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Eighth International Specialty Conference on Cold-Formed Steel Structures 
St. Louis, Missouri, U.S.A., November 11-12, 1986 

MOMENT REDISTRIBUTION IN PROFILED SHEETING 

Yung-Min TSAI 1) 

Michel CRISINEL 2) 

SUMMARY 

This paper describes a simple procedure which determines the load capacity 

of profiled sheeting. This procedure is more accurate than existing design 

methods since it predicts the redistribution that occurs at interior sup­

ports. 

1. INTRODUCTION 

The present European Recommendations for the Design of Profiled Sheeting 

[1J, prepared by the European Convention for Constructional Steelwork 

(ECCS), are based upon the effective width concept and empirically deter­

mined factors. The use of these factors is necessary in order to model the 

following factors : 

- initial imperfections, 

- residual stresses, 

- elastic buckling and post-buckling behaviour of individual plate el­

ements. 

However, these factors are based upon tests which were performed on 

single-span specimens. When determining the flexural capacity of mUltiple­

span specimens, calculations using these factors give conservative values. 

As a result, most manufacturers prefer testing to the ECCS design method. 

Research investigating the nature of the reserve capacity of continuous 

span specimens has been carried out according to the following objectives 

- to determine the accuracy of the present ECCS design procedure, 

1) Y.-M. Tsai is a doctoral candidate at ICOM (Steel Structures), Swiss 
Federal Institute of Technology of Lausanne (EPFL), Switzerland. 

2) M. Crisinel is a Research Manager at ICOM (Steel Structures), Swiss 
Federal Institute of Technology of Lausanne (EPFL), Switzerland. 
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- to compare the ultimate load capacity of similar single and multiple span 

specimens using a simple test procedure, 

- to determine the increase in ultimate load capacity which occurs in 

multiple-span specimens as a result of moment redistribution near 

interior supports. 

2. EXPERIMENTAL INVESTIGATION 

Tests have been conducted at EPFL on a wide variety of cold-formed steel 

sheetings to determine the moment redistr ibution factor at inter ior sup­

ports. The first of two test programs, completed in 1984, was conducted on 

so-called first generation profiled sheeting. First generation profiles are 

those that have no stiffeners in either the webs and flanges. The second 

test program, completed in 1986, was conducted on second generation pro­

filed sheeting. Second generation profiles are those with sti ffeners pro­

vided on the webs, flanges or both. 

2.1 Test specimens 

Profiled sheetings were chosen according to two criteria. Firstly, sections 

without embossments were used in order to reduce the number of assumptions 

necessary when calculating section properties 9nd predicting behaviour. 

Secondly, profiled sheetings which have found common usage in Switzerland 

were employed. As a result, the following sections were chosen: 

1.- First generation profiles tests (1984) : 

- Montan9 57/0.80 mm (unsyrnmetric trapezoidal ribs) (t = 0.031 in.), 

- Hi-Bond 55/0.88 mm (trapezoidal ribs) (t = 0.035 in.), 

- Holorib 51/0.75 mm ( dovetailed ribs) (t = 0.030 in.). 

2.- Second generation profiles tests (1986) : 

- Montana 75/0.80 mm (trapezoidal ribs with one stiffener in one 

flange) (t = 0.031 in.) , 

Holodeck 74/0.80 mm (trapezoidal ribs with one stiffener in one 

flange and in each web) (t = 0.031 in.). 

These five sections are shown in Figure 1. For each of the five types of 

sheeting listed above, three test series were performed. 

This enabled a comparison of behaviour with similar Single and multiple 

span specimens. 
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These tests are identified as series 1, 2 and 3. Load placement and span 

lengths were chosen such that test results could be directly compared with 

the ECCS design procedure. The coiled sheeting from which the specimens 

were formed was inspected both before and after the forming process. Each 

specimen was then marked prior to shipping. This minimised dimensional 

variation between test series on similar test specimens. 

Test series 1 consisted of a single-span simply supported profiled sheet­

ing, loaded symmetrically by two equal line loads. These tests determined 

the ultimate flexural strength of a single-span specimen in pure bending. 

The static system for this test series is shown in Figure 2 a). 

