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Dynamic Response of Jnfilled Multistory Steel Frames 
* + Craig J. Miller and Abo-Elkhier Serag 

I.n t roduc; t _!9n 

In recent years. the dynamic response of multistory structures to wind and 

earthquake loading has attracted a great deal of attention among structural en­

gineers. In particular. increased incidence of occupant comfort and perception 

problems due to high wind loads has led to substantial efforts to detennine 

acceptable values of deflection for multistory frames. One method which has 

been suggested for controlling the drift of multistory steel frames is to use 

light gage steel vertical infills acting as shear diaphragms to resist wind 

loading. 

The previous research dealing with the use of light gage panels 

to control drift has concentrated on the response of the structure to static 

loads. The objective of the work reported here was to study the effect of in­

fills on the dynamic response of typical steel structures to both wind and 

earthquake loads. Assuming that a given multistory steel frame has been de­

signed to resist the applied loads at allo...able stresses. but did not satisfy 

deflection 1 imitations. two alternatives for stiffening the frame were considered. 

One was to stiffen the frame by incre4sing the moment of inertia of columns and 

girders. The second was to leave the frame member sizes the same and add infill 

panels to reduce frame deflections. The intent was to tune both frames to ap­

proximately the same deflection under service wind load. The frames were then 

analyzed under the action of wind and earthquake loads. The relative effective­

ness of the two alternative approaches to stiffening could then be compared. 

Assistant Professor of Civil Engineering. Dept. of Civil Engineering. Case 
Western Reserve University. 

+Graduate Student, Dept. of Civil Engineering. Case Western Reserve University. 
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Previous Research 

Until recently, it has not been possible to do any more than a very crude 

analysis to determine the effect of cladding or infills on the behavior of a 

frame. With the development of finite element techniques-and rapid digital 

computer capabilities, more rational analyses became possible. Many investi­

gators have attempted to develop means to_predict the load-deformation response 

of cold-formed diaphragms when subjected to shear loads. A complete biblio­

graphy of th1s work can be found in Ref. 1. Until the work ofAmmarand Nilson, 

prediction of diaphragm behavior was based on empirical equations. 

Ammar and Nilson12,13 put the prediction of inplane diaphragm behavior on 

a more analytical footing by use of matrix finite element techniques. They mod­

elled the surrounding beams and purlins using standard beam elements and modelled 

the connectors as linear spring elements. The corrugated sheets were converted 

to equivalent flat sheet orthotropic members which were modelled using ortho­

tropic plane stress elements. This analysis agrees with load tests within 15: 

for corrugated diaphragms which do not have a continuous flat sheet in the plane 

of loading. The finite element technique reduces the required experimental work 

to measuring the stiffness of connectors and the shear modulus and weak direction 

elastic modulus of the corrugated sheet. 
9, hlll Miller used the work of Ammar and Nilson as a basis for a study of the 

suitability of cold formed panels for controlling drift 1n multistory structures. 

The construction assumed by Miller is shown in Fig. 1. The connection between 

the infill and the frame, made by means of marginal members, is assumed to meet 

two requirements. The first is that transfer of vertical load from girder to 

panel is prevented or at least minimized. The second is that the end of the 

panel is attached to the marginal member in such a way that the cross section 

profile of the panel at the ends will not distort when the panel is loaded in 

shear. Two details which accomplish these objectives are shown in Fig. lb and lc. 
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The finite element mod&l of the panel used in that work is shown in Fig. 2. 

Based on the results of a number of single story. single bay frame analyses. 

Miller concludes that the infill panels can be used effectively to control drift. 

