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Seventh blternational Specialty Conference on Cold-Formed Steel Structures 
St_ Louis, Missouri, U.S.A., November 13-14, 1984 

GEOMETRIC NONLINEAR DYNAMIC ANALYSIS OF LOCALLY BUCKLED FRAMES 

by 

George E. Blandfordl , Shien T. Wang2 , and Neng T. Wang3 

INTRODUCTION 

The dynamic analysis of framework structural systems has been a subject 

of investigation due to the rapid development of high speed computers and 

matrix methods of structural analysiS. However, the inclusion of beam-column 

and P-delta secondary moments and the influence of local buckling on the 

response of structural systems is lacking. Therefore, the influence of both 

secondary moments and reduced stiffness caused by local buckling on the 

dynamic response of framework structural systems requires investigation. 

The purpose of this paper is to investigate both the static and dynamic 

response of structural frames in the post-local-buckling range including the 

influence of secondary moments. The effective width concept is used to 

represent the post-local-buckling strength in the compression plate elements 

of the frame members. Previous research on beams and columns (Refs. 3, 8 and 

13) has shown that the effective width concept is valid for dynamic analysis. 

The inclusion of post-local-buckling behavior results in varying axial and 

flexural rigidities along the frame member lengths. Blandford, Wang and Hang 

(Ref. 2) used a finite element approximation to represent the stiffness 

distribution in the post-local-buckling range. Furthermore, they utilized a 

consistent mass approximation, neglected damping and implemented an 

incremental Wilson-9 formulation for the time integration of the nonlinear 

equations. The present investigation also used a consistent mass formulation 

and neglects the dampling. However, an exact elastic stiffness matrix is 
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presented to represent both the axial and flexural rigidities in the post-

local-buckling range. First-order geometric nonlinearity (secondary moments) 

is approximated by using finite element interpolation. The solution of the 

resulting nonlinear equations is obtained by using a load correcting analysis 

procedure coupled with the implicit Wilson-S time integration scheme (Ref. 

12). The nonlinear solution algorithm and its performance for both static and 

dynamic problems are presented. 

METHOD OF ANALYSIS 

Postbuckling Strength of Locally Buckled Frames - The post-local-buckling 

strength is based on the effective width equation (Refs. 4, 9, and 10) 

for 

b 
t 

0.95 J KE (1 - o. 95i;!. J KE ) 
a w a 

max max 

w 
- > 
t 

0.64 JaKE 
max 

(1) 

(2) 

in which b is the effective width of compression plate element, w is the flat 

width of the compression ~late element, a max is the maximum edge stress, K is 

the coefficient determined by boundary conditions and aspect ratio for the 

compression plate element, and s is the modification factor based on 

experimental evidence and engineering judgement. For values of w/t smaller 

than 0.64 EK/a 
max' b = w. Equation 1 has been shown, through experimental 

verification, to be applicable to both stiffened and unstiffened plate 

elements if K is appropriately adjusted. The value of K can be evaluated by 

considering the relative dimensions of the section. For sections under 

uniform compression, K varies from 4.00 to 6.97 for stiffened plate elements 

and from 0.425 to 1.28 for unstiffened plate elements. For design considera-
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tions, ~ may be taken as 0.22 and K may be taken as 0.50 and 4.0 for 

unstiffened and stiffened elements, respectively. 

Consider the rigid plane frame shown in Fig. lea). The compression plate 

elements of the members in the frame will buckle locally and the neutral axis 

will shift away from the buckled compression plate element as shown in Fig. 

l(c) if the compression elements tress is larger than the local buckling 

stress, ocr' The local buckling stress is derived from Eq. 2 by replacing 

o max with 0 cr and solving for 0 cr' I.e., 

o cr O.41~ 
(wit) 2 

(3) 

For the regions along the member length with compression elements stressed at 

levels larger than ocr' the reduced effective flexural rigidity (El)eff and 

axial rigidity (EA)eff varies along the member length depending upon the 

stress magnitude. Consequently, in the post-local-buckling range the frame is 

composed of nonprismatic members as shown schematically in Fig. led). 

Dynamic Equilibrium - The dynamic equilibrium equations, neglecting damping 

forces, can be obtained from d'Alembert's principle as 

(4) 

where {Fl(t)}, {FE(t)} and {pet)} are the inertial, elastic and external load 

vectors, respectively at time t. Evaluating Eq. 4 at time t + 6t, where 6t is 

the time increment, and writing the resulting equation in incremental form 

leads to 

(Sa) 

where d is used to signify the increment between time t and time t + 6 t. 