Test series 2 consisted of a single-span profiled sheeting, simply sup­

ported and loaded at midspan. This test series determined the influence of 

a concentrated load in the region of maximum moment. The line load at mid­

span simulates the effect of the interior support of a two span specimen. 

The static system for this test series is shown in Figure 2 b). 

Test series 3 consisted of a profiled sheeting continuous over two equal 

spans. Each span length was the same as that used in test series 1. Two 

line loads, of equal magnitude, were applied to each span at the same 

location as in test series 1. The static system for this test series is 

shown in Figure :2 c). 

2.2 Test proced.ure 

Before testing, the cross-sectional geometries and material thicknesses of 

all specimens were measured. All measurements were made in accordance with 

the ECCS Recommendations for the Testing of Profiled Metal Sheeting [2]. 

Six tensile test specimens were cut from the stock material used to form 

each profile. After the forming process, six additional specimens were cut 

from the center of flat plate elements and an additional six at the curved 

portion between these elements. All specimens were tested according to the 

Standard ISO procedure [3]. A more detailed review of the test procedure 

and the test specimens is contained in [6]. 

T~st~eries 1. The procedure adopted for conducting these tests was a modi­

fication of the ECCS Recommendations [2]. The blackings, required by ECCS 

between all ribs under concentrated loads, were provided only at exterior 

ribs. This change was made for two reasons. Firstly, it is difficult to 

determine the distribution of the applied load on the specimen with more 
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than two blocks and secondly, using only two blocks, it is much easier to 

assemble the test. 

For the second test program, a 175 mm (6.89 in.) length of profiled sheet­

ing, the same profile as the specimen tested, was placed beneath applied 

loads. This short length of profile was attached to the specimen by a num­

ber of screw fasteners placed near both edges transverse to the applied 

load. Its placement insured that premature shear failure near the concen­

trated loads would not occur. 

Test series 2. The ECCS Recommendations were followed for this test 

series. Blocking is not required as failure occurs at the location of the 

applied load. 

Test ser ies 3. This series resembles test series 1. However, instead 0 f 

exterior blocking beneath the concentrated loads, a 150 to 175 mm (5.91 to 

6.89 in.) length, depending upon profile height, of profiled sheeting was 

placed between the specimen and the transverse spreader beam. This profiled 

sheet was the same shape and thickness as the specimens tested. 

2.3 Test results 

Series 1. The ultimate load of the test specimens were compar-ed to the 

ultimate load calculated using the ECCS Recommendations. This comparison 

is shown in Table 1. A very good correlation between test results and cal­

culated values was observed for the first test program; the maximum differ­

ence between theoretical and test values of ultimate moment was 5 %. For­

the second test program, the maximum difference between theoretical and 

test values was 19 %. 

Series 2. An interaction diagram of moment and support reaction at ultimate 

load, calculated using the ECCS Recommendations, is shown in Figure 3. Test 

results ar-e also presented on this figure. For the first test program, the 

maximum difference between theoretical and test values of ultimate moment 

was 9 %, the standard deviation being 0.045. For the second test program, 

these two values are, respectively, 25 % and 0.134. 

Series 3. Ultimate loads from these test specimens and theoretical values 

calculated using the ECCS procedure are presented in Table 2. The theoreti­

cal values of ultimate load do not cor-respond to experimental results for 

both test programs. For the first test pr-ogram, the maximum di fference 

between theoretical and experimental values was 37 ~~ and the minimum 
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difference was 21 %. For the second test program, these values were 29 % 

and 39 %. The test values of ultimate load were always larger than those 

predicted by the ECCS procedure. The difference between the experimental 

ultimate load and the ultimate load predicted by ECCS represents the 

reserve capacity due to moment redistribution near the interior support. 

The redistribution factor, a,· is defined as the reserve capacity of the 

specimen divided by the ultimate load predicted by ECCS. 

3. ANALYSIS 

The following analysis is used to determine the redistribution factor, a, 

for multiple-span cold-formed profiles using a semi-analytical procedure. 