Because this model has a large number of degrees of freedom, Miller developed a 

modified mod~l shown in Fig . 3 that is connected to the frame only at the corners 

of the panel. In this way, the stiffness matrix for the panel can be reduced 

to a 12 x 12 matrix involving only degrees of freedom at the corners. The panel 

stiffness can be derived independently of the frame stiffness and the same stiff­

ness matrix us~d for all panels. The analysis of the multistory frame can then 

be done with no more degrees of freedom than are involved in this analysis of 

the bare frame. Using this model, a 26 story steel frame was analyzed with and 

without infills and the efficiency of the panels in reducing drift demonstrated. 

Oppenheim14 developed similar techniques for the analysis of infilled 

frames, including a corner connected model similar to that used by Miller. Al­

though he used a different approach to determining the shear stiffness of a 

corrugated infill, his results lead generally to the same conclusions as Miller's 

results. Oppenheim also studied the dynamic behavior of infilled multistory 

frames. He did an elastoplastic analysis of the response of an infilleo frame 

to a sinusoidal base motion. The frame members were assumed elastoplastic while 

the panels were assumed linear and elastic to an abrupt failure load. His re­

sults indicate that higher mode influences may lead to premature failure of 

panels in the upper stories. Recent papers5 •6 by El-Dakhakhni and reports by 

Bryan and Davies2 and Davies3 indicate continued interest in use of light 

gage infills as partitions and shear resisting elements in multistory buildings. 

Analysis Technique and Modelling 

The work to be described here follows closely the modelling and analysis 

techniques previously reported by the senior author. The two assumptions re­

garding the connection of infill to frame mentioned previously were also used 
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here. The model of the panel used in the present work is shown in Fig. 4. 

The differences between the current and previous work can be seen by com-

parison of Fig. 3 and 4. In the previous work, the seam connectors were assumed 

flexible in both horizontal and vertical directions. In the present work the 

seam connectors were assumed rigid horizontally and flexible vertically. The 

end connectors were assumed rigid vertically and flexible horizontally. In the 

dynamic studies each corrugated sheet was modelled by 24 orthotropic plane stress 

elements, while in the previously reported static work, each sheet was modelled 

by 54 orthotropic plane stress elements. 

As in the previous work, the continuous connection between frame and infill 

was eliminated and the two were assumed to be connected only at the corners, 

thus reducing the complexity of the analysis substantially. All of the computer 

work was done using the ANSYS computer program4. The panel stiffness matrices 

were created using the superelement feature from ANSYS. This feature allows one 

to combine a large number of elements to form a superelement stiffness matrix 

and to then condense out degrees of freedom which are not of major interest. 

In the problem studied here, all of the degrees of freedom associated with nodes 

other than the corner nodes can be condensed out. The resulting 12 x 12 stiff­

ness matrix is then stored on tape for use whenever an infilled frame is to be 

analyzed. 

The elements used to model the light gage sheet are the two dimensional 

isoparametric quadrilateral elements available in ANSYS. The marginal members 

are modelled using standard beam elements and the springs are modelled using 

linear spring elements. Because fewer elements are used in this work than were 

used in the previous work, the resulting panel model is somewhat stiffer than 

the model used previously. 

The earthquake analysis of the structure was done using the modal analysis 

capability of AUSYS. Included in that capability is a dynamic reduction scheme 
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that makes it possible to condense out of the eigenvalue problem those degrees 

of freedom which are not felt to be significant. For the multistory frame an­

alyses described here, the retained degrees were the horizontal displacements at 

certain floors. Only the first three modes were used in determining forces and 

displacements. The dead loads on the structure were input as lumped masses at 

the nodal points. The mass of the struetvral members including the infills was 

included by means of the consistent mass matrix. 

Damping values were not included directly in the computer analysis. Damping 

was included by inputting the response spectra for a given damping value. The 

response spectra used are shown in Fig. 5. The spectra were developed for a 

maximum ground acceleration of 0.2 g. The particular response spectra used are 

the modified Newmark Horizontal ground response spectra which were widely used in 

the design of nuclear power plants until quite recently. 

The choice of damping values to be used in the analysis posed a major problem. 

