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Ninth International Specialty Conference on Cold-Formed Steel Structures 
St. Louis, Missouri, U.S.A., November 8-9,1988 

Two-Way Analysis of Steel-Deck Floor Slabs 

Max L. Porteri , 

Summary 

A strength analysis procedure was formulated for five full-scale 
two-way test slabs reinforced with composite cold-formed steel decking. 
The slabs were subjected to four concentrated loads. The analysis 
was founded on the principles of yield-line theory and of shear-bond 
regression analysis. A yield-line collapse mechanism was utilized 
to determine the width of an effective load-carrying segment for 
which the total load capacity was found by totaling the reactive 
shears on all sides of the segment. 

Introduction 

An extensive theoretical and experimental research program on 
steel-deck-reinforced floor slabs was undertaken at Iowa State 
University (ISU) and under the sponsorship of the American Iron and 
Steel Institute (AISI). A total of 353 specimens were tested [6]. 
The material presented in this paper will focus on the analysis 
of two-way simply supported floor slabs reinforced with cold-formed 
steel decking. The results of tests of five full-scale two-way simply 
supported slabs, discussed previously [3,8], will be utilized as the 
basis for the analysis contained in this paper. In addition, this 
paper will utilize the previous information gained from the analysis 
involving the strength prediction and design recommendat;.ons of one-way 
slab elements [7]. Previous ISU research has indicated that the 
predominate mode of failure for composite steel-deck-reinforced slab 
elements is that of shear-bond. Porter et al. [9] gives information 
as to the development of the shear-bond prediction equations which 
will be incorporated into the analysis given in this paper. The 
comparison of test results with shear-bond design predictions is 
given in [5]. 

A common method of analysis and design for steel-deck-reinforced 
floor slabs is to consider the system as a one-way floor slab. However, 
questions arise as to the amount of distribution of forces in the 
so-called "weak" direction transverse to the deck corrugations, 
particularly for floor slabs subjected to concentrated loading. 
Behavioral characteristics from tests of the full-size floor slabs 
with applied concentrated loads (such as those from a fork-lift truck) 
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are given by Porter and Ekberg [2,8]. These test results provide a 
basis for the two-way method of analysis described in this paper. 
The overall intent of this investigation was to provide information 
which would be helpful for the design of steel-deck slab systems 
subjected to concentrated loads. This paper will focus on a proposed 
analysis procedure to predict the failure mechanism for concentrated 
loads on steel-deck-reinforced slabs as similarily comprised in the 
mechanism analysis procedures for ordinary reinforced concrete slabs 
discussed in Braestrup's paper on "Punching Shear in Concrete Slabs" 
[1]. 

Description of Full-Scale Slab Tests 

All five test slabs analyzed in this paper were simply supported 
as shown in Fig. 1. The first slab tested contained corner restraints, 
whereas the corners of the remaining slabs were free to lift upward. 
All slabs had nominal out-to-out plan dimensions of 16 ft. by 12 ft. 
(4.88 m by 3.66 m) with the steel deck corrugations paralleling the 
12 ft. (3.66 m) sides" Four slabs had a nominal thickness of 4 5/8 in. 
(11.8 em) and one a thickness of 5 1/2 in (14 em). The five test 
slabs were composed of steel deck sections obtained from three different 
manufacturers. Table 1 in [8] provides a data summary of the significant 
material properties for each slab including supplementary reinforcing. 
Additional details concerning the slab tests are available in [2] and [4]. 
Loading of all five slabs consisted of four concentrated loads located 
as shown in Fig. 1. Details of the loading apparatus and procedure 
are available in [2] and [8]. 

L 
3 in~ 

BALL-BEARING-BALL 
CASTER TRANSDUCERS 

4ft-Din. 
TYP 

Fig. 1. General configuration and support conditions for full-scale 
slab tests. 
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Table 1 contains a summary .of the applied ultimate and cycling 
loads for each of the five slabs. These loads are tabulated on the 
basis of the amount applied at each of the four concentrated points 
and include the weight of the loading apparatus, but do not include the 
slab dead weight. 

Table 1. Experimental and predicted one-way, shear-bond loads for the 
five full-scale slab tests. 

Cycling Ultimate Equivalent Calculated One-way 
Load-- Load-- Ultimate Shear-bond 

Slab Kips per Kips per Uniform Uniform 
No. Load Point Load Point Load--psf Load, Wu--psf 

(1) (2) (3) (4) (5) 

1 None 13.7 305 256 

2 9.4 15.5 345 239 

3 6.4 8.8 196 243 

4 9.4 14.4 320 490 

5 5.4 9.4 209 247 

Note: 1 kip = 4448N; 1 psf = 47.9 N/m2 

In conjunction with the ultimate loads shown in Table 1, it is 
important to note the type of failure that occurred. All five slabs 
failed ultimately by shear-bond. This failure was characterized by a 
horizontal end-slippage accompanied by the development of diagonal 
cracks over the central regions on the vertical faces at the east and 
west sides of the slabs. This end slippage was similar to that 
experienced in one-way slab element tests, except that the slippage 
for the two-way specimens occurred over the central regions. Details 
on the behavioral characteristics of the failure of the slabs are 
available in [2] and [8]. 