Based on an elastic analysis, the compatibility equation at ultimate load 

for a beam with two equal spans, L, uniformly loaded, is given by : 

Mo L Po L 3 

3 EIo = 24 EIo 
(1) 

Mo moment at the interior support of a two span continuous beam 

assuming linear behaviour; this is calculated using the simple beam 

formula and the yield stress of the material, 

10 moment of inertia of the entire cross section, 

L single-span length, both span lengths equal, 

E modulus of elasticity, 

Po uniform applied load at Mo' 

In equation (1), the left-hand term represents the end rotation in a simply 

supported span due to a single end moment, Mo' The right-hand term rep­

resents the end rotation in a simply supported span uniformly loaded. By 

equating these two components, an expression for the moment at the interior 

support of a two-span beam is obtained. To account for the additional 

capacity observed during testing, equation (1) may be rewritten to include 

the non-linear components of rotation at the interior support. Thus, this 

new expression is written as follows : 

(2) 

~gel rotation at the interior support due to local buckling of individ­

ual flat plate elements, 
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~9p rotation at the interior support due to the presence of a 

concentrated support reaction; this rotation is permanent, 

Pu uniform applied test load at failure or predicted ultimate load. 

In expression (2), the left-hand terms represent three separate components 

of rotation. The sum of these three components equals the rotation which 

occurs at the interior support in a cold-formed profile. To define these 

three components of rotation, illustrated in Figure 4, the following as­

sumptions are made : 

the negative-moment region near the interior support of a two span uni­

formly loaded specimen can be modelled by a single-span beam with a con­

centrated load at midspan, 

- the effect of concentrated load is so localised that the magnitude of 

~9p is independent of the span length. 

Let us consider typical load-midspan deflection curves of a single- span 

beam with a concentrated load at midspan, as shown in Figure 5. Theoreti­

cally, a compact cross section with no initial imperfections will attain 

overall plasticity without instability taking place and therefore, complete 

moment redistr ibution. This behaviour is identi Fied by curve DAB. In re­

ality, both initial imperfections and local buckling cause failure at a 

lower applied load than that predicted by DAB. Curve DKN represents this 

behaviour. When a concentrated load is present at the same location as the 

maximum moment, a further reduction in capacity is observed due to web 

crippling. This is shown by curve DEF. As loading is increased, four dif­

ferent types of behaviour are predicted by curve DEF. In the first region, 

DC, linear behaviour prior to local buckling is observed. In region CD, 

nonlinearity, primarily caused by local buckling in the different flat 

plate elements of the specimen, is observed. In region DE, the effects of 

the concentrated load dominate behaviour. At point E, failure of the entire 

section occur'S. Curve GJF is typical of the post-elastic failure behaviour 

of cold-formed sheeting. The nature of this curve has been investigated by 

several researchers [4] [5] [7]. Schardt [5], for example, has used a 

straight line. Unfortunately, this curve is difficult to obtain by theor­

etical means for cold-formed sheeting. 

To obtain ~gel and ~9p, the following procedure is proposed : rotation 

due to buckling of individual plate elements is dependent upon moment 

gradient, span length and moment-curvature relationship. Using the moment-
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curvature relationship from test series 1 and a finite di ffel'ence model, 

!l8e l can be plotted as a function of span length, for each sheeting. The 

magnitude of this component of rotation in terms of midspan deflection of 

the single-span beam with a concentrated load is shown in Figure 5 as HI. 

Rotation due to support reaction is localised and independent of span 

length. Thus, !l8p is determined by the non-linear rotations taken from 

testing, provided that the span length is sufficiently short to insure 

that elastic local buckling of the flanges does not occur. For the sections 

tested, this length is less than ten times the depth of the section. 

Component HI approaches zero and the remaining non-linear component of mid­

span deflection is represented by IJ in Figure 5. 

Using this procedure, two different tests obtain the two components of 

rotation, !l8e l and !l8p• These rotations are used to compute the ulti­

mate load capacity of multiple-span profiled sheeting. The first test, 

series 1, establishes the moment-curvature characteristics of the section 

subject to bending moment alone. The second test, a small span with a 

single concentrated load, determines the effects of concentrated reaction. 