Equation Sea) can be rewritten in matrix form as 
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[M]{dv} + ([KE(t)] + [KG(t)]){dv} 

= {P(t+6t)} - {Fr(t)} - {FE(t)} (Sb) 

where [M] is the structure mass matrix (assumed linear), [KE(t)] is the 

structure tangent elastic stiffness matrix, [KG(t)] is the structure tangent 

geometric stiffness matrix, {dv} is the incremental acceleration vector, {dv} 

is the incr.emental displacement vector and the superposed dots signify order 

of time differentiation. Equation S(b) is known as the load correcting 

incremental equilibrium equation due to the inclusion of the residual force 

imbalance in the current time step analysis. Figure 2 shows a schematic of 

the incremental and load correcting nonlinear solution strategies. Obviously, 

the load correction procedure is more accurate than the incremental procedure. 

The matrices and vectors of Eq. S(b) are obtained by applying standard 

coordinate transformation techniques to the element level equations. Direct 

stiffness assembly of the elemental matrices leads to the structure matrices 

of Eq. S(b). 

Beam Element Matrices - The elemental mass, [m], and geometric stiffness, 

[kG]' matrices are obtained using finite element approximations 

[m] = fi m [N]T [N] dx 
o 

(6a) 

(6b) 

where 

Ni (i=1,2, ••• 6) are the beam element shape functions defined in Fig. 3, 
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subscripts a, f signify axial and flexure, respectively, m is the mass per 

unit length, ~ is the beam element length, F is the element axial force 

(tension postive) and superscript T is used to signify transpose. The 

matrices in Eqs. 6(a) and (b) can be integrated exactly and are given in 

several standard structural analysis texts, e.g., Przemieniecki (Ref. 6). 

Unfortunately, the finite element procedure does not adequately represent 

the elastic element stiffness matrix in the post-local-buckling range. 

However, an exact static elastic stiffness matrix and equivalent nodal force 

vector can be constructed using the principal of virtual forces and the 

flexibility-stiffness transformation technique as outlined by McGuire and 

Gallagher (Ref. 5). The internal forces required in the principle of virtual 

forces are given by the equations of static equilibrium. Since the 

equilibrium equations are independent of the cross sectional properties for 

the beam of Fig. 4, an exact flexibility matrix, [f], is 

where 

[f] = Ji [Q] T [C]-l [Q] dx 
o 

(7) 

o 

1;-1 

- matrix of shape functions for the internal 
force distribution, 

and the other symbols are as previously defined. 

The flexibility matrix of Eq. 7 is evaluated using a 15 point composite 

Simpson rule. Quadrature is required in the evaluation of Eq. 7 due to the 
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arbitrary variation of A(x) and I(x) in the post-local-buckling range. The 

area and moment of inertia are calculated exactly at each of the quadrature 

points. 

After obtaining the flexibility matrix, the element elastic stiffness 

matrix, 

(8) 

where [~] is the element equilibrium matrix. The equilibrium matrix is 

constructed by relating the flexibility forces, {Ff }, to the support forces, 

{Fs }, of Fig. 4, i.e., 

or 

o 

1/£ 

-1/£ 

o 1 1/£ 

-1/£ 

(9) 

Substituting the flexibility and equilibrium matrices into Eq. 8 results in an 

exact element elastic stiffness matrix for the beam element in the post-local-

buckling range. 

The flexibility approach can also be usd to construct the exact element 

fixed-end forces. 

terms of the applied internal bending moment, M(x), via 

(10) 

where {p} = [0 M(x)]T. Due to the variation of A(x) and I(x) in [C]-l of 

Eq. 10, a 15 point composite Simpson rule is utilized for the integration. 

The fixed-end forces corresponding to the flexibility degrees of freedom, 

(11) 

The fixed-end forces at the support degrees of freedom, {F;}, as obtained 
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from equilibrium are 

where 

(12) 

- uniform distributed load contribution 
to equilibrium; and 

q - uniform distributed load 
length. 

per unit 

The fixed-end forces of Eqs. 11 and 12 are assembed into the structure load 

vector {P(t+~t)} of Eq. 5(b) once they have been transformed into the global 

coordinate system. 

Load Correcting Wilson-a Formulation - The Wilson-a method for integrating the 

dynamic equilibrium equations of Eq. 5(b) is essentially an extension of the 

linear acceleration method (linear variation of acceleration from time t to 

time t + ~t is assumed, ~t is the time increment). The Wilson-a method 

assumes that the acceleration varies linearly from time t to time t + a ~ t 

where a ~ 1 (Ref. 1). For a = 1.0, the Wilson-a method reduces to the linear 

acceleration scheme, but for unconditional stability, it is necessary to use 

a > 1.37 and usually a value of a = 1.40 is chosen. 