One-,-Jay Shear-Bond Analysis 

Present recommended design procedures [7] for steel-deck-reinforced 
floors utilize the concept of a one-way conventionally reinforced slab. 
As a means of illustrating the two-way strength, the one-way capacity 
was computed for each of the five slab tests. The shear-bond regression 
method of one-way analysis [5, 7, 9] was employed to give approximate 
ultimate uniform loads. 

The calculated shear-bond capacity values given in Table 1 were 
obtained from the following equation [7,9], for a unit width of 12 in 
(30.48 em): 
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v 
l2d (klPd + k r;,) 

s L' 2V l c (1) 
u 

shear-bond capacity of a one-way slab element in pounds per 
foot of width 
slope and intercept, respectively, of a shear-bond regression 
analysis [5, 7 , 9 ] • These values were obtained from previous 
tests on slab elements with identical steel decking. 
compressive strength of concrete, in psi 
effective slab depth as measured frou. extreme concrete 
compression fiber to centroidal axis of steel deck, in inches 
center-to-center spacing of wires for a spot-welded shear 
transferring device, in inches (for cases of embossments 
where the shear transferring device is a fixed pattern, the 
value of s is unity) 
shear span length, in inches; L' = 45.5 in (11.56 cm) for 
all five slabs 
reinforcement ratio, As/bd = As/12d for a per foot of width 
computation 
cross section area of steel deck where used as tensl0n 
reinforcement, in2/ft of width. 

As can be seen, the correlated one-way values do not give a consistent 
prediction of the two-way capacity of the slabs subjected to the 
four concentrated loads. This inconsistency would be somewhat expected 
since the one-way element does not properly account for the correct 
width of the concentrated load distribution in the direction transverse 
to the steel deck corrugations. 

Combined Shear-Bond and Yield-Line Analysis 

The five test slabs ultimately failed via end-slip, typifying a 
shear-bond failure. However, at failure, the crack pattern developed 
was identical to that expected from a yield-line collapse mechanism. 
In fact, the effective width measured from the crack patterns matched 
that established by the controlling yield-line mechanism [2]. This 
flexural behavior is compatible with the shear-bond failure mode due to 
the combined action of shear-bond and flexure at failure. Thus, a 
method of analysis which combines the shear-bond and the yield-line 
theory approaches seems logical as a means of predicting the ultimate 
strength of the two-way steel-deck-reinforced floor slabs subjected 
to concentrated loads. 

The concept involves first establishing the proper yield-line 
mechanism which provides the effective load-carrying width and then 
applying the principles of the shear-bond approach to the effective 
load-carrying segment established by the mechanism. Fig. 2 shows the 
collapse mechanism and the effective load-carrying segment used for 
analysis of the five two-way slab tests. 
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Ordinarily, the mechanism in Fig. 2 would be used to predict a 
flexural type of slab failure. However, for this combined analysis 
the yield-line theory was used only to establish the collapse mechanism. 
Even though the five test slabs failed ultimately by shear-bond, the 
observed crack patterns (presented in [2] and [8]) conformed with the 
yield-line collapse mechanism. Therefore, the yield-line theory was 
used to define the crack pattern for the collapse mechanism and 
subsequently establish the effective load-carrying segment of width 
L" in Fig. 2. 

Determination of the effective width, L", of the load-carrying 
segment permitted computation of the vertical shear forces resisting 
the downward applied loads for the load-carrying segment. The two 
shear forces computed were VT and VL, shown in Fig. 2. The VL shear 
force was computed using the shear-bond regression analysis applied 
to a one-way slab element parallel to the deck corrugations as shown 
by section A-A in Fig. 2. This longitudinal shear, VL' was computed 
using a modified version of the shear-bond Eq. (1) to account for the 
average shear span over the shear-bond failure region of the L" width. 
The trapezoidal section over which shear-bond failure was assumed to 
occur is designated in Fig. 2 by the region marked ABCD. The results 
of the computations and some of the other pertinent items for the appli
cation of the shear-bond analysis in conjunction with the yield-line 
collapse mechanisms are presented in Table 2. The L" length values in 
the table were obtained from a yield-line a.nalysis of the collapse mech
anism shown in Fig. 2 and were verified by the experimental tests. 