The non-linear components of rotation at the interior support can thus be 

expressed as : 

(3) 

Using equations (1) and (2) the ultimate load capacity, Pu, is expressed 

as : 

p u = (1 + 0:) Po (4) 

Values of 0: have been calculated using this procedure for the sections tes­

ted. These values are compared to the experimentally determined redistri­

bution factors and are listed in Table 3. Conservative values for the 

redistribution factor are obtained, the average di fference being 23 ~~. 

4. DISCUSSION 

It is instructive to compare the ECC5 and AI5I design codes. Philosophi­

cally, these two codes have one major difference. AI 51 uses working stress 

design, whereas the ECC5 Recommendations has adopted an approach which is 

similar to LRFD (Load and Resistance Factor Design). 

Otherwise, for profiled steel sheeting, the two codes have similar 
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characteristics. The following points are the major exceptions : 

- The AISI formulae for the effective width or effective area of com­

pression flanges with intermediate stiffeners are based upon test results 

performed by Winter [8]. The ECCS method analyses such elements as a beam 

on an elastic foundation. 

- Both AISI and ECCS have similar web crippling formulae. However, the ECCS 

formula does not include a term accounting for web slenderness (web 

height, sw, divided by thickness, t). 

- In the ECCS method, the von Karman effective width concept is applied to 

the compression zone of the web, in addition to the compression flange, 

when calculating the bending resistance. AISI limits web stress when cal­

culating the bending resistance. 

- The AISI code designates different safety factors for different members, 

e.g. 1.85 for web crippling and 1.67 for bending resistance, etc. In the 

ECCS Recommendations, safety factors do not change according to the el­

ement. 

Bearing these in mind, the method proposed in this article could not inte­

grate directly in AISI code. Further study would be appropriate if LRFD is 

adopted by AISI. 

Test Series 1. Single-span test results and computed values for the second 

generation profiled sheeting are more scattered than those of the first 

generation profiled sheeting. This is due to two main factors 

1.- Nominal cross-sectional dimensions were used in calculations for the 

second generation; measured values were used for the first generation. 

2. - The modeling of the intermediate web and flange sti ffeners introduce 

deviations of pr.edicted values for second generation profiled sheet­

ing. Furthermore, the effective moment of inertia and cross-sectional 

area of these stiffeners are difficult to define accurately and may 

change as load is applied. 

In general, the ECCS design method successfully determines the ultimate 

capacity of single-span profiled sheeting. However, it underestimates the 

limits of linear behaviour. 

Test Series 2. Span lengths were chosen in order to obtain test results in 

the general vicinity of M/Mu ( 0.25. As presented in Figure 3, this ratio 

corresponds to the ultimate resistance of the section when web crippling is 

the limiting mode of behaviour. Very few test results are available for 
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this region. When such small span lengths are provided, the section behaves 

as though it is supported by an elastic foundation. In this analogy, the 

rigidity of the elastic foundation models the buckled rigidity of the 

webs. The results from this test series illustrate that ECCS values vary 

widely from observed behaviour. More realistic models of web crippling need 

to be developed. In the absence of such a model, and when failure is due to 

web crippling near a concentrated load, it is recommended that tests be 

performed to determine the ultimate resistance. 

Test Series 3. The differences in reserve capacity, between predicted and 

test values of a (Table 3) are due to several factors. Presently it is 

believed that the following two components account for the majority of 

these differences: 

1.- Although the same sheeting was used for test series 1, 2 and 3, dimen­

sional differences between specimens exist. Mo was calculated using 

the measured section properties of the sheeting used in test series 1. 

Some difference in section properties is always present due to the 

flexible nature of these specimens. 

2.- The deformation of the sheeting at the interior supports of a 

mUltiple-span specimen is larger than that observed under the concen­

trated load of test series 2 specimens. 

Also, it should be noted that all tests were conducted on single panel 

widths of profiled sheeting. The exterior flanges and webs had greater 

freedom than they would have had if continuity was provided. This lack of 

continuity reduces the average load that can be applied to the section 

before failure occurs. Therefore, redistribution factors may be marginally 

higher in multi-panel systems. In addition, the sheeting is fastened at the 

supports in practice. The rotational capacity seems not to be influenced 

due to the nature of failure mechanism. 