There is no available data to guide the designer in the choice of a damping value. 

for the cold formed infills. It seems reasonable to expect that there would be 

more energy dissipation in a cold formed diaphragm than in an ordinary welded 

or high strength bolted steel frame. The large number of connections and the 

likelihood of many small areas of yielding surrounding them would tend to in­

crease the dampingcapability. In addition, there is likely to be some dissi­

pation of energy due to friction as adjacent sheets move relative to one another. 
15 The report of Sexsmith indicates that there is in fact frictional damping. 

For the analyses to be discussed below, the assumed damping values expressed 

as a percentage of critical values are: 

Inf111ed frame 

Bare frame 

earthquake 

wind 

earthquake 

wind 

5S, lOS 

21 

21 

0.51 
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Two values of damping are used for the earthquake ·analysis for the infilled 

frame becasue of the lack of knowledge of a reasonable value. It is likely that 

all of the damping values are conservative. i.e .• lower than they really are. 

The wind analyses of the structures were carried out using the detailed 

procedure given in the 1975 edition of the National Building Code of Canada16 •17 

This procedure is a simplified way to account for the dynamic nature of the 

loading and the dynamic characteristics of the structure. Both the natural 

frequency and the damping are included in the calculation of the wind loading. 

The calculated wind load is then applied to the structure as a static load. In 

calculating the wind loads. it was assumed that the buildings were located in a 

center city exposure. Since the primary interest was in the response at service 

load levels. the wind loads were based on a 10 year return period for the wind. 

Also included in the detailed procedures are approximate formulae for 

calculating maximum acceleration of the structure due to the wind load. The 

value of the acceleration is an important quantity in determining whether or 

not occupants will experience any discomfort due to wind-induced vibrations. 

Research indicates that an acceleration of 0.4 - 0.8% g will be felt by most 

people. Therefore. the occurrence of a~celerations of those magnitudes should 

be relatively infrequent. In calculating the accelerations for the structures 

discussed below. it has been assumed that the cross-wind acceleration is not a 

problem; only the along-wind direction acceleration is calculated. 

Twenty-Six Story Frame 

The twenty-six story frame analyzed statically by Miller 9 shown in Fig. 6. 

was chosen as the first structure to be analyzed dynamically. In order to make 

a fair comparison between stiffening the structure by means of infills and stiff­

ening it by means of additional moment of inertia in the columns and girders. 

the procedure was as follows. It was assumed that a drift index of l/600 based 
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on an overall height and maximum deflection would be sufficient to give ade­

quate service load performance. The wind load used for the wind analyses was 

based on a 10 year return period wind speed of 50 mph (80.5kmph). That speed 

converts to a basic wind pressure of 7.4 psf (354.5 N/m2)~t 30' (9.15 m) above 

ground. 

The bare frame before stiffening is ~own in Fig. 6. The drift index 

of the frame was 1/400 for the bare frame. Using the approximate method pro-
7 posed by Fleischer , the frame was tuned to achieve a drift index of 1/600. 

The stiffened frame is shown in Fig. 7. Due to the approximate nature of 

Fleischer's method and the discrete nature of available moments of inertia, 

the frame shown in Fig. 7 has a drift index of 1/750 when analyzed for the 10 

year Toronto wind. The deflected shapes for the three structures are shown 

in Fig. 8. 

Based on past experience, 16 gage panels were chosen for use in stiffening 

the frame. The frame was analyzed with 16 gage infills full height in the center 

bay. The deflection index for the infilled frame is 1/1110. Because of the 

need to keep the panel shear below the buckling load of the panel, the infilled 

frame is quite stiff. In actual practice, the panels in the upper stories 

could be reduced in thickness, since the shears are lower there. Plots of de­

flection versus height for the original frame and the two stiffened frames are 

shown in Fig. 8. 