The solution of the nonlinear dynamic equilibrium equations (Eq. 5(b» 

using the load correcting Wilson-a method can be summarized as: 

1. Initialization 

(a) Set the 
velocities 

initial values 
{yeO)} and 

for 
the 

the displacements 
forces {P(O)}. 

{v(O)}, the 
Zero initial 

displacements and velocities are assumed in this paper. 

(b) Calculate the initial accelerations {v(O)}: 

[M] {v(O)} = {P(O)} 

(c) Select a time step ~t, the factor a (usually 1.4) and calculate 
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the time integration constants: 

2. (a) Calculate the effective stiffness matrix [K(ti )]: 

(b) Calculate the extended incremental load {dP t +l } for the time 
interval t i to ti + T using linear interpolatIon: 

(c) Calculate the internal balanced force vector {FE(ti )}: 

{FE(t i _l )} + ([KE(ti )] + [KG(ti)]{dvi } 

{FE(O)} =: {O} 

(d) Calculate the effective load vector {Pi +l } at time ti + T: 

{Pi +l } = {Pi} + {dPi +l } + [M](a2{~i} + 2{vi }) - {FE(t i )} 

(e) Solve for the extended incremental displacements {dvi +l } for time 
increment T : 

(f). Calculate the extended incremental accelerations {dVi +l } for time 
increment T: 

(g) Calculate the 
interval {; t: 

incremental accelerations {dVi +l } for the time 

(h) Calculate the incremental velocities {dvi +l } and displacements 
{dvi +l } for the time interval {;t: 

{d~i+l} = {;t{vi } + ({;t/2){dvi +l } 

. 2·· 2·' 
= {;t{vi } + ({;t /2){vi } + ({;t /6){dvi +l } 

(i) Accumulate the displacement, velocity and acceleration vectors at 
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time t i +l t. + lit: 
l. 

{v i+1} {vi} + {dvi +1} 

{vi+l} {vi} + {dvi +1} 

{\+1} {;;i} + {dvi +1} 

(j) Accumulate the static member end forces at time t i +l t. + lit: 
l. 

{fs(ti +l )} = {fs(ti )} + ([kE(ti ) + [kG(ti)]){dvi +l } 

(k) Output the results. 

The above algorithm shows that an efficient assembly and solution 

strategy is required for solving nonlinear dynamic problems. Consequently, 

the assembly and symmetric Gauss-Crout profile (or skyline) solution algorithm 

of Taylor (Ref. 7) was utilized in the present investigation. 

NUMERICAL RESULTS 

The developed computer program follows the outlined analytical procedure 

and can be used for either dynamic or static loading as well as for linear or 

nonlinear analysis. The nonlinear problems due to local buckling and geometric 

changes are solved using either an incremental or load correcting strategy 

(Fig. 2). The unbraced frame geometry and loading condition shown in Fig. 5 

was used for both static and dynamic analyses. The dimensions for the 

rectangular tubular section used are shown Fig. 5(c). All analyses were 

performed on the IBM 370/165 computer available at the University of Kentucky. 

Static Analysis - A static analysis was carried out on the unbraced frame 

shown in Fig. 5 to verify the post-local-buckling portion of the dynamic 

analysis program. For a static analysis, the time integration constants are 

zero and lit,S are both set equal to one. The dynamic program uses either an 

incremental tangent stiffness procedure or a load correcting strategy to 
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incorporate the nonlinear behavior into the analysis. For the results 

presented in this paper, twenty load steps were used for each analysis. 

The unbraced frame of Fig. 5 was analyzed earlier by Wang and Blandford 

(Ref. 11) using a step iterative secant stiffness procedure and a post-local­

buckling behavior based on the moment-curvature table which neglected the 

axial stress contributions to the post-local-buckling behavior. In this 

paper, both the bending and axial force effects on the post-local-buckling 

behavior are included in the formulation. For the given loading condition, 

the bending moments at the ends of several members are shown in Table 1 with 

the moment numbers being defined in Fig. 5(b). The linear elastic frame 

results are shown in column 2 of Table 1 for the purpose of comparison. The 

calculated moments in the post-local buckling range of Ref. 11 are shown in 

column 3. The incremental and load correcting results of this paper are 

presented in columns 4 and 5, respectively. The moments obtained from these 

two methods are very close. The differences between the results in columns 3 

and 4 or 5 are mainly due to the effects of axial stress on local buckling 

which were not accounted for in the earlier study. For the problem 

considered, only a slight moment redistribution is experienced due to local 

buckling as compared to the results for an elastic prismatic frame. 