Since all our tests are carried out with 100 mm (3.94 in.) support length, 

more studies are needed in the field to clarify the effect of support 

length. Codes predict an increase of web crippling resistance when the sup­

port length is larger. Some supplementary tests showed that the rotational 

capacity seemed not to be affected by the same degree when the support 

length is increased. 

To illustrate the effect of this redistribution factor, a load table can be 

established. For example, see Table 4. This table compares the designed 
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values calculated by ECCS method with the proposed method. The table shows 

that the longer the span, the smaller the increase. Further work is needed 

to verify this trend. 

5. CONCLUSIONS 

The follawing conclusions are presented : 

1.- Variatians between measured and nominal dimensians for profiled sheet­

ing can be substantial. Ta imprave accuracy, actual section dimensions 

should be used when analyzing test data. 

"2.- Use of the present ECCS Recommendations results in successful predic­

tian of the ultimate load capacity of single-span systems constructed 

using first generatian prafiled sheeting. 

3.- The ECCS pracedure underestimates the ultimate load capacity of both 

first and second generation continuous steel prafiled sheeting by 21 % 

ta 39 % because rotational capacity at interior supports is not con­

sidered. 

4.- The ratatianal camponent at suppart,· l1ep' accounts for between 39 % 

and 79 % of the total rotatian observed at the interiar support for 

bath the first and second generatian steel profiled sheeting. 

5.- The semi-analytical pracedure outlined in this paper provides a conser­

vative means of predicting ultimate strengths 'of multiple-span profiled 

sheeting. This pracedure improves the accuracy 'of LRFD concepts. 
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4 x 157,5 = 630 
I 
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56D'-----JtL(\~~ 
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MONTANA 57/0,BO. 

HI-EOND 55/0,BB. 

4 x = 600 

1050 HOLORIE 51/0,75. 
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3 x 257 = 771 

199 5B ~---.-::.9:::-6_-l-_---.:1::.6-,-1_--<1 MONTANA 75/0,BO. 

FIGURE 1 

Profiled sheeting sections (1 in. 25.4 mm). 
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~~~ 
L/2 I L/2 920 560 920 920 560 920 

L = [mm]1) L 2400 mm L 2400 mm 

L 560, 720, 1040, 1200, 1520, 2000 mm M 0,355 P L 
0 

L 275, 350, 900, 1200, 1600 mm 

b) Series 2. c) Series 3. 

F 15URE 2 

Static system for the tests (1 in. 25,4 mm). 

STATIC SYSTEM 

TYPE 

TEST 

NUMBER 
IS 0 

M~ = 0,92 Pu 

t t 0,92 P u 9 

f f 
PROFILE 

M~,series1 M~, ECCS M:JssriBs1 M: J ECCS 

MONTANA 57/0,8ol--_M_O_2_2_1--_3_,_2_4_3",..1--_3_,_3_2_1 =1f<-----==-------l~-----==----_I 
M021 _____ ____ 3,114 3,124 

f = 294 N/mm2 
y M023 ____ ________ 3,197 3,085 

HI-BOND 55/0,88 I--_H_I_2_2 -11--_3.:.., _34_0....,,-+-_3.:.., 4_8_5~./-<"'----=--__ ¥-----==--__ --l 
HI21 ____ ____ 

f = 306 N/mm2 y H 12 3 ______ ______ 
3,257 3,227 

3,163 3,243 

HoLoRIB 51/o,751--_H_O_2_3~1--_3.:..,_2_2_9~~_3.:..,2_5_7~'/-<----==--__ -+~-----==--__ --l 
H021 ____ _____ 2,995 

f = 291 N/mm2 y H022 ____ ____ 2,967 

3,106 

2,969 

4,050 

MONT ANA 75/0,80 I--_M_P2_2_+-_3--,,:.-1_3_7?'"1-_3.:.., 6_6_0=-1-'=----==--__ +"'-----=--_---1 
MP21 ____ ____ 

f = 276 N/mm2 y MP23 ____ ____ 
4,030 4,077 

3,956 

HoLoDECK 74/o,8ol--_K_H_2_2_1--_5~,_1_3~0~1-_4.:..,_77_o~~",----=-__ +",----=--_~ 
KH21 ____ ____ 5,722 5,570 

f = 335 N/mm2 1------1-''''-~-----,==--+"""---____ ----co".f---'----+---'----I 
y KH23 ~ ~ 5,786 5,580 