In these times when the possibility of serious shortages of materials faces 

us, it is interesting to compare the total weight of steel added by the two al­

ternative means of increasing the stiffness of the frame. Stiffening the frame 

by adding additional material to the columns and girders added 55 tons (49876 kg) 

to the frame weight. 14 tons (12701 kg) of sheet are required to infill the 

frame full height, indicating a substantial advantage to the infills. It should 

be noted that given today's economic conditions, the advantage in a cost 
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comparison would rest with stiffening by increasing the moments of inertia. 

Since the maximum acceleration of the structure is an important determin­

ant of occupant reactions, the approximate procedure given in the 1975 Supple­

ment No. 4 to the National Building Code of Canada 17 was used to calculate accel­

erations for the stiffened frame and the infilled frame. The calculated accel-

erations are 1.53% g for the infilled fra~e and 2.99% g for the stiffened frame. 

The stiffened frame is at the upper limit recommended by Supplement No. 4, while 

the infilled frame is toward the lower limit of the recommended range of 1 to 3%. 

The additional stiffness and damping provided by the infill panels lead to a 

substantial reduction in the acceleration to be expected. 

It is interesting to.note that both of these structures have fairly high 

predicted accelerations due to wind, even though both have drift indices well 

below the 1/500 or l/600 often used as a guide to providing adequate stiffness. 

This is an indication of how difficult it is to limit accelerations to recom­

mended values for steel structures which have relatively low damping and low 

mass, particularly when the calculation is based on structural frame behavior 

alone. 

The two alternative frames were then analyzed for earthquake loading. The 

damping value assigned to the bare frame was 2%, while the analysis of the stiff­

ened frame was done using both 5% and 10% damping. Three modes were used in 

developing the response of the frames. The lowest natural frequency of the in­

filled frame is .361 hz. The total responses of the two frames were obtained 

from the modal response by taking the square root of the sum of the squares of 

the modal responses. 

Figure 9 shows the column and panel shears for the infilled frame for both 

damping values as well as the column shears for the stiffened frame. The figure 

indicates that for 5% damping the total shear at a given floor in the infilled 
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frame is roughly the sa as it is for the stiffened frame with 21 damping. The 

infilled fra with lOS damping has about lOS lower total shear than the others. 

Fig. 10 shows a plot of root an square deflections for the infilled frame for 

5 and lOS damping and for the stiffened frame. The drift·indices for the three 

cases are 1/555, 1/637, 1/380 respectively. These results in4icate that the 

infills lead to a stiff frame, while at · tbe same time because of the relatively 

large da ping, the forces are not excessive. Recent experience in the Managua 

earthquake seems to indicate that greater stiffness than is present in the duc­

tile, moment resisting space frame type of structure is desirable to help limit 

damage to nonstructural elements such as partitions and building contents. 

40 Story Building 

The 40 story frame shown in Fig. lla was analyzed in the same way as the 

26 story frame. The frame is taken from Ref. 8 • An approximate value for the 

drift index of the frame of 1/375 was obtained using the method given by Fleischer. 

The frame was then tuned to bring the drift index to 1/600. The girder sizes 

were increased to the values shown in Fig. llb to accomplish the stiffening. As 

an alternative way of stiffening the frame, infill panels were added full height 

in the center bay. 8ecause of the increased height of this frame, it was de­

cided to use 12 ga. panels in the lower 20 stories and 16ga. panels in the upper 

20 stories. 

The stiffened frame was analyzed for the wind loads resulting from a ref­

erence wind speed of 65 mph (104.7 kmph) which corresponds to a reference pres­

sure of 11.4 psf (546.1 N/m2). The National Building Code of Canada procedure 

was used to calculate wind load. The drift index actually achieved was 1/550, 

not 1/600 because of the approximations in Fleischer's method. The infilled 

frame was analyzed for loads resulting from the same wind speed. The drift 

index for the infflled frame is 1/790. (The deflected shapes are shown in Fig. 12.) 
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As with the 26 story frame, there is a substantial advantage in quantity of 

steel required to achieve the desired stiffness. 