Table 2 presents moment results for the linear elastic, locally buckled, 

geometric nonlinear and combined local buckling and geometric nonlinearity 

analyses. The nonlinear analyses of Table 2 are based on using 20 load steps, 

the load correcting solution strategy and the unbraced frame of Fig. 5. Table 

2 shows that the effects of geometric change (beam-column and P-delta effects) 

on the calculated moments (column 4) are more severe than the moment 

redistribution caused by local buckling (column 3). Furthermore, Table 2 

shows that the combined nonlinear influences (column 5) results in a 

tremendous moment redistribution at several beam to column connections. For 
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example, moment number 9 increases by over 20 percent whereas moment number 1 

decreases by over 85 percent when compared with the linear elastic results. 

Dyanmic Analysis - The unbraced frame of Fig. 5 was also analyzed subjected to 

the time dependent uniform load q and horizontal loads H as shown in Fig. 6. 

A time increment of t = 0.04 seconds and e = 1.40 were used in the dynamic 

analysis. The top floor horizontal displacement versus time response curves 

are shown in Fig. 6. The duration of the triangle shaped concentrated force H 

is about twice the natural period of the structure under consideration. 

In the figure, the curve for the linear elastic case shows a plateau from 

1.20 to 2.20 seconds while the curve considering the local buckling behavior 

reaches the plateau at about the same time but rises to a sharp peak in the 

late portion of the plateau. The maximum magnitude of the drift for the case 

considering local buckling is 20 percent larger than that corresponding to the 

linear elastic case. The dramatic jump in the curve is a result of the 

combined action of the constant uniform load q and the linearly varied force 

H. Note that the jump happens after the maximum value of H has been reached. 

The peak value of geometric nonlinear response is about 38 percent larger 

than that of linear elastic response. However, the free vibration portion of 

the curve is very weak. This could be due to poor geometric nonlinear 

modeling once the sidesway force is zero. When the sidesway force is removed 

the beam-column effect dominates and generally two column finite elements are 

required· to adequately approximate the dominant beam-column behavior. The 

maximum magnitude of the drift is 54 percent larger when both local buckling 

and geometric nonlinearity are included. 



178 SEVENTH SPECIALTY CONFERENCE 

SUMMARY AND CONCLUSIONS 

Both static and dynamic results for plane frame structures in the post­

local-buckling range which include first-order geometric nonlinearity have 

been presented. The post-local-buckling behavior was included using the 

effective width concept. Both axial and bending stresses were utilized in 

calculating the effective width. An exact elastic stiffness, finite element 

geometric stiffness and consistent mass were used to discretize the nonlinear 

dynamic equilibrium equations. The solution of the nonlinear dynamic 

equations was obtained using a load correction strategy coupled with the 

implicit Wilson-9 time integration scheme. It was found that the solution 

scheme is accurate and that the method is well suited for the type of problems 

considered. 

Both the static and dynamic results showed stress redistribution in the 

post-local-buckling range. However, for the problems considered, the stress 

redistribution caused by the beam-column and P-delta effects was more 

significant than the stress redistribution caused by local buckling. 

Furthermore, including both local buckling and geometric nonlinearity resulted 

in the lagest percentage stress redistribution as compared with the linear 

elastic results. These results clearly demonstrate the need for including 

beam-column and P-delta effects in the frame analysis of light gage steel 

structures. 
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Table 1 

Comparison of Locally-Buckled Unbraced Frame Moments for the Static Case 

(H = 60 Ib, q = 2.4 Ib/in) 

Moment of Locally Buckled Frame in in-lbs 

Moment of Elastic 
Moment Prismatic Frame Wang and Incremental Load Correcting 
Number in-lbs Blandford Analysis Analysis 

(1) (2) (3) (4) (5) 

1 172.32 156.10 168.24 168.45 
2 -3226.50 -3201.70 -3193.50 -3191. 20 
5 - 536.40 - 551.50 - 539.02 - 539.22 
6 -3965.10 -3896.30 -3904.90 -3901.00 
9 1972.40 2016.20 2002.80 2006.40 

10 933.58 957.70 942.72 944.59 
11 - 397.18 - 406.30 - 403.70 - 405.37 
12 - 172.32 - 156.10 - 168.24 - 168.45 

Table 2 

Comparison of Nonlinear Unbraced Frame Moments for the Static Case 

(H = 60 Ib, q = 2.4 lb/in ) 

Moment of Nonlinear Frame in in-lbs 

Moment of Elastic 
Moment Prismatic Frame Local Geometric Local Buckling & 
Number in-lbs Buckling Nonlinear Geometric Nonlinear 

