3, is plotted in Figure 5 for plate 
slendernes~, bit ~ 40, 55 and 80. 

ULTIMATE STRENGTH OF COLU!1NS 

Box columns subjected to eccentric load can be treated by 
considering the cantilever column under the action of axial force P, 
transverse shear force Q and bending moment M at the free end as shown 
in Figure 6. Ini tial imperfection is assumed to be represented by 
initial curvature which is constant throughout the length of the 
column. The equilibrium condition and the curvature-displacement 
relation are given, respectively in the non-dimensional form as 

Ar 
(pw + qx) (3 ) m mf Z 

d 2 w 
(4) + 4>i) 

2r 
(4) 

dx2 d 
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in which mf Mf/My 

q Q/P ;g 
Y Y 

x x;;f;, w W/r and ~i ~i/~y' y 

The deflected shape of a column for given values of mf' p and q 
ana prescn.oea values of ~., can oe ootained oy integrating t:q. 4 J.n 
view of Eq. 3 and the m~ment-curvature-thrust relationship for a 
particular cross-section developed earlier. In order to simplify the 
integration of Eq. 4 a numerical procedure was adopted. The method is 
explained in reference 15 and hence it is not repeated herein. 

Wi th the help of the numerical integration technique the relation 
between m and x can be obtained for a set of p, q and ~. and various 
assumed values of mf • The m-x relationships thus obtained: are plotted 
as shown in Figure 7 and they are referred to as equilibrium curves. 
Applying Horne's (9) stability criterion the envelope of the equilibrium 
curves can be constructed. The envelope is the boundary of the stable 
equilibrium domain of the cantilever column of certain length subjected 
to the combined action of end moment, axial thrust and shear. The 
variation of the moment capacity along the length of the column for a 
particular value of axial thrus t and shear is gi ven by the envelopes in 
Figure 7. 

It is more useful to present the ultimate strength of box columns 
in the form of column curves. The equations developed for cantilever 
column can be extended to the treatment of simply supported box columns 
subjected to unequal end moments with -1 " K " 1 as shown in Figure 8. 
The simply supported column may be treated as two cantilever columns of 
lengths X, and x2 with fixed ends at point O. The part of the colum to 
the right of point 0 corresponds to the cantilever column of Figure 6. 
With Q = M(1 - K)/L whilst the part to left of 0 corresponds to a column 
under a transverse load Q opposite in sense to that shown in Figure 6 
and hence care should be exercised in using the appropriate envelopes. 

A typical envelope constructed for the whole length of a column 
with particular values of ~. and q and various magnitudes of p is shown 
in Figure 9. The curves t..re plotted on the m-A plane in which A is 
normalised slenderness ratio given by 

(5) 

The envelopes on the left correspond to the cantilever column of length 
x1 and on the right to the cantilever column of length x2' For given 
values of p and q, at the limit of stability, the point (m, A1 ) and 
(Kffi , A2 ) must be on the envelopes corresponding to p and q. The 
cri tical values of A, and x2 are not known a priori, however, they mus t 
satisfy the following equations: 

(6) 
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z m(1 - K) 
q = Ar 'ITA (7) 

A value of A is first assumed along with the prescribed values of K, m 
and p. q is determined from Eq. 7 and the values of 1.1 and 1.2 and 
hence A are obtained from the envelopes corresponding to the set of 
value of p and q. This process is repeated until the assumed value 
of A matches the computed one. A faml.ly of column curves (p-A curves) 
for various values of m and K can be constructed. The steps involved in 
the construction of column curves are illustrated in Figure 10. 

RESULTS AND DISCUSSION 

The proposed method was applied to the analysis of the behaviour 
of box columns having different plate slenderness ratios. The 
parameters were so chosen that they show the influence of end moment, 
the moment ratio and column slenderness. Column curves which were 
generated from the results are presented in Figures 11-13. In each of 
these figures curves are given for moment ratios equal to 1.0, 0.0 and 
-1 .0, respectively. K equal to one represents the case of a column 
under equal end moments. Results are presented for end moment (M/My) 
equal to 0.0, 0.1 and 0.3 and plate slenderness ratio of 30, 40, 55 and 
80. All these curves were obtained assuming initial curvature, <l>., 
equal to 0.1 and fixed value of residual stress level shown in Figure 4. 

The results for K = 0.0 and -1.0 clearly show the effect of 
unequal end moments upon the strength of axially loaded box columns. 
For all values of m the column strength increases with the decrease in K 
values. For example consider column curves in Figures 11 (a) and 13(a) 
in which K = 1.0 and -1.0 respectively. For A = 0.6 and m = 0.3 the 
strength of column for K equal to 1.0 is 0.56 and the corresponding 
value for K equal to -1.0 is 0.72 an increase of about 29 percent. It 
is also observed that the columns under single curvature bending 
(K = 0.0, 1.0) are normally weaker than those under double curvature 
bending (K = -1.0). This effect is found to be more significant in the 
case of intermediate column range. Similar observations can be made for 
all values of K in the case of columns with other slenderness values 
also. 

It is obvious from the figures that the column strength drops 
significantly as the plate slenderness increases. For axially loaded 
short columns this reduction is approximately 20 percent when the 
slenderness ratio of the component plate is increased from 30 to 55. 
The figures also show that the column strength is independent of A in 
the lower range of column slenderness, this range increasing with plate 
slenderness. At low bit ratio the interactive buckling failure occurs 
for the whole range of A, whereas for larger bit ratios the failure is 
mainly due to local buckling upto a certain value of A. The interactive 
buckling becomes predominant thereafter. 

CONCLUSIONS 

A simple analytical method to the analysis of cold-formed steel 
box columns pinned at their ends and subjected to axial load and unequal 
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end moments has been presented. The method is capable of predicting the 
load-carrying capacity of these columns which experience local buckling 
of component plates and may have initial column imperfections. Results 
presented in the form of column curves clearly show the adverse effect 
of. the local buckling of component plates. The ultimate ca.pacity of 
these columns is reduced significantly for larger bit ratios of 
component plates. The columns subjected to double curvature bending 
ha'le been found to be stronger than those under single curvature 
bending. The column curves provide the means for estimating the 
ultimate strength of cold-formed steel box columns subjected to loads 
with unequal eccentricity at the ends. They should be useful design 
tools and intermediate values can be obtained by interpolation. 
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APPENDIX II - NOTATION 

The following symbols are used in this paper: 

A area of column cross-section, 

b width of a compressed plate element 

d depth of column cross-section, 

L length of simply-supported column, 

M moment at any section along the column, 

Mf fixed end moment of cantilever column, 

My plastic moment and equals to cryz 

n total number of elements in cross-section, 

P axial force, 

Py squash load and equals to cryA 

Q transverse shear force, 

r radius of gyration, 

W transverse deflection, 

X distance along the length of cantilever column, 

Xl length of left cantilever column, 

X2 length of right cantilever column, 

Yi distance of the centre of element i from the centroidal axis, 
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z plastic section modulus, 

6A i area of element i, 

E normal strain, 

EC strain at the centroidal axis of section, 

Ei total strain at element i, 

Eri residual strain at element i, 

Ey strain at yield point, 

K moment ratio, 

a normal stress, 

arc compressive residual stress, 

ay yield stress, 

~ curvature caused by bending, 

~i initial curvature, 

~y curvature at initial yielding for pure bending moment and 

equals to (2Ey/d), 

t ~\ 

ti ~i/~y 

nondimensionalised slenderness ratio of simply-supported 

column, 

A1 (X1/nr)~, 

A2 (X2/nr)~. 
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