The VT shear force was obtained from a one-way slab element 
transverse to the steel deck corrugations, as shown by Section B-B 
in Fig. 2. This transverse shear force, VT' was obtained by two 
different criteria and the lower value of the two was taken as the 
controlling VT force. One VT criterion was based on the shear strength 
of the concrete above the neutral axis, assuming a cracked section as 
not contributing shear below the neutral axis. 

Table 2. Computed values for the application of the shear-bond analysis 
in conjunction with the yield-line collapse mechanism. 

Slab 
No. 

* 

1'1, See 
Fig. 4 
(ft) 

B.4 

10.1 

B.3 

9.4 

7.4 

Average 
Overall 

Slab 
Depth 
(in.) 
(1) 

4.B3 

4.62 

4.63 

4.68 

5.44 

Avg. Depth 
of Load
carrying 

Slab 
Element 

(in.) 
(2) 

5.04 

4.75 

4.73 

4.90 

5.46 

!-1m for 
Load

carrying 
Slab 

Element 
(ft-k/ft) 

(3) 

1.24 

2.B6 

0.B6 

2.56 

0.56 

Vr = 
121!Ldn f~ 

-------rooo
(kips/L.P. ) 

(4) 

4.12 

5.65 

0.00 

7.01 

1.90 

v = T 

~ 
L" - 4 
(kipsj 
L.P.) 
(5) 

3.26 

5.42 

2.30 

VL 

Eg. 8 
(kips! 
L.P.) 
(6) 

9.26 

10.75 

B.45 

CALC Pu 

Vr + VL 
(kips/ 
L.P.) 
(7) 

12.52 

16.17 

8.45 

5.49* 16.62 * 22.11 * 
3.BB (11.75) (15.63) 

1.90 6.91 8.B1 

Based on an elliptical interaction of Vr and VL on T-wire spot weld strength. 

Note: 1 kip = 4448 Ni 1 ft = 0.305 rn; 1 in = 2.54 emj 1 ft - kip/ft = 4448 m - Him. 

EXP Pue 

(kips/ 
L.P.) 
(8)" 

13.7 

15.5 

B.B 

14.4 

9.4 

Ratio 
of 

CALC 
EX!' 
(9)" 

0.91 

1.04 

0.96 

1.54 * 
(1.0B) 

0.94 
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COLLAPSE 
MECHANISM 

L 
L " 
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C 

--1
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---- t IIIII 
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LOAD-CARRYING 
SLAB ELEMENT 

I 

'''" I 

CORRUGATIONS 

ONE-WAY 
BEAM STRIPS 

I VT ~) 

~ ! B(~ -im 

"'-J 11 " ft I ) VT I VT 
-im B - B 

3.792 ft = L' = rSL 

Fig. 2. Collapse mechanism and effective load-carrying segment used 
for analysis of five full-scale slabs. 
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The second VT shear force was the smaller of the concrete shear 
strength or the statical shear at maximum transverse flexural capacity. 
Additional shear contributions from aggregate interlocking and shear 
friction in a cracked section are neglected. 

The two criteria for cOlllputing the transverse element shea.r, VT, are 
given by columns 4 and 5 in Table 2. The VL force in column tf was based 
on assuming a concrete shear strength of 2V~ for a depth above the 
neutral axis, neglecting any shear contribution below the neutral axis. 
A value of zero for the depth to the neutral axis was conservatively 
assigned to Slab 3, since no transverse supplemental reinforcement 
existed for this slab. The other criterion for VT as given in column 
5 of Table 2 was based on the shear developed in a beam strip upon 
reaching its flexural capacity. Section B-B of Fig. 2 illustrates a 
transverse beam segment with a resulting shear span (L" - 4) where L" 
is in feet and the four represents the distance between load points. 
Taking VT times the shear span and equating this to the transverse 
moment capacity, Vm, results in the indicated expression in Table 2 
per foot of width for VT• 

The computation of VL in column 6 of Table 2.is based on the 
one-way shear-bond strength of a beam segment parallel to the deck 
corrugations. This beam segment is shown by section A-A in Fig. 2. 
The shear-bond failure for the five slab tests was assumed to occur 
over the trapezoidal region marked ABCD in Fig. 2. This was verified 
by the experimental results, since end slip occurred over the region 
of L". Eq. (1) for shear-bond was modified to account for an L' shear 
span over a beam width of 4 ft (distance between load points) and to 
account for a L'/2 shear span in the triangular regions bordering AB 
and CD in Fig. 2. 