Again using the suggested method of the latest edition of the Canadian Code, 

accelerations were calculated for the infilled frame and for the stiffened frame. 

The infilled frame had a calculated acceleration of 2.77% of gravity when sub­

jected to the 10 year return period wind. -The corresponding figure for the 

stiffened frame is 6.07% g. The infilled frame is barely within the recommended 

limit given by the Canadian Code, while the stiffened frame has a calculated 

acceleration mare than double the recommended value and would clearly require 

additional stiffening to make it acceptable. 

The two alternative frames were next analyzed for the effect of earthquake 

loads, using th~ same spectrum as for the previous frame. The fundamental fre­

quency of the infilled frame is .391 hz, of the stiffened frame 0.362 hz. 

Because of the size of the frame, the horizontal displacement at every fourth 

floor was retained as a degree of freedom in the solution for the natural fre­

quencies, so the solution for the 40 story frame has a higher degree of approx­

imation than the one for the 26 story frame. The root mean square deflections 

(based on the first three modes) for the stiffened frame and the infilled frame 

with 5% and 10% assumed damping are shown in Fig. 13. 

the three cases are 1/491, 1/643, l/760 respectively. 

The drift indices for 

As with the 26 story 

frame, for 0.2 g maximum ground acceleration, the need to provide a stiff 

frame for serviceability reasons leads to drift indices which are well within 

the recommended maximum of 1/200. 

Conclusions 

The two examples presented here indicate the effectiveness of cold formed 

infill panels in reducing the drift of steel frames subjected to lateral loads. 

The relative effectiveness of cold formed infills compared to stiffening the 
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frame by adding material to the columns and/or girders is to some extent de­

pendent on the values of damping assumed in the calculations. Some guidelines 

are available to assist the engineer in choosing damping values for welded steel 

frames. There does not seem to be comparable information available for light 

gage steel diaphragms. Before a definitive comparison of various methods of 

stiffening can be made. experimental work to determine the damping values for 

cold formed diaphragms must be done. The examples presented indicate some ad­

vantage can be gained using light gage panels. 

Calculation of acceleration values using the method proposed in Supplement 

No. 4 to the National Building Code of Canada indicates that use of infills 

leads to lower accelerations due to greater stiffness combined with the higher 

damping assumed for the infilled frame. This again points up the need for ex­

perimental data on the damping to be expected in cold-formed steel diaphragms. 

It is difficult to get a completely fair comparison of the two methods of 

stiffening considered here because it is difficult to tune them both to the 

same deflection index. The approach taken here was to use a reasonable size 

panel. considering buckling loads. for the infilled frame and then tune the bare 

frame to a reasonable drift index. Done t"is way. the frames compared have 

quite different drift indices under the action of the wind load. However. it 

was felt that this is the way the comparison would be made in the design office. 

Due to the high stiffness required to give satisfactory service load per­

formance. the response of these structures to earthquake loading is well within 

currently recommended maximum values. even though the input ground motion was 

taken to have a maximum acceleration of 0.2 g. which is a relatively high value. 

Because of the rather high values of damping assumed for the fnfflled frames 

they exhibit relatively high stiffness with relatively low forces. 
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It should also be noted that in the work done here. there did not seem 

to be excessive shears in the upper story panels under earthquake loads. as 

seemed to occur in the work of Oppenheim14• Indications from recent earth­

quakes are that the ductile moment resisting space frame concept produces a 

structure which withstands earthquakes well itself. but which leads to sig­

nificant damage to non-structural elements and contents because of the large 

displacements involved. If. as now seems likely. codes will require stiffer 

structures in the future. cold-formed infills offer a means of achieving 

stiffness without significantly increasing the level of force to be resisted. 
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Fig. 5 - Modified 14Nnitrk Horizontal Ground Response Spectra 
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