(1 ksi 6,895 N/mm2) 

Test results of series in kNm/specimen (1 kip-ft 1,356 kNm). 
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M 
U I series2 

M 
u ,series1 

• 
1,0 

Values in mm b = 100 > 100 • 57/0,80 • MONTANA • 0 

• HI-EoND 55/0,88 • ·11 • HoLOR IE 51/0,75 • D 

• • MONTANA 75/0,80 • 
HoLoDECK 74/0,80 • 

M P 
(1 in. = 25,4 mm) 

0,5 F ~ 
u.series2 u aseries2 

M + R 
u,series1 u,ECC5 

M 
u,series2 = P 

u 
(L - b)/4 • 

0,25 • • 
p 

U I serie§2 
0 R 

0 0,25 0,5 1,0 u, ECCS 

FIGURE 

M-R interaction diagram. 

PROFILE 
f 

M - 1) P 2) P 
3) P 

u, series3 y u,series2 u,series2 u,series3 a. = - 1 TYPE 
[N/mm2 ] [kNm/specimen] [kN/specimen] [kN/specimen] 

P u,series2 

MONTANA 57/0,80 294 2,871 3,370 4,264 0,265 

HI-EoND 55/0,88 306 3,094 3,631 4,409 0,214 

HoLoRIE 51/0,75 291 2,868 3,366 4,623 0,373 

MONTANA 75/0,80 276 3,369 3,954 5,120 0,295 

HoLoDECK 74/0,80 335 4,612 5,413 7,530 D,391 

1) The ultimate moment is given by the interaction moment-reaction diagram in series 2 test. 

a) P u, series2 M:, series2/O, 355 L (elastic linear solution). 

3) Average values of tests. 

( 1 ksi = 6,895 N/mm2 , 1 kip-ft = 1,356 kNm, 1 Ib 4,45'10-3 kN) 

Test results of series 3 and redistribution factor. 
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End rotation due to 
uniformed load. 

End rotation due to end moment, 
local buckling effect and 
permanent rotation at failure. 

FIGURE 4 
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Elastic rotation. 
(local buckling effect) 
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p 

I 

Permanent rotation. 
(concentrated load effect) 

Components of compatibility equation (2). 

PROFILE I '106 lIgel '1O- 3 lI9 '10- 3 
a p 

TYPE 
[mm 4 / specimen] [rad] [rad] 

MONTANA 57/0,80 0,386 3,31 3,75 

HI-BOND 55/0,88 0,389 2,62 3,90 

HOLORIB 51/0,75 0,420 3,72 3,93 

MONTANA 75/0,80 1,020 - 2,95 

HOLODECK 74/0,80 0,869 - 4,12 

1) 6.8 is obtained from a 560 mm span series 2 test 

~ Caiculated from equation (3) 

(1 in~ = 4,16,105 mm4 ) 

1) 
2) a. cal a.test 

0,228 0,265 

0,205 0,214 

0,284 0,373 

0,234 0,295 

0,204 0,391 

Comparison of the tested and calCUlated redistribution factor. 
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A B 

FIGURE 

Typical load-midspan deflection curve. 

SPAN [mm] 2500 3000 3500 

ALLOWABLE LOAD WITHOUT REDISTRIBUTION [kN/m2 ] 3,27 2,45 1,92 

ALLOWABLE LOAD WITH REDISTRIBUTION [kN/m 2 ] 3,90 2,81 2,15 
(0.=0,193) (a. = 0,150) (a. = 0,120) 

(1 in. 25,4 mm, 1 kip/ft2 47,88 kN/m 2 ) 

Load table of IIJIOIIJTANA 75/0,80, double span with uniform loading. Comparison between ECCS and 

proposed methods (safety factor: 1,5 j support width : 100 mm). 
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