Taking the shear-bond expression, Eq. (I), for each of the two 
triangular regions (see Fig. 2) with a shear span of L'/2, and for the 
rectangular region with a shear span of L', and rearranging terms and 
combining for the three regions, results in the following equation 
which was used in computing column 6: 

(2) 

where the notation is the same as for Eq. (1) except that L" is 
the effective width in inches and a is a non-dimensional length 
parameter as shown in Fig. 2. The regression constants used in Eq. (5) 
were obtained from one-way slab element tests [5, 91. The term "s" 
in Eq. (5) was unity for all slabs except Slab 4, where s was 3, since 
the transverse wires in Slab 4 were spaced on 3 in centers. 

Once the VT and VL shear forces were determined, the predicted 
ultimate live load at each load point was found by adding the lower of 
the two VT forces to the VL force. This predicted load is shown in 
column 7 of Table 2. The actual experimental ultimate load per load 
point is shown in column 8 followed in column 9 by the ratio of 
calculated to experimental, representing the degree of closeness for 
the computed to actual ratios of values. 
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As can be seen by column 9, the computed values compare quite 
closely to the experimental ones, except for Slab 4 which is discussed 
below. The ratio values of 0.91, 1.04, 0.96, and 0.94 for Slabs 1, 
2, 3, and 5 are considered very good and well within normal reinforced 
concrete experimental variation. 

The ratio of 1.54 for Slab 4 in column 9 is considered incorrect. 
This is due to the shear forces VT and VL both acting on the spot 
welds connecting the transverse-wires to the steel decking. The values 
in columns 5, 6, 7, and 9 (denoted by an asterisk for Slab 4) represent 
approximate reduced values to account for the interaction of VT and 
VL on the spot welds. The reduction of VT and VL values was accomplished 
by reducing the resultant as given by the expression ~(VT)2 + (VL)2 [6] 

The reduction was based on the use of an elliptical curve to represent 
the interaction strength of VL and VT on the spot weld strength. 
As can be seen in column 9 in Table 2, this method predicted the true 
ultimate load with an error of only 8%. 

Conclusions 

An ultimate strength procedure for two-way concrete slabs reinforced 
with cold-formed steel decking was formulated. The procedure was founded 
on the principles of yield-line theory and of shear-bond regression 
analysis. A collapse mechanism established by yield-line procedures 
was utilized to establish the effective load-carrying-segment width 
of the slabs. After the width of this segment was established, a 
shear-bond regression analysis was used to predict the total shear force 
distributed to the reactive edges perpendicular to the deck corrugations. 
The total shear existing along the sides of the effective load-carrying 
segment was subsequently added to the shear-bond components to give 
the predicted ultimate load for each slab. The calculated load 
agreed very closely with the experimental ultimate for all five slabs 
with only a maximl!m discrepancy of 9%. 
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Appendix -- Notation 

As cross section area of steel deck where used as tension reinforce
ment, inches squared per foot of deck width 

b unit slab width, inches 

d effective slab depth as measured from extreme concrete compres
sion fiber to centroidal axis of steel deck, in inches 
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f~ compressive strength of concrete, in psi 

i dimensionless coefficient designating ratio of negative moment 
to the positive moment capacity, m 

im negative moment capacity, ft-lb/ft 

L length of edge of slab, ft 

L' shear span length, inches 

L" effective slab width for concentrated loads as determined by 
yield-line mechanism 

kl intercept of shear-bond regression curve 

k2 slope of shear-bond regression curve 

m moment capacity of slab on a cross-section perpendicular to 
steel dick corrugations (longitudinal moment capacity), ft
lb/ft 

P concentrated load force applied at each concentrated load 
point, kips 

Pu ultimate concentrated applied slab load per load point, kips 

Pue total ultimate experimental applied load to slab element 
specimen, kips 

s 

v 
u 

8L 

center-to-center spacing of shear transfer device for other 
than embossments, inches (for cases of embossments, the value 
of s is unity) 

ultimate calculated shear force for the longitudinal one~way 
segment parallel to the deck corrugations of the effective 
load-carrying portion of the slab collapse mechanism, kips per 
load point 

ultimate calculated shear force based on a one-way slab element 
transverse to deck corrugations for the effective load-carrying 
portion of the slab collapse mechanism, kips per load point 

total ultimate shear including dead load of a slab element, 
pounds 

uniform ultimate load as found from shear-bond analysis, psf 

dimensionless length parameter of slab designating location of 
concentrated loads along length of slab 

dimensionless width parameter of slab designating ratio of 
width of slab to its length 

width of slab, ft 
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y dimensionless width parameter of slab designating location of 
of concentrated loads along width of slab 

~ coefficient of orthotropy designating ratio of transverse mament 
capacity to longitudinal moment capacity 

~ moment capacity of slab on a cross-section parallel to steel deck 
corrugations (transverse moment capacity), ft-Ibs/ft 

p reinforcement ratio, As/bd 




	Two-way Analysis of Steel-deck Floor Slabs
	Recommended Citation

	Two-way analysis of steel-deck floor slabs