(1) (2) (3) (4) (5) 

1 172.32 168.45 40.14 23.36 
2 -3226.50 -3191.20 -3339.50 -3312.10 
5 - 536.40 - 539.22 - 864.13 - 899.79 
6 -3965.10 -3901.00 -4238.10 -4189.30 
9 1972.40 2006.40 2340.90 2410.80 

10 933.58 944.59 1199.90 1242.90 
11 - 397.18 - 405.37 - 335.73 - 343.14 
12 - 172.32 - 168.45 - 40.14 - 23.26 
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APPENDIX II - NOTATION 

time integration constants 

effective width of compression plate element 

symbol used to signify increment 

time step number 

mass density per unit length 

magnitude of uniform load 

plate thickness, or time 

time increment 

flat width of the compression plate element exclusive of 
fillets 

cross sectional area 

modulus of elasticity 

effective axial rigidity 

effective flexural rigidity 

beam element axial force (tension positive) 

moment of inertia 

buckling coefficient 

beam element length 

effective width equation modification factor, or nondimen­
sionalized interpolation coordinate 

critical local buckling stress 

maximum edge stress 

time weighting coefficient used in the Wilson-a method 

extended time increment 

static member end forces at time t 

internal force vector 

beam element flexibility formulation force vector 
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{FE(t)} 

{Fr(t)} 

{N~} 

{pet)} 

{Pi+l} 

{dFE} 

{dF r} 

{dPi+I} 

{vf } 

{Vi} 

{vi} 

{vi} 

{dvi +1} 

{dVi+I} 

{dvi+l} 

{dvi +1} 

{dVi +1} 

{<I>q} 

[Cl- I 

[fl 

[kEl 
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beam element fixed-end forces at the flexibility force degr~es of 
freedom 

beam element support reaction vector in the flexibility formulation 

beam element fixed-end forces at the flexibility support 
degrees of freedom 

structure elastic force vector at time t 

structure inertia force vector at time t 

derivative beam element shape function vector for evaluating 
the axial deformation dependent geometric stiffness 

derivative beam element shape function vector for evaluating 
the bending deformation dependent geometric stiffness 

structure external load vector at time t 

effective structure load vector at time ti + T 

incremental structure elastic force vector 

incremental structure inertia force vector 

extended incremental structure load vector 

beam element displacement vector at the flexibility force 
degrees of freedom 

displacement vector at time ti 

velocity vector at time ti 

acceleration vector at time ti 

incremental displacement vector 

incremental velocity vector 

incremental acceleration vector 

extended incremental displacement vector 

extended incremental acceleration vector 

uniform distributed load equilibrium vector 

matrix inverse of the beam element constitutive matrix 

beam element flexibility matrix 

beam element elastic stiffness matrix 



[kG] 

[~(t) ] 

[KG(t)] 

(K(t) ] 

[m] 

[M] 

[N] 

[Q] 

[<ji ] 
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beam element geometric stiffness matrix 

structure tangent elastic stiffness matrix at time t 

structure tangent geometric stiffness matrix at timet 

effective nonlinear stiffness matrix at time t 

beam element consistent mass matrix 

structure mass matrix 

matrix of beam element shape functions 

matrix of beam element internal force shape functions 

beam element equilibrium matrix 
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(a) Rigid Plane Frame 
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\ I - --I ' 
I I Buckled , 
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' compression', 

' Eleme:Jts 
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i Ne~tral , 
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(c) Buckled Members and 
Neutral Axis Shift 

(b) Moment Distribution 

Buckled 
Section 

(EI) eff • (EA)eff 

(d) Variation of Equivalent 
Effective Flexural and 
Axial Rigidities 

FIG. 1 - RIGID PLANE FRAME IN THE 

POST-LOCAL-BUCKLING RANGE 
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p 

v v 

(a) Incremental Scheme (b) Load Correction Scheme 

FIG. 2 - NONLINEAR SOLUTION STRATEGY SCHEMATICS 
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(a) Beam Element Displacements 
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(b) Beam Element Shape Functions (~= xll) 

FIG. 3 - BEAM FINITE ELEMENT 
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FIG. 4 - BEAM FLEXIBILITY ELEMENT 
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FIG. 5 - UNBRACED FRAME GEOMETRY AND LOADING 
(9. ; lOa", 1 in ; 25.4 nun) 
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GN - Geometric Nonlinearity 
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FIG. 6 - SWAY - TIME VARIATION FOR THE UNBRACED FRAME 

(1 Ib/in = 175 N/m, 1 Ib = 4.45 N, 1 in = 25.4 mm) 
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